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Abstract

Maxwell equations in p time and ¢ spatial dimensions are formulated. Prop-
erties of the Green’s function for the associated (p,q)-wave operator are de-
rived. The notions of electric and magnetic fields in (p,q)-dimensions is ex-
plored by analogy with four dimensional physics. SO(p,q) invariance properties
of the Maxwell equations are deduced and used to formulate SO(p,q)-group the-
oretic image processing problems in (p,q)-dimensions. Dirac’s equation in (p,q)-
dimensional space-time is derived using the Clifford algebra of the Dirac gamma
matrices. SO(p,q)-invariance of the Dirac equation based on the spinor represen-
tation of SO(p, q) is mentioned. The Maxwell’s equations in (p,q)-dimensional
curved space-time is analyzed using perturbation theory. The Einstein-Maxwell
equations for (p,q)-dimensional gravity and electromagnetism is studied and
used to derive the equations of motion of point charges carrying mass moving
under mutual gravitational and electromagnetic interactions in general relativ-
ity. Finally, Dirac’s equation in (p,q)-dimensional curved space-time interacting
with the (p,q)-dimensional electromagnetic field is looked at. U(1)-Gauge, local
SO(p,q) Lorentz and diffeomorphism invariance of this equation is analyzed.
Local SO(p, q) invariance of the curved space-time Dirac equation is deduced
based on transformation properties of the Dirac matrices under the spinor rep-
resentation.

Keywords: Maxwell equations, SO(p,q) group, Riemannian metric, flat
space-time, curved space-time, Clifford algebra in n-dimensions, Dirac equation,
Dirac Gamma matrices, Representation of a group, spin group, spin represen-
tation, Einstein field equations, Green’s function in n-dimensional space, group
representations in image field processing.

Introduction

We first formulate the n-dimensional Maxwell equations on a flat space-
time manifold having q spatial degrees and p temporal degrees of freedom with
p+ g = n. We explain how to solve these equations by the method of Green’s
functions and then proceed to generalize these to the situation of curved space-
time background with any given Riemannian metric. We derive these Maxwell
equations from an action principle and also explain how to determine the mo-
tion of charged particles in such an electromagnetic field taking background
curvature into account. We adopt the differential geometric approach based
on the calculus of differential forms. We also explain the generalized Lorentz
gauge invariance of the n-dimensional Maxwell theory and then explain how
the n-dimensional Maxwell theory couples to the n-dimensional Dirac equation
theory for relativistic quantum mechanics using a Clifford algebra. Finally,
we explain the coupling of n-dimensional gravity with n-dimensional Maxwell
theory via the Einstein field equations and explain how measurements of the
n-dimensional Maxwell field at a discrete set of spatial points can be used
in the detection of n-dimensional gravitational waves both in a flat and in a
curved background metric of space-time. We discuss an important example of
n-dimensional maximally symmetric spaces that are important in cosmology
and explain how to formulate the Einstein-Maxwell field equations in such a



curved space-time in the presence of a finite set of point charges that gener-
ate the current that produces the electromagnetic field and that also execute
motion in the electromagnetic field generated by them. Some group theoretic
aspects of the n-dimensional Maxwell equations are also discussed especially
invariance of the Maxwell equations under the group SO(p, ¢) and how to solve
group theoretic image processing problems like estimating the SO(p, ¢) general-
ized Lorentz transformation from measurements of the original electromagnetic
field and a noisy version of the transformed electromagnetic field as well as
constructing pattern invariants for n-dimensional electromagnetic field images
that transform according to the general Lorentz group SO(p, q). There is some
discussion on the Green’s function in (p,q)-dimensional space-time and how it
can be applied to the special case of calculating the energy radiated out by a
charges in motion and currents in (1,n — 1) space-time. We also explain how
the (p,q)-dimensional Green’s function can be used to calculate approximately
the Maxwell field in (p,q) dimensions when the space-time manifold is given
by a curved metric that is a weak perturbation of flat space-time. Finally, we
present some discussion on the Clifford algebra generated by Dirac matrices
in (p, q)-space-time with applications to analysis of the Maxwell-Dirac equa-
tions in (p,q)-dimensions. The spin group as the covering group of SO(p, q) as
well as spin representations of SO(p,q) constructed using the Dirac matrices
are presented and we explain how the spin representation can be used to de-
duce the (global) SO(p, g)-invariance of the (p,q)-Dirac equation in an external
electromagnetic field. We explain how the (p,q)-space time Dirac matrices can
be constructed using the creation and annihilation operators in Fermion Fock
space and using commutators of these Dirac matrices, how the spin representa-
tion of SO(p,q) can be constructed. This discussion of the spin representation
of SO(p,q) is based on Lie algebraic methods by showing explicitly that the
commutators of the Dirac matrices satisfy the same Lie algebra commutation
relations as the standard Lie algebra generators of SO(p, ¢). Finally, we derive
the formula for the (p, q)- spin connection and explain how it can be used to
construct the (p, ¢)-Dirac equation in curved space-time in such a way that this
equation has local SO(p, ¢)-invariance just as the conventional curved space-
time Dirac equation in (1,3) dimensions has local Lorentz invariance. Some
discussion of the Einstein-Maxwell equations in the presence of point charges
in (n+1)-dimensional space-time in motion has also been presented. This anal-
ysis tells us how in n + 1-dimensional general relativity, point charges move
under their mutual gravitational and electromagnetic interactions and also how
to calculate approximately the corrections introduced by gravitational effects
on the electromagnetic field generated by point particles in motion when the
gravitational field is also that produced by the point particles.

Research highlights:

[1] SO(p, q) invariance of higher dimensional Maxwell equations with appli-
cations to group theoretic image processing.

[2] Formulas for the Green’s function of the SO(p, ¢)-invariant wave equation
in (p, ¢)-space time dimensions.



[3] Formulation of the basic general relativistic equations describing the mo-
tion of IV point particles carrying mass and charge in the mutual gravitational
and electromagnetic fields generated by them in n-dimensions.

[4] Deriving generalizations of the Maxwell curl equations and the elec-
tric and magnetic fields in (p, ¢)-dimensional space-time starting from the n-
dimensional potentials and an action principle.

[5] Formulating Dirac’s equation in (p, ¢)-dimensional curved space-time us-
ing tetrad basis for the metric and the spinor connection of the gravitational
field.

Problem formulation

1. The generalized Lorentz group SO(p,q) and the n-dimensional
Maxwell field

The coordinates for our n = p + ¢g-dimensional spacetime are (x!, 22, .., 2")
where z!, ..., 2P are the time coordinates and aP*1, ..., ™ are the spatial coordi-
nates. The metric of space-time is flat:

P n
dr? = Z(dmi)2 — Z (dz*)? = n;jdx'da?
i=1 i=p+1

where
n = ((ni;)) = diag|I,, —14]
The n-dimensional electromagnetic potential is A; or equivalently as a differen-

tial one form, .
A(z) = A;(z)da’

The n-dimensional electromagnetic field tensor associated with this potential is
F =dA=A;;da? Ndx' = (1/2)(Aj; — A; j)dz' Ada? = (1/2)Fyjdat A do?
so that in component form,
Fij=A;;—A;j =0;A; — 04

In the context of the above flat space-time metric, the Lorentz group is O(p, q),
namely, the group of all n x n real matrices g which preserve the metric 7, ie,

g'ng=n

or equivalently,
G(z,z) = G(gz, gz)Vz € R"
where G is the (p, ¢)-Lorentz metric:

P n

G(x,x) =aTne = Z(zz)Q - Z (dz")?

i=1 i=p+1



2.The Clifford algebra of Dirac Gamma matrices in n=(p,q)-dimensional
space-time and spin representations of SO(p,q)

We introduce matrices 71, ...y, or appropriate size so that they generate a
Clifford algebra for the symmetric bilinear form G on R™: G(z,y) = 27 ny,

Yivs % = 201
or equivalently, writing

n
v) =Y vivi,
i=1

Y(©)y(u) +7(w)y(v) = 2G(v,u)] = (20" pu)I,v,u € R"
Let T be an element of O(p, q). Then

Y(Tv)y(Tu) + y(Tu)y(Tv) = 2G(Tv, Tu)l = 2G(v,u)

because by definition, O(p, q) consists of all n x n matrices that preserve the
quadratic form * — Q(r) = G(z,z) = zTnz. Now, choose a basis B =
{e1,...,en} for R” and let T € O(p, q). Let [T]p = ((Ti;)), the matrix of T
in the basis B. Then, we have with [v]p = (( i), that

= > 1Ty =D v
3,j=1 J
where
;= Z Ty
Thus,
Wl g = 2yl

In other words, every T € O(p, ¢) induces by duality, a linear transformation on
the vector space V = span{~; : i = 1,2,...,n} that preserves the anticommuta-
tion relations of the Clifford algebra. Now suppose that we are able to find for
T € O(p,q), a matrix S(T') of the same size as the v/s such that

STST) " =+F =3 Ty,

Note that this equation is consistent because
S(T)%S(T)~1.S(T)y;S(T) ™" + S(T);S(T) 1. S(T)S(T) ™!

= S(T)(yivj +77)S(T) ™ = S(T)(2ni;S(T) ™" = 2351
It follows immediately from the definition of S(T')

S(ToTy)v;S(ToTy) ™ = S(To)S(T1)v;(S(T2)S(Th)) !



for T1,T5 € O(p,q). Thus, it is reasonable to expect that ' — S(T) will be a
representation of O(p, q):

S(TyTy) = S(T)S(Th), T, Ty € O(p, q)

In particular, we can restrict S to SO(p, ¢) and the resultant S is then called the
spinor representation of the Lorentz group SO(p,q). This representation acts
in the same vector space as that on which which +/s act. Such a representation
can be constructed easily by first defining the Gamma matrices 7; as a; + a}
and —i(a; — af) where the a; and a} are annihilation and creation operators
acting in the Fermion Fock space AR™ corresponding to the vectors e; and then
constructing S(T') as exp(_, ; 0(i, 7)[vi,V;]/4) where T = exp(3_, ; 0(i, j)e(i, j))
with €(4, 7)(k,m) = %ikNjm — Mim"Njk. In other words, if theta is an element of
the Lie algebra so(p, ¢), then dS(0) = >_, ; 0(4, j)[vi,7;]/4 is the corresponding
element of the Lie algebra of S(SO(p,q)). S(SO(p,q)) is called the spin group
of SO(p, q) and its action on the Fermionic Fock space or equivalently on the
space on which the Gamma matrices act defines the spin representation of the
Lorentz group SO(p, q).

3.(p,q)-dimensional Maxwell equations and their SO(p,q)-invariance
with applications to (p,q)-dimensional image processing for electro-
magnetic fields

Returning back to the n-dimensional Maxwell equations, we construct the
action functional as

SUA) = C [ FyFids, P = g Fi,

This action is SO(p, ¢) invariant and consequently, the corresponding field equa-
tions will also be SO(p, q) invariant. The action principle §4.5 = 0 give us the
field equations -
0;F"7 =0
To verify SO(p, q) invariance, let T € SO(p,q). Then under T, F will trans-
form to
(TF)" =TT}, F*™

and 9; will transform to
ol =T},

Then
Of (TF) = T T{T3,0,F*™ = T{6,0, F*™ =

Ti9,.F* =0

Remark: Indices are raised and lowered using the metric n;;. If ((T;;)) =
T € SO(p, q), then we have the equation

T"nT =1



which can be expressed as
nrsTriTsj = iy
or equivalently, using the raising and lowering of indices,
T Tsj = nig
or '
T:T? = o)

with the Einstein summation convention over the repeated indices being implied.
W e can choose alter the one form A to A’ = A + dA where A is an arbitrary
scalar field, without affecting the field F = dA = dA’ = F' since d> = 0. We
choose in particular, A so that A = —divA, ie

OA = 9'0;A = —9; A’
This gauge condition ensures that divA’ = 0 and hence the field equation
8;F1 =0

gives
0A" =0

Henceforth, we remove the prime from A thereby implicitly assuming that A
satisfies the gauge condition divA = 0 and hence the SO(p, ¢) wave equation

A =0'"9;A=0
or equivalently,
P n
O oo7 = Y 9)Ak() =0
i=1 i=p+1

For T € SO(p,q), we write T = ((T})) rather than ((T};)). Thus, the SO(p, q)
property is expressed rather as

Under a (generalized) Lorentz transformation T € SO(p,¢q), the coordinate
system changes to _ o
y' =T
so that . o
15y y’ = 0T Tia™a" = nppa™ "
as it should be. It should be noted that under such a transformation, the
potential A*(x) changes to

B'(y) = Tj Al (x) = Tj A/ (T "y)

or in matrix notation,

B(y) = TA(T™'y)



or
B=TAT T € SO(p,q)

We write
B=x(T)A

as a transformation from one n-vector field A on R" to another vector field B
on R™. It is clear then that

7T(T1T2) = 7T(T1)7T(T2),T1,T2 € SO(p, q)

so that 7 is a representation of SO(p,q) in the space of n-vector fields. It is
usual to assume some sort of integrability condition on the vector fields. For ex-
ample, in conventional electromagnetic field theory the energy of the field may
be taken a finite so that the partial derivatives of the vector potential are square
integrable. If we decompose the representation 7 into the irreducible represen-
tations of SO(p,q), then since this is a real group, its irreducible components
will have principal, supplementary and discrete series. It should be noted that if
A(z) satisfies the SO(p, g) wave equation as well as the Lorentz gauge condition,
ie,
D'0; AR (x) = 0,08 Ap(x) = 0

then B(y) = n(T)A(y) will also satisfy these two equations. To see this, we
observe that for y = Tx or y* = T}atj,

0/0x7 = (9y"/027)(0/0y") = T;.@/ﬁyi
so that _
O, = n34(0/027).(0/0s*) =
T T3 (0/0y").(0/0y™) =

Nim (9/0y")-(0/0y™) =00,

Remark: T € SO(p,q) implies T"nT = 5 implies on taking inverse and
noting that n~1' = n that T~'9T~7 = 5 which implies TnT” = 7 which implies
that TT € SO(p,q). We have thus shown that the generalized wave operator
in R™ = RP? is invariant under generalized Lorentz transformations. It is also
easy to see that the gauge condition is also invariant:

OB (y)/dy’ = (9x' |9y )OT] A*(x) )9z
= (T7Y)iT]0Ak (2) /02" = (T7'T),0A" (x)/0a’ =
6L 0Ak (z) )0zt = DAF () )0k

In particular, divA = 0 implies divB = 0, ie, div(TAT~1) = 0. When we make
a change of the frame by a generalized Lorentz transformation, the transformed
field will also therefore satisfy the Maxwell equations and the resulting vector
potential transforms to TAT ! while the resulting field tensor F' transforms to
(T®T)F. T~ . If we take as our representation space, the set of antisymmetric



field tensors F' with a square integrability condition, then we get a unitary
representation T — U(T) of the locally compact non-Abelian group SO(p, q):

(U(T)F)(2) = (T ®T)F(T''x)

It is usual to denote the restriction of T®T to A2(RP*9) by TAT and regarding an
antisymmetric field F' as an element of the vector bundle A?T*(R?:?) namely as a
differential form of degree two over M = RP>? endowed with the flat Riemannian
metric 7. Specifically, F(z) = F;j(x)dz’ Adz’. Then U becomes a reprsentation
of SO(p,q) in the vector bundle A2T*(RP?) and we can study the irreducible
representations of U. Note that we can write

U(T)F = (T AT)FoT ™!

We can using this representation theoretic formalism of generalized Lorentz
transformations acting on an n-dimensional electromagnetic field answer ques-
tions such as estimate the transformation 7' € SO(p, q) from noisy measure-
ments of the original field F' and the transformed field H = U(T)F + W where
W is noise, or construct invariants I(F) for SO(p,q) ie, I(U(T)F) = I(F) for
all T € SO(p, q) and all fields F. The latter will give us for example given two
fields Fy, F5 and their transformed versions Fy = U(Th)Fy, Fy = U(Tz)F, for
some T, Ty € SO(p, q), the information that F| came by transforming F; and
not from F» and likewise Fj came by transforming F5 and not from Fj. In other
words, we can solve the feature extraction problem or equivalently the pattern
classification problem for n-dimensional electromagnetic fields in RP»9.

4.Analogy of (p,q)-dimensional Maxwell equations with the four
dimensional case
In analogy with the four dimensional case, we define the electric field com-
ponents by
Eijp=A4;i—A4;;1<i<pp+1<j<n

and the magnetic field components by
Bipjp =45 = Aijip+1<i,5<n

Recall that there are p time coordinates z7,j = 1,2,...,p and ¢ spatial coordi-
nates 7,5 = p+1,...,n. For p > 1, we have additional fields, namely

H;;,1<i,57<p

which have no analogy in the conventional four dimensional or more precisely
R':3-dimensional space-time. The definitions imply the following " Homogeneous
Maxwell equations” or the Maxwell curl equations

Fijr+ Figs +Fri; =0,4,5,k=1,2,...,n
as can be verified by substituting .Fj; = A;; — A; ;. These imply

8}€Ei7j_p — 8jEi7k_p + aiBj_ch_p =0,i=12,....,p,7, k= p+1,...n
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or equivalently,
Op+iEij — OpyjEi + 0;Bjr, = 0,5,k =1,2,...,¢,5=1,2,...,p

This is the n-dimensional generalization of the four dimensional homogeneous
Maxwell equation
curlE+0;B =0

Note that for each temporal index ¢ = 1,2,...,p, we have an ”electric field
vector” (E;;:j=1,2,...,q) with ¢ components and we have a "magnetic field
tensor” (Byj; : 4,7 = 1,2,...,q) with ¢(¢ — 1)/2 independent components. This
magnetic field tensor cannot be replace in general by a magnetic field vector
since q(¢ — 1)/2 equals q only when g = 3. The n-dimensional generalization of
the four dimensional Maxwell equation

divB =0

is given by
Bijr + Bjki + Brij = 0,4, 5,k =1,2,...,q

However in the n-dimensional situation, we have another set of homogeneous
Maxwell equations when p > 1 which has no analogy in four dimensional physics,
namely

Hiji + Hjgi + Hiij = 0,4, 5,k =1,2,..,p

and
OHij +0iEj—p —0iEi—p=0,1,5=1,2,...,p,k=p+1,..,n
or equivalently,
OpsnHi; + 0;Ejp — ;B = 0,i,5=1,2, ..p.k=1,2,....q

This last equation is non-void only when p > 1, ie, when there is more than one
time coordinate.

5. Maxwell’s equations in an n-dimensional maximally symmetric
space in the presence of moving charges
Consider an n — 1 dimensional surface in n dimensional Euclidean space
defined by the equation
Cijxixj =1
or equivalently,
2TCx =1

where C = ((Cj;)) is a positive definite matrix. If we diagonalize C, then
this equation becomes the surface equation of an n — 1 dimensional ellipsoid
immersed in n-dimensional Euclidean space. If further, after diagonalizing, ie,
rotating the frame, we also scale coordinates, then this becomes the surface
fo an n — 1 dimensional sphere in R™. More generally, if C is a non-singular
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Hermitian matrix with p positive eigenvalues and ¢ negative eigenvalues, then
diagonalizing C using a rotation of space time followed by an appropriate scaling
of the coordinates, this surface assumes the form

or equivalently,
eTnr=1n= diag[I,, —1,]

Since the metric 27 nz is invariant under SO(p, q), it follows immediately that
this this surface is also invariant under SO(p, ¢). We now introduce an additional
coordinate z and define the following n-dimensional surface M immersed in
Rr+1:

0+ K22 =1

which is an abbreviation for
C’ijxia:j +K22=1

We wish to determine the linear transformations 7" of (z, z) € R™*! under which
this surface M remains invariant. Any linear transformation on R"*! can be
expressed as

(z',2") = T(2,2) = (Rx + bz,r 'z + cz)

where
ReR"™™beR" rcR", 2R

The condition for M to be invariant under T is that
2 TCr + K(Z) =1
ie
(Rx 4+ b2)TC(Rx +b2) + K(rTa +¢c2)? =1

whenever
2TCr+ K22 =1

Comparing coeflicients, this gives the following necessary and sufficient condi-
tions:

RTCR=C,RTCb+ Ker =0,67Cb+ K? = K

The number of independent equations here for R, b, r, ¢ is clearly n(n +1)/2 +
n+1=(n+1)(n+2)/2 and hence the number of degrees of freedom in T is
(n+1)2 - (n+1)(n+2)/2=n(n+1)/2. The metric induced on M from the
Euclidean metric ds? = dzTdx + dz? on R™t! is also clearly invariant under 7.
Such metric on M therefore is invariant under a maximum number of n(n+1)/2
independent transformations on M or equivalently under a set of n(n+1)/2 lin-
early independent vector fields. Such vector fields that leave the metric invariant
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are called Killing vector fields. This means that the Riemannian manifold M
having the metric

ds® = deTdx + dz* = daTdx + (d(K_1/2(1 _ xTCx)1/2)2

induced by the Euclidean metric on R®*! is a maximally symmetric space.
Remark: More generally, if a p-dimensional surface M is defined by the
equations
z2=f(z),z€e R" P zeRP

then the metric on M induced by the Euclidean metric on R™ is given by
ds* = dzTdz + da¥dx = da” (I + f'(x)7 f'(x))dx

Then, if T is transformation on R™ that leaves M invariant in the sense that
if (2/,2") = T(xz,2), then 2’ = f(a’) whenever z = f(x), then the induced
transformation on M will leave this induced metric invariant since

(d2"'de' + (dx') da' = ()" (I + /()T f/(2"))da’

The maximally symmetric space M can be used to define a comoving metric
on an n + 1 dimensional manifold with coordinates (¢,z) as:

dr? = dt* — dI*

where
di? = dz® + da"de,z = K21 — 2T Cx)'/?

by making C' = C(t), K = K(t) be functions of coordinate time ¢. Denoting this
metric by g;;(t,),i,7 = 0,1,...,n,2° = ¢, we can then introduce the comoving
energy-momentum tensor

Ej = (p(t) +p(t))’l)ﬂ)j 7p(t),’l)0 = ]-avi = Oa’L = 1723 ey 1
and set up the n + 1-dimensional Einstein field equations
Rij = k‘(TZ] - Tgij/Q),i,j = 0, 1, ey 1, k=-8rG

This will give us the n+1-dimensional cosmological dynamics for a given K that
can be solved for C(t), K(t), p(t), p(t) in a consistent way given an equation of
state p(t) = f(p(t)). The total number of independent Einstein field equations
are one for Rog plus n + n(n —1)/2 = n(n + 1)/2 for R;;,1 < i < j <n
giving in all n(n + 1)/2 + 1 equations for the symmetric matrix C(t) totally
n(n+1)/2 variables in number plus K (¢) one in number. There is an additional
variable p(t) to be solved for and that can be determined from the vanishing of
the covariant derivative of the energy momentum tensor leading to the matter
conservation equation. Indeed, the matter conservation equation

iy
i =0
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gives
((p+p)v'v’); —p*' =0
or

((p+p)v?),j0" + (p+ p)olol; —p* =0

Contracting with v* gives

((p+p)v'); —v/p; =0

or equivalently since v/ = 0,5 = 1,2, ...,n,v" = 0, we get the following equation
of continuity:

(p+pP)V=9)0—p0o=0

(p+p)V=9—p=co(x)

a function of only the n spatial variables x. Now, the space-time metric is
dr? = dt? — dzdx — d(K (t)"Y2(1 — 2T C(t)z)Y?)

g(t,z) = det(g;;(t,z))) can be computed in principle from this equation and can
be matched to

g(t,z) = ~[(co(z) +p(t))/ (p() + p(1))]?

to get an additional equation relating C(t), K(t) to p(t). Recall that p(t) =
f(p(t)) is the assumed equation of state. Further, substituting the above equa-
tion of continuity into the momentum equation, namely conservation of matter,
we get

(p(t) +p(t))v’vl; —p* +v'vp; =0

Using the comoving condition, this simplifies to
(p(t) +p()Tho — P + p,0d) = 0

This is an additional fluid dynamical equation. We next look at Maxwell’s equa-
tions in such a maximally symmetric space taking into account an interaction
with the current field coming from the motion of N charged particles in curved
space-time. First assume that there is a classical current density J#*. The ac-
tion functional for the (n+1)-dimensional Maxwell field as well as the motion
of the particles in the background maximally symmetric space is derived from
the action

SU) = [ -1/ P Fyy=g - A =gd iz = S [ dn,
k=1

where 4
dri = (gij (xk)dmidaﬁfc)lp
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We are assuming that the current .J* is produced by the motion of N charged
particles with charges eq,...,en:

N
Ji(t,7) = exvh (10" (2 — a(t) (gt 2)) 2 = — = (1)
k=1

where .
dl‘z (t) di

at Cdt
and x, is the n+ 1 dimensional position vector of the k** charged particle. Note
that

dry. /dt = (goo () +2 Z Gom (g )dx ! /dt + Z Gsm (1) (da /dt) (da /dt)) /2

m>1 s,m>1

vi(t) = dxk(t)/dm, = )y hi=0,1,..,n,

Note that ug =1 since x% = t. Carrying out the variation w.r.t the :E};, we get
the n-dimensional geodesic equations

2,
"z}, i

dx} dx;
e k k
dT[? + T8 (xk?)

di.di

= 6kFij<LL‘k)— el )

and on carrying out the variation w.r.t the fields A; we get the Maxwell equations
with the discrete current source:

(F7V=g9);=—V=gJ" = =(3)

The equations (1),(2),(3) must be jointly solved to obtain the particle trajec-
tories @4 (t),i = 1,2,....,d,k = 1,2,..., N and the electromagnetic fields F;;(z).

6.Green’s functions for the wave operator in (p,q)-dimensions

We now take a look at the generalization of the retarded Green’s function for
the wave operator in four dimensional space time, ie, in R to the n-dimensional
case, ie, in RP?. In order to motivate this discussion, we first observe that
in flat (p,q) dimensional space-time, the Maxwell action interacting with a n-
dimensional current density J* is given by

(1/4) /FijFijdnJ) — /JZAlan‘,FU = Aj,i — Ai,j
and carrying the variation w.r.t the A; gives
i g
Fi=J
Taking into account the generalized (p, ¢)-Lorentz gauge condition

AL =0

32
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gives us the (p,q)-dimensional wave equation with source:
DAY (z) = 070;A'(x) = ny;0x0; A" = —J'(x)

To solve this, we for an arbitrary source, we must first solve for the Green’s
function in (p,q)-dimensional space-time:

OG(x) = 6" (x)

On taking (p,q)-dimensional Fourier transforms, this gives

G(z) = —(27T)_"/exp(ik.x)d”k/k2 -———®)
where
k. = kjx' =njk's? = Zklxl — Z k't
i=1 i=p+1
and
L. . p X n )
K=k =Kk =) (k)= Y (k)
i=1 i=p+1

Evaluating the n-dimensional integral in (3) is not easy. Let dQ,(k(1 : p))
denote the solid angle measure in p-dimensional Euclidean space and likewise
qu(lAf(p +1:n)). We write cos(0(k(1 : p), (1 : p))) for the cosine of the angle
between the p-unit vectors 12:(1 : p), and Z(1 : p) and likewise for g. Then, we
can write

G(r) = —(27)*”/[6@(%'%(1 :p)lle(L: p)leos(6(k(1: p),&(1: p)))

—ilk(p+1:n)|lz(p+1:n)|cos(@(k(p+1:n),Z(p+1:n))))].
IR )P+ mE) (L ) P(p--1 5 ) 22 (1 5 p))- k(1 : p)|dlk(p+1 : )| dq ((p-+1 = m)
Writing for instance

/mﬂ%ﬂJmmlmmeMLM@OWMM%@OmD

= F,(|k(1: p)||z(1 : p)|)

(Note that this integral is independent of #(1 : p)), we get

R e D E(kp 1 )z 1 m))
C(w) = () /? k(L p)E — [F(pt L)

d|k(1: p)|.d|k(p+1:n)|
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In the special case when p =1, = n — 1, ie, the situation of n-dimensional

Maxwell equations with one time coordinate z° and n — 1 spatial coordinates

2t ..., 2™ 1, we have

(9 — g 97)G(x) = 6" (x)
i=1
which gives on taking the n — 1 spatial Fourier transform we get
(03 + KHG(2°, k) = 5(z)
Laplace transforming w.r.t 29 gives us
(s + k*)G(s,k) =1
so that -

G(2% k) = k™ sin(ka®)0(2°), k = > (k')?
i=1
Taking the n — 1-dimensional inverse spatial Fourier transform w.r.t (ki : i =

1,2,...,n — 1) then gives with t = 29,

sinkt) exp(ikr.cos(0))k"~*dk.dQy,—»(9))

G(x) = G2 2!, ..., 2" ) = (27r)7n+1/

where d€2,,_2(0) is the solid angle measure as a function of the elevation angle
measured w.r.t the pole direction (2*:i=1,2,....,n — 1) and

Defining
I, o(r) = (2m)~"*! /ezp(ir.cos(&))dﬁn_g(ﬂ)
we get
G(z) / k" 3sin(kt)I,,_o(kr)dk,t = °
0
Expanding
I(r) = Z ce(m)r™
m>0
gives us

G(z) = Z c(m)r™ /000 k™3 sin(kt)dk

m>0
Observe that for m odd, k™.sin(kt) is even in k and hence

oo

/OO k™. sin(kt)dk = (1/2)/ E™ . sin(kt)dk
0

— 00
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= (1/2)Im/ kMexp(ikt)dk
R
= (m/2)Im((=i)" 6" (t)) = (= /2)sin(mm/2)5"™ (t)
This finally gives us the following expansion of the Green’s function:

G(z) = (—7/2) Z sin(mm/2)c(m)r™s™ (t) = G(t,r)

m>0,m+nodd

7. Radiation by accelerating charges in (1,n—1) dimensional space-
time

Letting G(x) denote the Green’s function, we can write down the Maxwell
equations source after adopting the Lorentz gauge:

Ai(z) = /G(a: —x)Jy(2)d" 2 ;i =0,1,...,n—1

The electric field components are
EZ(I) = FOi = Al',() — A(),i,i = 1,27 ey — 1
and the magnetic field components are
F,J,1§Z<]STL—1

Equivalently, we write

Ai(tr) = /G(t L — ) )t A
To proceed further, we require an expression for the Poynting vector in n di-
mensions. This is obtained from the energy-momentum tensor:

TF = (OL/9A; j)As o — L6%

which gives after raising the index j and adding a total divergence term to make
the energy momentum tensor symmetric,

Tk = (1/4)Fop F*ny,; — FO*FJ
The energy flux is given by
T = —F*F, = —FaFao = FapFoa

Note that b is a spatial index and the sum runs over all spatial indices a. This
formula is the generalization of the four dimensional formula E x B once we note
that Fy, is the electric field and Fy;, is the magnetic field. We must calculate
the energy flux T in the far field zone retaining only terms of order 1/r"~2
so that the integral of T%"n, over the n — 2 dimensional sphere gives a finite
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nonzero quantity. This means that A;(¢,r) and hence the electric and magnetic
fields Foq, Fup, 1 < a < b <n —1 must be evaluated upto order 1/r”/2_1. Note
that for n = 4 this reduces to the standard formula for radiation fields, namely,
that the electric and magnetic fields in the radiation zone must be evaluated
upto O(1/r) so that the Poynting energy flux vector is evaluated upto O(1/r?).
Now recall the Green’s function for the wave operator in (1,7 — 1) dimensions:

G(z) / h k" 3sin(kt)I,,_o(kr)dk, t = 2°
0
where
I _o(u) = (2m)~ "+ /e:l:p(iu.cos(ﬁ))dﬂn_g(ﬂ)

We can write on changing the integration variable from & to u = kr,
G(z) = rzfn/ u" 31, _o(u)sin(ut/r)du
0

As a check, taking n = 4 gives

T

Ir(u) = (271')73/0 exp(iu.cos(0))2m.sin(0)do

= (2m)~2.2sin(u) /u
giving .
T) = 72)r2 sin(u)sin(ut/r)du
Gla) = (/) [ sinfuysinut/r)d

the causal part of which is clearly a constant times 6(¢t/r —1)/r% = 6(t —7r)/r as
expected. In the general case of (1,n — 1) dimensions, we define the one sided
Fourier transform of I, _o(u):

/000 I —o(u)exp(ivv)du = J,_2(v)

and then get assuming n to be even, that
/ u" 31, _o(u)sin(ut)du = Im(/ u" 31, _o(u)exp(iut)du)
0 0

= 07 Im((—i)" > Ju—a(1))
= —sin((n — 3)7/2)07 > Re(J,_2(t)) = sin((n — 1)7/2)07" > Re(Jp_2(t))
Thus, for even n, the Green’s function for the (1,n — 1) manifold is given by
G(z) = G(t,r) = C(n)r> "I 2 (t/)r)

where

C(n) = sin((n — 1)7/2)
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Note that
C(4m)=-1,C(dm+2) =1

The vector potential is then
Ayt r) = /G(t e — )it )t Y
and in the far field zone r >> ', we get approximately
Ai(tr) = /G(t B Y AR T

Note that the Fourier transform in the time domain of the exact potential is
given by

Aij(w,r) = /Ai(t,r)exp(—iwt)dt

/Gl(w, lr— 7)) s (w, " )d™

where
Gi(w,r) = /G(t,r)exp(—iwt)dt
with .
G(t,r) = G(z) = 7“2_"/ u" 3, o (u)sin(ut/r)du
0
Clearly,

Gi(w,r) = (@) tard /000 u" 3T o (u)(0(rw — u) — 0(rw + u))du

Assuming w > 0, this evaluates to
Gi(w,r) = —imr3 " (rw)" 31, _o(wr)

= —imw" 3, o (wr)

8. The coupled (n+1)-dimensional Einstein Maxwell equations in
the presence of N charged particles carrying masses
Assuming that the metric has the form

dr? = (14 2¢)dt* — (1 — 2¢)6ys + hys)dx"dz® + 2hg,dtdx”

in analogy with small perturbations of the Schwarzchild metric in four dimen-
sional space-time, where h,; is two degrees smaller than ¢ and hg, is one degree
smaller than ¢. Specifically, as per the principles of perturbation theory in gen-
eral relativity, ¢ is O(1/c?), h,s is O(1/c*) and hg, is O(1/c®). Note that the
summation indices r, s run over 1,2, ...,n. The energy momentum tensor of the
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matter field of the N charged particles carrying masses my, ..., my and charges
e1,...,en is given by

T9 = " mpd™(x — zp)(—g(x)) " /?(daj, fdry) (da, /dt), i, § = 0,1, ...,m
k

Note that 2° = t. The energy-momentum tensor of the electromagnetic field
generated by the charged particles in motion is given by

S4 = (1/4) Fuy Py — F*F

The action functional of the gravitational field plus the electromagnetic field plus
the motion of the particles plus the interaction between the charged particles
and the electromagnetic field is given by

S = C’1/R\/—gd"Hm—(l/ll)/FijFij\/—gd"Ha:—/ JiAi\/—gd”Hx—Z/mdek
k
where J¢ is the n-current produced by the charged particles and is given by

T w) = end™(x — wp)(—g(x)) "/ 2duj, /dt
k

The curvature scalar R is calculated from the above metric and from the above
action, we derive the Einstein-Maxwell equations as well as the geodesic equa-
tions for the particles in the electromagnetic field generated by the charged
particles themselves (note that the geodesic part of the dynamical equations of
motion of the particles correspond to motion under the gravitational field pro-
duced by the particles themselves, thus motion of the charged particles is under
the mutually generated gravitational and electromagnetic fields, or putting it
in another way, the motion of each particle takes place in the gravitational and
electromagnetic fields produced by the other particles. Variation of the total
action w.r.t the metric gives

Rij — (1/2)Rgij = K(Tij + Sij),
Variation of the total action w.r.t the electromagnetic n-potential gives

(Fij\/jg),j _ —Ji\/jg _ _Zek(in(x — xk)de/dt
k

Variation of the total action w.r.t the zi gives the equation of motion of the
particles:

d?x}, /drf + T, (x1) (e /dri) (da}l /dT) = ergm F™ (wi)day /dr,

To proceed further, we must solve the Einstein field equations approximately
for the metric. First observe that for any particle, with = denoting z; and v
denoting vy,

_dT/dt = _(gOO + ZQOTUT + grsvrvs)l/Q =
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—(14 26 + 2hg,v" — (1 — 2¢)0% — hygv"v*)Y/?
~—1—¢+v2/2

upto O(1/c?). Note that we take v to be O(1/c) because, actually v occurs in
the combination v/c in the metric differential. If we wish to also include O(1/c?*)
terms, then we get

—dr/dt =% —1 — ¢ +v*/2 — ho,v" + ¢*/2 — 2¢0*

The energy-momentum tensor of the matter component can thus be approxi-
mated using

T =" mpd™(x — ax)(day,/dt) (da’ /dt) (dr; /dt) ™
k

By expressing the Ricci tensor in terms of the functions ¢, s, hog, we can thus
in principle solve for these functions in terms of ¥ (t), v} (¢) and we can also solve
for the electromagnetic potentials A; in terms of z (t), v% (¢) using perturbation
theory. Note that if we assume that the metric is a weak perturbation of the
flat space-time SO(1,n — 1) metric 7, ie,

n—1
nijdr'de? = dt* — Z(dxk)2,t =2
k=1
then we can write upto linear orders in the metric perturbations,
9ij = Nij +hij, /=9 =1—=h/2,h = ki = ni;hi5, 97 =i — h7 B = nnjmhim
where
hoo = 2¢, grs = —20.6rs — hrs, 1 < 1,8 <n,gor = hor, L <7 <
Then upto linear orders in the metric perturbations,
F9=g=g"¢?"V/=gFu = (hia — hia) (0jp — hjo) (1 + h/2) Fap
= NiaNjoFab + fijavFap
where fijqp is a linear function of the metric perturbations:
fijab = —Niahjb — Njvhia + NiaNjsh/2

The n+1-dimensional Maxwell equations in curved space-time in the presence
of point charges can then be expressed upto linear terms in the metric pertur-
bations as

NiaNjvFavj + (fijavFap),j = — Z€k5n(x — g (t))daj,(t)/dt — — — (a)
k



22

To proceed further, we assume the the gauge condition (ie, the n+ 1-dimensional
Lorentz gauge condition in curved space-time)

(A'V=9),i =0
which upto linear terms in the metric perturbation reads
((nij = h7)(1 + h/2) A7), =0
or equivalently,
mijAji = (kijAj).i
where k;; is also a linear function of the metric perturbations:
kij = hij — nijh/2

Taking this gauge condition into account, Maxwell’s equations (a) become

—NianjpAajb + Mia(kjpA) ja + (FijanFan) j = — > ex6™( — ax(t))d}, () /dt
k

or equivalently,

DA = (ks ) jat+ai(fijenFev) i+ Y exd™ (@ —ap () nasde (t) /dt, O = 1;;0,0;
k

Assume that A9 is a free wave in flat (1,7n) space-time. It satisfies the wave
equation
0
0A,=0
The perturbation to this electromagnetic wave caused by moving charges and

gravitational effects is then obtained by applying the Green’s function for (1,n)
space time to the above equation:

0Aq(z) = /G(x*x')[(kijg),ja(w’)Jr??ai(fz'jchfb),j(l"HZ erd" (o'~ (t')naiday (t') /dt |d" o’
k

Note that this formula is also applicable to (p, ¢)-space time provided that we
use the formula for the (p, ¢)-Green’s function derived above. This evaluates to

Salz) = [ Gla = )8 1a(w') + s FienF) 0N

+ Z ek / G(t—t,r — z(t))nadrs (t)
k

Sometimes, especially when there is no external plane wave, and we are inter-
ested in calculating the motion of the charges in the mutual gravitational and
electromagnetic field produced by themselves, it is more accurate to consider
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the unperturbed electromagnetic field to be that produced by the charges in
motion:

Aq = Zek/G(t = th 1 — a(t)) Jnaidai, (t')
k

The perturbation to this field caused by gravitational effects is then

0Aq(x) = /G(I — 2)[(kjpAD) ja (') + Nai (fijenFap) 5 (@) d" !

Appendix A.1
Some further remarks on the (p, g)-wave equation: The Green’s function for
the (p, q) wave operator with p +¢ =n is

O 07— > 9)G(x) =6"()
i=1 i=p+1

and by Fourier transforming, we get
G(z) = (27r)*”/exp(ik1.x1 — ko.9))dPky.d%y /(K2 — k2)

where

n

P

_ 1 _ (0¥l n _ i _ i i

21 = (x, .., xP), o = (P70, . 2"), k2 = E k'x" ko.xo = E k'z
i=1

i=p+1
where
p n
k= (kY kP) ky = (R k) B = S ()2 R = Y (k)2
i=1 i=p+1

This integral can be expressed as
G(x) = G(r1,7m2) = (2m)™" / exp(ikiricos(01)—ikaracos(02)) kP kI dQ, 1 (01)dQ 1 (02)dkydky
k1,k2>0

where

Defining
Fy(u) = (27r)_p/exp(iu.cos(ﬁ))dﬁp(ﬁ), ueR

(Note that F,(—u) = F,(u)), we can write

G(m)zG(rl,rg):/k . OFp(klrl)Fq(kzrz)kf*kgfldkld@/(/{%—kg)
1,k2>
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= Tfprgq/ 0U‘TIUglep(ul)Fq(U2)duldu2/((ul/7‘1)2 — (uz/r2)?)
Ul ,U2>

_ —p,.—q uzl)ilugile(ul)Fq(UQ)
= (1/4)r{ "y / (u1/r1)% — (uz/r2)?

One of the solutions is obtained by replacing the denominator in the integrand
by

dU1 dUQ

(ul/rl)2 - (112/1"2)2 —ie,e — 0+

so that the integral w.r.t u; has a pole in the upper half u;-plane at (ryus/ra)+ie
and another in the lower half u;-plane at —(r1ug/r2)? —ie. Closing the contour
in the upper half u; plane by a large semicircle (this is justified when r; > 0
(ie the (p, ¢)-dimensional generalization of the causal condition on the Green’s
function), we get from the Cauchy residue theorem that

G(z) = G(r1,ry) = (im/4)r) Py 1 /R (riug/r9)P~ ud ™ Fy (ryug /o) Fy (ug) dug fug

= (iﬁ/4)7"§7p7q / ug+q72Fp(T1U2/7’2)Fq(u2)duz/u2
R

For example, in the standard (1, 3)-dimensional case, we have p = 1,q = 3
and Fy(u) is proportional to exp(iu) while F3(u) is proportional to sin(u)/u
so Fi(rius/re)F3(usz) is proportional to exp(—ius(l — r1/72))/us and hence
ub T Fy (ryug /7o) F3(ug) /ug is proportional to exp(—iug(1 — 71 /72)) which in-
tegrates w.r.t ug to give 6(1—ry/ry) = rod(r; —r2) and hence G(ry, r2) becomes
proportional to r2_2r25(r1 —1r9) = d(r; —r2)/re and recalling that 1 = t, 79 = r,
this becomes the standard four dimensional retarded Green’s function formula
6(t — r)/r of the four dimensional theory.

Appendix A.2

1.The Maxwell-Dirac equations in (p, ¢)-dimensional flat space-time

Let n denote the (p,q)-metric: n = diag[l,,I;]. Consider Dirac matrices
Yk, k =1,2,...,n so that

VeYm + Ym Ve = 20kem 1
Dirac’s wave equation is
(i7v0k — m)Y(z) = 0,z € R"
where summation over the repeated index k is implies. This implies
(ivk 0k + m) (im0 — m)p(x) = 0
or equivalently the (p,q)-dimensional Klein-Gordon equation

(N Ok O +m?)p(x) = 0
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P n
O+m’)y=00=> - > 0

k=1 k=p+1

This equation corresponds to the (p,q)-dimensional relativistic energy-momentum

relation:
p n
Sor- Y A
k=1 k=p+1

Consider now the Lie algebra so(p, q) of SO(p,q). Any element X in this Lie
algebra satisfies
XTn+nX =0

or equivalently, without implying summation,
Xjingj +niXij =0
This means that
Xji+Xij=0,1<4,j<p,p+1<i,j<n,
X —Xi;=0,1<i<p,p+1<j<n,
Xji—Xi;=0p+1<i<n,1<5<p

A basis for so(p, q) is therefore given by the set of n x n matrices E;; — E;;.1 <
iv.j Sp,p+]— < Zv] S n and Eij+Eji71 S 1 Spap+1 gj S n. USiI’lg the
commutation relations for these matrices, it is easily seen that [v;,v;]/4,1 < i <
j < n form a basis for a representation of so(p,q). In fact, we can express the
above basis for so(p, ¢) as the set of all matrices J;; where

(Ji )fn = 6577]'711 - 5;'6771'711

A quick check that these are indeed matrices in so(p, ¢) follows from the readily
verifiable identity
JE e+ M =0,

for J = J;;. We next verify the commutation relations
[Jijs Jrt) = njedar + nadje — nindje — njJix

and complete the story by using the anticommutation relations of the Dirac
matrices to show that S;; = [y;,7;]/4 satisfy the same commutation relations:

[Sijs Ski] = ik Sit + 1uSjk — NikSji — M Sik

This representation of so(p, q) is called the spinor representation. Note that we
are assuming n = p + ¢q to be even. It then follows that since v,41 = V1..-7n
anticommutes with all the ’7;8, that 7,41 commutes with all the ngs and in
fact upto linear combinations, 1 and 7,1 are the only matrices that commute
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with all the Szfjs. Thus, the centre of the spinor representation has dimension
two and therefore the spinor representation decomposes into the direct sum of
two irreducible representations.

2. Dirac’s equation in (p,¢) dimensional curved space-time taking
into account interaction with the electromagnetic field
Dirac’s equation in curved space time [2,8] is

lefy" (i0y + il +eAy) —mlip =0

where I',, is the SO(p,q) spinor connection of the gravitational field and e/ is
the tetrad of the metric g":

pv _ ab_p v
g =1 €6,

with n = diag[I,, —I,] being the flat space-time metric in (p, ¢)-space time.
The spinor connection can be derived from the assumption that the covariant
derivative of the tetrad e}, must vanish:

0= el —Thues +wilen, = 0,1, = Wi [a, 1)/4,Ya = Nap?’
Inverting this equation gives us the spinor connection as

ab __ bu(,a p La\ _ bu
w, = —et(ey, — I, ep) = —ete

a
v nr=p piv

Note that a, b are generalized Lorentz indices, ie, (p, ¢)-space-time indices while
u, v are curved space-time indices. It is easily seen that this Dirac equation
is invariant under both local SO(p, ¢) (generalized Lorentz) transformations as
well as under (p,q)-space-time diffeomorphisms. Note that if A(z) is an element
of the group SO(p, ¢) that is a function of the (p, ¢)-space time coordinates and
if U is the spinor representation of SO(p, q), then

UA@)) U (A(@) ! = Aj(2)y"

A(z) is called a local SO(p, ¢) transformation or a local generalized (p,q) Lorentz
transformation, local because it is a function of the space-time coordinates.
Under such a local SO(p, q) transformation, we have that the tetrad undergoes
the transformation

€y (x) = A} (a:)ez (x)

and the wave function transforms as

P(x) = U(A(z))dp(x)

From these facts, it easily follows that the spinor connection of the gravitational
field transforms under a local SO(p,q) transformation as

Du(z) = U(A@))D(2)U (M) ™ = (0,U (A(2))).U (A(2)) ™
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and that the Dirac equation remains invariant. In order to prove the above law
of transformation of the spinor connection, we must consider an inifnitesimal
SO(p, q) transformation:

Ax) =T+ 0.0(x)

where 0(x) = ((07(z))) is an element of the Lie algebra so(p, ), ie
05 (2)Nac + nvab (z) = 0

which is the same as
Och(x) + Ope(z) =0

where the local SO(p,q) indices a, b, ¢ are raised and lowered using the flat (p,q)-
metric 7. § is an infinitesimal real number. It is instructive to derive the curved
space-time Klein-Gordon equation for a charged particle in (p,q)-dimensional
space-time from the Dirac equation by expanding

[ (z) (@0, + il (x) +eA, (z)) +m].[v*(z) (10, +il u(x) +eA,(z)) —m]y(z) =0

where
a

(@) = eq(x)y

are Local Dirac matrices satisfying the anticommutation relations

V(@) (@) + 4" (2" () = 29" (2)]

in view of the anticommutation relations satisfied by the flat space-time Dirac
matrices

74+ 4P = 2l
and the tetrad property:

Navey (x)ey (x) = g™ ()
This Klein-Gordon equation can equivalently be expressed as
[ (2) (i), + T () + eAu(2))]* = m?Jip(x) = 0

and the above squared operator can be expressed in terms of the Riemann
curvature tensor of the metric g,,(x). It is known in the literature as Lich-
nerowicz formula for the square of the Dirac operator. This formula has been
obtained in the more general case when A, is a non-Abelian Yang-Mills poten-
tial. By assuming the metric to be a weak perturbation of (p,q)-dimensional flat
space-time, we can solve for the wave function approximately using perturba-
tion theory with our formula for the (p,q)-dimensional flat spacet-time Green’s
function. We do not discuss the details of this procedure here as although the
computations are tedious, they are straightforward.

Conclusions
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In this paper, we have explained how to use properties of the SO(p, ¢) group
to formulate Maxwell’s equations in n-dimensions with p time coordinates and ¢
space coordinates by starting with an n = p 4 ¢ vector potential. We derive the
(p,q) dimensional wave equation for the electromagnetic potentials and explain
how to calculate the associated Green’s function in order to solve the (p,q)-
dimensional Maxwell equation in the presence of an n-current density. We
have discussed properties of this Green’s function and also explained how to
use to calculate the power radiated out into n — 1 space when there is one
time variable. We have also explained how to derive generalizations of the
homogeneous Maxwell field equations in (p, ¢)-dimensional space-time from the
potentials. We then generalize the n-dimensional Maxwell equations to curved
space-time and arrive at the Einstein-Maxwell equations in n-dimensional space-
time. These equations are used to describe the motion of N points charges
carrying masses moving under their mutual gravitational and electromagnetic
interactions in the general theory of relativity. For this formulation, we first
write down expressions for the energy-momentum tensor of the matter, of the
electromagnetic radiation field and the current density produced by N discrete
point masses moving in n-dimensional space with one time variable and then
derive the Einstein-Maxwell equations from the standard variational principle.
In this paper, we also formulate Dirac’s relativistic wave equation in (p,q)-
dimensional space time and use it to describe the quantum mechanics of a
an electron moving in such a space-time manifold. We discuss the SO(p, q)
invariance of Dirac’s equation by using the technique of spin representations
of SO(p,q). Specifically, we show how to construct Dirac matrices in (p, q)-
dimensional space-time using creation and annihilation operators on Fermion
Fock space. The spin group as the outer cover of SO(p, q) is then constructed
using Lie algebraic methods applied to commutators of the Dirac matrices. Spin
representations are also constructed using the action of Dirac matrices on the
Fermion Fock space. Finally, we construct Dirac’s relativistic wave equation
in the presence of an electromagnetic field and curvature of the n-dimensional
space-time manifold. In order to construct such an equation, we introduce the
spinor connection of the gravitational field using the gravitational tetrad as well
as the commutators of the Dirac matrices which we have shown to be generators
of the Spin representation of SO(p, q). Higher dimensional Maxwell equations
as pointed out by Professor Newcomb can be used to model psychic fields.
It is therefore natural to consider the Combined Maxwell-Dirac-Einstein field
equations in higher dimensions as a method to describe the effects of gravitation
and charges on such psychic fields where charges are not classical point charges
but rather characterized by the Dirac wave operator field. In other words, the
charges that we speak of are to be regarded as higher dimensional generalizations
of the sea of electrons with some of the electrons removed to form positrons
as first enunciated by Dirac. Finally, we formulate Dirac’s equation in (p,q)-
dimensional curved space-time in terms of the terad, the spin connection of the
gravitational field and (p,q)-space time Dirac matrices. The spin connection
is derived from the condition that the covariant derivative of the tetrad basis
vanishes and it is shown to lead to the curved space-time Dirac equation having
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all three symmetries: U(1) gauge invariance along with the electromagnetic
field, local SO(p, q)-invariance also called local generalized Lorentz invariance,
and diffeomorphism invariance.
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