
7 April 2025, Preprint v1  ·  CC-BY 4.0 PREPRINT

Research Article

Evaluating the Application of SOLID

Principles in Modern AI Framework

Architectures

Jonesh Shrestha1

1. DePaul University, United States

This research evaluates the extent to which modern AI frameworks, speci�cally TensorFlow and

scikit-learn, adhere to the SOLID design principles—Single Responsibility, Open/Closed, Liskov

Substitution, Interface Segregation, and Dependency Inversion. Analyzing the frameworks'

architectural documentation and design philosophies, this research investigates architectural trade-

offs when balancing software engineering best practices with AI-speci�c needs. I examined each

framework's documentation, source code, and architectural components to evaluate their adherence to

these principles. The results show that both frameworks adopt certain aspects of SOLID design

principles but make intentional trade-offs to address performance, scalability, and the experimental

nature of AI development. TensorFlow focuses on performance and scalability, sometimes sacri�cing

strict adherence to principles like Single Responsibility and Interface Segregation. While scikit-learn’s

design philosophy aligns more closely with SOLID principles through consistent interfaces and

composition principles, it sticks closer to SOLID guidelines but with occasional deviations for

performance optimizations and scalability. This research discovered that applying SOLID principles in

AI frameworks depends on context, as performance, scalability, and �exibility often require deviations

from traditional software engineering principles. This research contributes to understanding how

domain-speci�c constraints in�uence architectural decisions in modern AI frameworks and how

these frameworks strategically adapted design choices to effectively balance these contradicting

requirements.

Qeios

qeios.com doi.org/10.32388/LZUZJB 1

https://www.qeios.com/
https://doi.org/10.32388/LZUZJB


1. Introduction

The AI-centric software systems built today depend heavily on modern AI frameworks. However, the

architectures of such frameworks are rarely assessed with object-oriented principles in mind. This

research investigates the adherence to SOLID design principles—Single Responsibility, Open/Closed,

Liskov Substitution, Interface Segregation, and Dependency Inversion—in the architectures of

TensorFlow and scikit-learn[1].

TensorFlow is a large-scale machine learning framework that uses data�ow graphs to construct models.

It supports execution on distributed systems and specialized hardware[2]. Conversely, scikit-learn is

optimized for medium-scale learning problems and strives for consistency and usability through the

Estimators for training and predictions[3]. Both frameworks represent different perspectives of AI system

design with open-source and well-documented codebases and design principles, which makes them

suitable for architectural evaluation.

The increasing popularity of AI has led to a greater dependence on these frameworks across the industry.

The SOLID principles guide developers in creating robust, adaptable systems, with empirical assessments

showing improved software quality, scalability, and code understanding[4][5]. However, AI frameworks

must also meet the unique experimental demands of modern AI systems. This research investigates two

main questions: (1) to what extent do leading AI frameworks like TensorFlow and scikit-learn adhere to

SOLID principles, and (2) what architectural trade-offs are made when balancing software engineering

principles with AI-speci�c requirements. Understanding the balance these frameworks strike between

rigorous adherence to the SOLID design principles and practical implications is the objective of this

research.

2. Literature Review

The SOLID principles comprise �ve foundational design guidelines for developing maintainable software

with object-oriented programming. These include the Single Responsibility Principle (SRP), which

recommends that every class should have only one reason to change; the Open/Closed Principle (OCP),

which allows for class extension without modi�cation; the Liskov Substitution Principle (LSP), which

ensures subclasses are substitutable for superclasses; the Interface Segregation Principle (ISP), where the

class should not be forced to depend on the interfaces they do not use; and the Dependency Inversion

Principle (DIP), which emphasizes that the dependency should be on abstraction[1]. AI-centric software

qeios.com doi.org/10.32388/LZUZJB 2

https://www.qeios.com/
https://doi.org/10.32388/LZUZJB


systems built today depend heavily on modern AI frameworks. However, the architectures of such

frameworks are rarely assessed with object-oriented principles in mind. As AI systems continue to scale

in complexity and size, both vertical and horizontal scaling techniques in AI architectures bene�t from

modular design patterns that align with the SOLID principles[6].

Empirical studies examining the effects of SOLID design principles found concrete evidence that these

principles greatly improve software reusability, maintainability, and scalability. The application of these

design principles signi�cantly improved the comprehensibility of machine learning code, with

developers spending comparatively less time understanding code that followed SOLID compared to code

that did not adhere to these principles[4][5].

Modern AI frameworks are built to support multiple applications focusing on high performance and

scalability. TensorFlow uses a data�ow programming model with stateful computation graphs, enabling

ef�cient distributed computing but introducing programming challenges[2]. Alternatively, scikit-learn

provides a more standard API for easier integration and use with the rest of the scienti�c computing

environment in Python, like NumPy and SciPy[3]. Its design principles include consistency, inspection,

non-proliferation of classes, composition, and sensible defaults, which can be mapped to SOLID

principles[7]. Recently, there has been a noticeable shift to more modular design and acceptance of

architectural design patterns. Regardless of the unique constraints of AI systems, there has been a wider

recognition of software engineering principles in AI development[8]. This shows the importance of

research speci�cally focusing on the application of SOLID principles within leading AI frameworks.

3. Methodology

This research evaluates the adherence to SOLID principles in modern AI framework architectures

through a detailed analysis of TensorFlow and scikit-learn. These frameworks were selected based on

their popularity, mature open-source codebases, and contrasting architectural approaches—TensorFlow

uses a data�ow graph model, and scikit-learn follows a more traditional object-oriented design.

The methodology consists of three primary phases:

�. Analysis of of�cial documentation, including architecture documentation and design principles,

academic papers, and online resources such as their GitHub code repositories to understand design

philosophies and architectural patterns.

qeios.com doi.org/10.32388/LZUZJB 3

https://www.qeios.com/
https://doi.org/10.32388/LZUZJB


�. Evaluation of source code organization, module structures, architectural components, and their

interactions within each framework. For TensorFlow, this involves analyzing the Graph, Tensor, and

keras.Model classes, while in scikit-learn, the focus is on key interfaces like BaseEstimator and

estimator class hierarchies, which are foundational to each framework.

�. Assessment of framework architecture against each SOLID principle:

Single Responsibility: Examining class and module cohesion.

Open/Closed: Analyzing extension mechanisms and customization �exibility.

Liskov Substitution: Evaluating behavior consistency across inheritance hierarchies.

Interface Segregation: Assessing interface separation and abstraction mechanisms.

Dependency Inversion: Investigating dependency management approaches.

Throughout all phases, trade-off analysis is conducted where SOLID principles are potentially

compromised yet justi�ed for scalability and performance optimization, acknowledging the unique

requirements of AI systems.

4. Adherence of AI Frameworks to SOLID

This section examines the compliance of each SOLID principle for TensorFlow and scikit-learn

framework architecture.

4.1. Single Responsibility Principle (SRP)

In TensorFlow, classes have a clear separation of responsibilities as illustrated in Figure 1. tf.Tensor

manages data �ow between nodes, tf.Session handles resource distribution across computing

hardware like CPUs, GPUs, and TPUs without interfering with graph logic, and tf.Graph represents

mathematical computations where each node performs one speci�c operation, such as matrix

multiplication, convolution, or activation functions[9].

Similarly, scikit-learn’s “non-proliferation of classes" design philosophy ensures that only learning

algorithms use custom classes[7]. Datasets are represented as NumPy arrays or SciPy sparse matrices;

transformers preprocess data with the transform() method, while estimators learn from data using the

fit() method, each maintaining a single, well-de�ned responsibility[10]. For example, Figure 1 shows

scikit-learn’s Pipeline class, where data, transformers, and estimators have a single responsibility but can

still be chained together to streamline machine learning work�ows.

qeios.com doi.org/10.32388/LZUZJB 4

https://www.qeios.com/
https://doi.org/10.32388/LZUZJB


Figure 1. Comparative Architectural Designs of TensorFlow and scikit-learn[11][12].

4.2. Open/Closed Principle (OCP)

In the TensorFlow Keras API, developers can extend functionality by subclassing

tf.keras.layers.Layer without modi�cation to create custom layers. This maintains compatibility

with existing model structures and seamlessly integrates GPU acceleration[9].

Similarly, scikit-learn allows new estimators to be created by subclassing base classes like

BaseEstimator. Also, the framework's composition principle facilitates building algorithm sequences

using its Pipeline class to chain transformers and estimators[7]. However, scikit-learn lacks native GPU

support, operating primarily on the CPU[10]. This hardware resource constraint makes extending scikit-

learn for different computing resources challenging, potentially compromising its adherence to the

Open/Closed Principle.

4.3. Liskov Substitution Principle (LSP)

TensorFlow follows a uni�ed inheritance hierarchy where all layer types like Dense, Conv2D, and LSTM

inherit from the base tf.keras.layers.Layer class and maintain consistent APIs[9]. This design

ensures that different layer types can be substituted for one another in a model, as shown in the code

qeios.com doi.org/10.32388/LZUZJB 5

https://www.qeios.com/
https://doi.org/10.32388/LZUZJB


below, where dense and convolution layers follow the same interface despite being different models. This

does not violate the computational graph’s integrity, provided dimensionality constraints are respected.

Scikit-learn's BaseEstimator implements standard method signatures such as fit() and predict()

across all estimator implementations. Similar to TensorFlow, all models in scikit-learn like

LinearRegression and DecisionTreeClassifier inherit from this common base class and implement

�t(X, y) and predict(X), ensuring they can be substituted for each other[10]. For instance, in the code

below, this uniform interface allows any estimator to be used interchangeably within pipelines,

regardless of the underlying model’s implementation.

4.4. Interface Segregation Principle (ISP)

TensorFlow implements ISP through domain-speci�c APIs where tf.data is specialized for data loading

and preprocessing, tf.keras for model building, and tf.lite is optimized for mobile deployment

where unrelated dependencies like heavy computational graph tools meant for model training are not

included. This separation prevents "interface pollution" by ensuring developers only include

dependencies relevant to their needs[9]. However, simple layers don’t require all the methods inherited

from tf.Modules, which suggests potential violations.

qeios.com doi.org/10.32388/LZUZJB 6

https://www.qeios.com/
https://doi.org/10.32388/LZUZJB


As shown in the code below, scikit-learn follows consistent API patterns where all estimators use fit()

for training, transformers use transform(), classi�ers and regressors use predict(), and only

probability-supporting classi�ers implement the predict_proba() method[10].

However, transformers like PCA and StandardScaler inherit predict() despite not using it, and some

classi�ers must implement the irrelevant predict_proba() method because of the ClassifierMixin

class. This forces clients to depend on methods they don't use.

4.5. Dependency Inversion Principle (DIP)

TensorFlow’s high-level modules depend on abstractions rather than concrete implementations. For

example, the high-level API tf.keras depends on the tf.Module abstraction rather than speci�c device

implementations[2]. The following code snippet demonstrates how TensorFlow provides hardware

abstraction through tf.device, allowing the same code to run across CPU, GPU, or TPU. Callbacks such

as ModelCheckpoint and EarlyStopping depend on abstract training events like val_loss, not speci�c

implementations, making them usable with any model architecture[9].

As shown in the following code, scikit-learn’s preprocessing steps, like StandardScaler and PCA, depend

on an abstract transformer interface like �t and transform, not speci�c models[10]. Similarly, pipelines

qeios.com doi.org/10.32388/LZUZJB 7

https://www.qeios.com/
https://doi.org/10.32388/LZUZJB


rely on the BaseEstimator interface, not speci�c estimator classes, because they only need the standard

methods (�t and predict/transform)[7].

5. Trade-offs in AI Framework Architectures

This section discusses how modern AI frameworks balance SOLID principles against performance and

scalability demands in AI systems.

5.1. Performance versus Modularity

AI frameworks often require balancing strict SOLID design principles with performance requirements.

TensorFlow's computational graphs enable ef�cient execution on GPUs and TPUs but lead to tighter

coupling and complexity, violating the SRP[6]. For instance, TensorFlow's Dense layers handle multiple

responsibilities (weights management, activation computation, regularization), and the Adam optimizer

manages (learning rates, gradient updates, optimization state) to improve performance rather than

maintain strict modularity[9].

Similarly, scikit-learn's dependence on NumPy arrays shows a practical trade-off for performance and

simplicity[3]. While this is a speci�c implementation rather than an abstraction that violates the DIP, it

signi�cantly improves performance.

5.2. Flexibility versus Computational Ef�ciency

Balancing �exibility and computational ef�ciency in AI frameworks is often important. TensorFlow's

graph execution mode optimizes performance but costs �exibility. However, the eager execution

introduced in TensorFlow 2.0 improved �exibility at the cost of some performance overhead. The

@tf.function decorator demonstrates this trade-off, which allows developers to write code in an eager

qeios.com doi.org/10.32388/LZUZJB 8

https://www.qeios.com/
https://doi.org/10.32388/LZUZJB


style but compile and execute it as a graph[9]. The @tf.function converts Python functions to graph

mode, which causes our code to become dependent on TensorFlow's graph execution behavior that relies

on low-level implementation[9][6]. This delivers performance bene�ts but violates some aspects of the

OCP and DIP.

As shown in the code below, TensorFlow also allows the creation of custom operations that adhere to the

OCP. However, for performance-critical applications, this approach may not be optimal. In high-

performance scenarios, developers might need to implement custom C++ operations or modify

TensorFlow's core code[9].

5.3. Maintainability versus Scalability

The experimental nature of AI development creates unique challenges in maintaining a clean framework

architecture that adheres to SOLID principles while also enabling scalability. TensorFlow's distributed

execution capabilities across diverse hardware provide exceptional scalability but introduce additional

complexity and coupling between components that reduce maintainability[6].

Similarly, TensorFlow and scikit-learn's uniform interfaces sometimes include methods that aren’t

always used. The framework avoids the overhead of managing several smaller interfaces, which reduces

the complexity of method calls, which slightly violates the ISP but provides consistency that improves

overall maintainability[9][10].

6. Conclusion

TensorFlow prioritizes performance and scalability for deep learning applications, often at the expense of

strict SOLID adherence. Nonetheless, TensorFlow’s strong performance in real-world applications shows

qeios.com doi.org/10.32388/LZUZJB 9

https://www.qeios.com/
https://doi.org/10.32388/LZUZJB


that in performance-critical domains, such trade-offs are justi�able. Meanwhile, the high-level Keras API

offers a more maintainable option at the cost of performance that aligns better with SOLID principles[9].

Alternatively, scikit-learn is designed with principles that align more closely with SOLID, like consistency,

inspection, and composition[7]. Its architecture prioritizes consistent, simple interfaces for

maintainability and ease of use, making it suitable for classical ML projects. However, it may require

additional optimizations for very large datasets, potentially compromising some design principles for

performance[10].

In conclusion, AI development is iterative and experimental, with the constant need to tweak data,

models, and algorithms, unlike traditional software development, which assumes a stable problem. This

makes applying SOLID principles tricky in AI development[6]. To adapt, libraries like TensorFlow and

scikit-learn focus on �exible designs, making architectural decisions that prioritize scaling to large

datasets and complex models, sometimes at the expense of perfect modularity or substitutability. For

instance, the distributed computing capabilities found in AI frameworks boost performance across

multiple machines but add complexity through additional coupling between components. Hence, the

application of SOLID principles in AI frameworks requires thoughtful consideration of domain-speci�c

needs rather than strict adherence to SOLID principles.

References

�. a, bMartin RC (2000). "Design principles and design patterns."

�. a, b, cMartín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, S

anjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry

Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu,

Xiaoqiang Zheng (2016). "TensorFlow: A system for large-scale machine learning." In Proceedings of the 12t

h USENIX Symposium on Operating Systems Design and Implementation (OSDI '16). USENIX Association, S

avannah, GA, USA, 265-283.

�. a, b, cFabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Gris

el, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, Da

vid Cournapeau, Matthieu Brucher, Matthieu Perrot, Édouard Duchesnay (2011). "Scikit-learn: Machine lear

ning in Python." Journal of Machine Learning Research. 12: 2825-2830.

qeios.com doi.org/10.32388/LZUZJB 10

https://www.qeios.com/
https://doi.org/10.32388/LZUZJB


�. a, bRaphael Cabral, Marcos Kalinowski, Maria Teresa Baldassarre, Hugo Villamizar, Tatiana Escovedo, Héli

o Lopes (2024). "Investigating the Impact of SOLID Design Principles on Machine Learning Code Understan

ding." CAIN 2024: Proceedings of the IEEE/ACM 3rd International Conference on AI Engineering - Software

Engineering for AI. doi:10.1145/3644815.3644957.

�. a, bHarmeet Singh, Syed Imtiyaz Hassan (2015). "Effect of SOLID design principles on quality of software: a

n Empirical assessment." International Journal of Scienti�c & Engineering Research.

�. a, b, c, d, eYunke Wang, Yanxi Li, Chang Xu (2025). "AI Scaling: From Up to Down and Out." arXiv preprint arX

iv:2502.01677. https://arxiv.org/pdf/2502.01677v1.

�. a, b, c, d, eLars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas C. Müller, Olivier Grisel,

Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort, Jaques Grobler, Robert Layton, Jake Vanderplas, Arna

ud Joly, Brian Holt, Gaël Varoquaux (2013). "API design for machine learning software: experiences from the

scikit-learn project." European Conference on Machine Learning and Principles and Practices of Knowledge

Discovery in Databases, Prague, Czech Republic.

�. ^Venkata Reddy Mulam (2024). "Machine Learning and AI Innovations with Python: Trends and Future Di

rections." International Journal for Multidisciplinary Research.

�. a, b, c, d, e, f, g, h, i, j, kTensorFlow: An end-to-end platform for machine learning. https://www.tensor�ow.or

g/.

��. a, b, c, d, e, f, gscikit-learn: scikit-learn 1.6.1 documentation. https://scikit-learn.org/.

��. ^CV-Tricks.com. TensorFlow Tutorial. https://cv-tricks.com/arti�cial-intelligence/deep-learning/deep-learn

ing-frameworks/tensor�ow-tutorial/.

��. ^Python Simpli�ed. What is a scikit-learn Pipeline? https://pythonsimpli�ed.com/what-is-a-scikit-learn-pi

peline/.

Declarations

Funding: No speci�c funding was received for this work.

Potential competing interests: No potential competing interests to declare.

qeios.com doi.org/10.32388/LZUZJB 11

https://www.qeios.com/
https://doi.org/10.32388/LZUZJB

