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Abstract

By conservative estimates, microbes make up about 17% of the world’s biomass and are essential for most ecosystem

functions. However, the mechanisms driving the variation in microbial species diversity in response to both natural and

anthropogenic temperature gradients remain unclear. In this study, we integrate ecological metabolic theory with a

community assembly model to predict that microbial community diversity generally follows a unimodal pattern with

temperature. The position and magnitude of peak diversity are determined by interaction-driven species sorting acting

on variations in the temperature dependence of carbon use efficiency (CUE) and generalist-specialist tradeoff.

Specifically, trait sorting across temperatures favours communities with high mean and low variance in species-level

CUEs. We provide empirical evidence supporting our qualitative predictions of the unimodal temperature-diversity

pattern along the global geological temperature gradient, which peaks at about 10-15 °C. Our findings indicate that the

response of diversity as well as CUE to temperature of microbial communities can be predicted from relatively feasible

life-history trait measurements, paving the way for interlinking microbial community diversity and carbon cycling along

spatial and temporal thermal gradients.

Quqiming Duan1,a,*, Tom Clegg2, Thomas P. Smith1,b, Thomas Bell1,c, and Samraat Pawar1,d

1Imperial College London, London, United Kingdom
2Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB)

aORCID iD: 0009-0001-2104-0103
bORCID iD: 0000-0002-4038-9722
cORCID iD: 0000-0002-2615-3932
dORCID iD: 0000-0001-8375-5684

*Correspondence: d.duan20@imperial.ac.uk

 

Qeios, CC-BY 4.0   ·   Article, October 7, 2024

Qeios ID: M1XFXL   ·   https://doi.org/10.32388/M1XFXL 1/18

https://www.qeios.com/read/M1XFXL#reviews
https://www.qeios.com/profile/94898
https://www.qeios.com/profile/94899
https://www.qeios.com/profile/94900
https://www.qeios.com/profile/94901
https://www.qeios.com/profile/94902
https://orcid.org/0009-0001-2104-0103
https://orcid.org/0000-0002-4038-9722
https://orcid.org/0000-0002-2615-3932
https://orcid.org/0000-0001-8375-5684
mailto:d.duan20@imperial.ac.uk


1. Introduction

Microbes, encompassing bacteria, archaea, fungi, protists, and viruses, are highly diverse[1] and ubiquitous in our

biosphere. Among these, bacteria dominate, making up approximately 13% of global biomass[2], accounting for a variety

of ecosystem functions by metabolising substrates in their environment[3], and ultimately driving all major global

biogeochemical cycles, including carbon[4] and nitrogen[5]. The taxonomic diversity of the microbial communities encodes

the diversity of functional traits and therefore plays a critical role in determining their functional ability[6][7][8][9]. However,

the emergence and maintenance of biodiversity in microbial communities under varying natural and anthropogenic

environmental conditions remains poorly understood.

All organisms obtain energy and matter for their growth and reproduction through cellular enzyme-catalysed metabolic

reactions. Because temperature is the primary driver of all chemical reactions, it also plays a fundamental role in

determining metabolic traits at the species level, interactions between species, and ultimately their fitness in a community

context[10][11][12][13]. Indeed, environmental temperature on Earth is highly variable on both geographic (e.g. latitudinal,

altitudinal) and temporal scales (e.g. daily to seasonal cycles, anthropogenic climate change) and is known to be a major

determinant of both contemporary and historical biodiversity patterns across taxonomic groups and

habitats[14][15][16][17][18]. Yet, the mechanistic link between environmental temperature and microbial community diversity

remains largely unknown[19][20][21]. Furthermore, previous empirical studies have reported conflicting results on the shape

of the microbial temperature-diversity pattern[22], finding increasing[23], decreasing[24], unimodal[25][26] and temperature

insensitive responses[27][28].

In this study, we integrate metabolic theory of ecology with a community assembly model to predict microbial community

diversity, and investigate the mechanisms underlying the temperature-diversity pattern. In particular, we focus on species-

level carbon use efficiency (CUE)[29][30] as a fitness-defining trait to study community assembly along temperature

gradients. CUE quantifies the efficiency of resource utilisation, which is fundamental in determining species’ population

growth and relative fitness within a community and is highly sensitive to changes in environmental temperatures[13][31].

2. Results

2.1. Model

We model the temperature dependent dynamics of microbial communities using a modified version of the Microbial

Consumer-Resource Model (MiCRM) (Fig 1)[32][33][34][35]. The MiCRM modelles the resource-mediated dynamics of

microbial consumers and is able to capture the complex interactions that arise between populations through both

competition for resources and the exchange of metabolic by-products.
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dCi
dt = Ci

M

∑
α=1 uiα(T)Rα 1 −

M

∑
β=1 liαβ − mi(T) (1)

dRα
dt = ρα −

N

∑
i=1 Ciuiα(T)Rα −

M

∑
β=1 Ciuiβ(T)Rβliβα (2)

Here, Ci and Rα are the biomass and abundance of the ith consumer and the αth resource in the environment,

respectively. Each consumer uptakes carbon resources from the surrounding environment according to its temperature-

dependent (T) metabolic preference uiα(T). A proportion of this uptake is used for biomass accumulation and the rest is

leaked due to inefficiency or as metabolic by-products (whose identity is determined by the tensor liαβ. Consumers also

experience an additional temperature-dependent loss term mi(T) that represents maintenance costs (particularly through

respiration). Resources are supplied at some rate ρ and then taken up and released as by-products by consumers as

described above.

Figure 1. Schematic of the Microbial Consumer-Resource Model. The dynamics of consumer abundances ( Cis) are determined by carbon gain

through resource uptake (with the rate u), and loss through leakage/transformation ( l) and maintenance respiration (with the rate m). These species’

level resource uptake rates and maintenance respiration rates are constrained by unimodal temperature performance curves (TPCs). The black

arrows in TPC plots suggest species’ operational temperature ranges (OTR), which is the temperature range species normally experience in their

life cycles before high-temperature effects come into play for most species. Resource abundances (Rα) are constantly supplied by the inflow of

external resources supply (ρ). Species within the community compete through the exploitation of resources and cross-feed through the secretion of

metabolic by-products, which replenish the resource pool.

We model the temperature dependence of consumer uptake preference uiα(T) and maintenance costs mi(T) using the

modified Sharpe-Schoolfield equation (see Methods). This describes the unimodal thermal response of biological traits in

which rates tend to increase exponentially with rising temperature up to a limit after rates fall since enzymes for

biochemical reactions deactivate at high temperatures. By including this temperature dependence, we not only introduce a

direct effect of temperature on consumers but also allow an indirect effect to emerge through the interactions between

( ( ) )
( )
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populations. As we will show, this in turn scales up to affect community-level emergent properties such as richness we

focus on here.

2.2. Microbial Thermal Strategies and Species Sorting

Species’ carbon use efficiency (CUE) is essentially 

Carbon Allocated to Growth
Total Carbon Uptake , and includes the partitioning of carbon

resources harvested into cell growth versus maintenance loss[36] (Equation 4). CUE is the intrinsic property of a given

species governed by its cellular metabolic network, and reflects a major component of its life history strategy to maximise

fitness (henceforth, “metabolic strategy”)[30]. The temperature dependence of CUE is a function of the temperature

dependence of the underlying metabolic traits[13][37]. Species in natural environments typically operate within a

temperature range (the operational temperature range, OTR) that is typically a few degrees lower than their optimal

growth temperature[38]. Within this OTR, species uptake and respiration rates increase exponentially with increasing

temperature. Therefore, for most species in any given local environment, the CUE of species also increases exponentially

with temperature.

At each temperature along a temperature gradient, species with higher resource uptake rates and lower respiration rates

(higher CUE) typically succeed during species sorting (Figure 2 a-b). This can be explained by the competitive exclusion

principle (the R* rule, Tilman 1982)[39] because species with the highest CUE can deplete resources to a lower resource

level to grow and survive (Figure 2 c, Equation 6). Thus, in general, at any given temperature along a gradient, species

sorting inevitably results in a subset of species from the local or global pool with the highest CUE in that thermal

environment.

Figure 2. Temperature-dependent species sorting selects for specific life history traits along thermal gradients.  (a) Species with relatively

higher resource uptake rates (orange lines) and relatively lower maintenance respiration rates (green lines) typically survive. (b) Species with the

highest CUE survive at all temperatures. The red line depicts the mean CUE of survivors, and the grey line depicts the mean CUE of species

excluded in species sorting. (c) The negative correlation between species’ CUE and their equilibrium resource requirements (R∗) at an example

temperature (15 oC). The red dots depict species that survived competitive exclusion, and the grey dots represent excluded species. All mean

values in this figure are taken from 670 simulations at each temperature, plotted with standard error.

2.3. Local and Global Temperature-Diversity Patterns
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The generation time of most bacterial species in natural environments ranges from minutes to months[40]. Therefore,

species typically experience various subsets of the constantly fluctuating environmental temperature. Species adapted to

significant thermal fluctuations across generations tend to evolve into thermal generalists[41], with relatively lower

activation energies (E, the rate at which species metabolic traits increase with temperature) and relatively higher low-

temperature performances (B0)[42]. There is almost no correlation between E and B0 (correlation coefficient ρ ≈ 0) for

these species. On the other hand, for significant thermal fluctuations within the generation or for constant environments,

thermal specialists are favoured[41][42], with relatively higher E values and relatively lower B0 values. This results in a

strong trade-off between E and B0 (correlation coefficient ρ ≈ 1) within species’ TPCs. Here, we consider both extreme

correlation types when investigating the deterministic role of species’ thermal performances of metabolic traits on local

microbial diversity-temperature patterns.

Figure 3 shows the two extreme cases of how these covariances in species’ TPCs affect microbial diversity along

temperature gradients on the geological scale. Figure 3a shows a scenario in which species are from warmer and less

fluctuating temperatures (e.g., closer to tropic regions on natural latitudinal gradients)[43][41][44]. These communities are

mainly dominated by thermal specialists who have narrower temperature breaths with higher fitness at their preferred

temperatures[45][46][47]. These species typically have smaller thermal safety margins, and their preferred temperatures are

relatively closer to their respective optimal temperatures. A strong trade-off between E and B0 is typically seen in their

thermal performance curves (ρ ≈ 1). In this case, variance of species’ life history traits is minimised at a relatively high

temperature, permitting a larger subset of species to coexist there. However, for communities from cooler (e.g.,

temperate) areas (scenario in Fig. 3b), a steep thermal performance curve is not as advantageous[48]. Thermal

generalists, who perform relatively equally across all temperatures, can also achieve the minimum fitness requirement for

survival at these relatively cooler temperatures. This results in a relatively higher variation in the traits of the species in

general. Greater intersections of species’ metabolic trait TPCs close to the centre of their OTR are expected. At these

intersections, the species richness also peaks because it is there that the difference in species’ relative fitness within the

community is minimised.
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Figure 3. Difference in species’ thermal strategies (i.e., species’ CUE) generate different diversity patterns with temperature along

temperature gradients. The variance in CUE along the temperature gradient was changed by varying the covariance between species’ B0 (the

trait value at the relatively low reference temperature) and E (the activation energy). Here, we show examples with correlation coefficients ρ as -1.0

(a), 0.0 (b). (a) For communities residing in relatively hotter environments, the covariance between B0 and E is strongly negative, and the variation

in species’ life history traits is lowest at relatively higher temperatures where richness peaks. (b) For communities residing in medium to cooler

natural environments, the covariance between species’ B0 and E is almost zero. Richness shows a relatively weaker correlation with changing

temperature, and the variation of species traits is at the lowest at a relatively cooler temperature where richness peaks.

We propose that the overall response of diversity of microbial communities to a temperature gradient over space, given

sufficient time for species sorting and adaptation to local conditions (such as the mean or median environmental

temperature, the amplitude and frequency of temperature fluctuation within that region), will ultimately follow a unimodal

pattern when measured over a sufficient temperature range. The temperature at which this diversity curve peaks is

determined by the distribution of the TPCs of the traits that underlie CUE. More specifically, it is determined by the

correlation between B0 and E of these traits, where a negative covariance is expected under the generalist-specialist

trade-off.

Using a global database of trait TPC[38][13], we predict a unimodal pattern of richness along the global geological

temperature gradient that peaks at a relatively low temperature of approximately 10-15 oC (Figure 4). This prediction

aligns well with the temperature-diversity pattern recorded by the Earth Microbiome Project[49].
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Figure 4. The unimodal pattern of microbial diversity along the temperature gradient. (a) The temperature-diversity pattern predicted by the

Earth Microbiome Project (EMP). Each blue dot represents the richness of an empirically collected community; dark blue dots are the 97% quantile

of this biodiversity data. The blue line represents a fit of the Gaussian equation to the 97% quantile data, and the orange dots track the mean and

standard error of species richness along this subset temperature gradient of 0 to 30 oC. (b) The variation of species CUE drives the unimodal

pattern in microbial diversity along the temperature gradient. The blue line depicts the unimodal temperature-diversity pattern, and the red line is the

mean log variance of species CUE within the initial community before species sorting. Both lines are plotted with mean values of 670 simulations at

each temperature with standard error.

3. Discussion

We have investigated the temperature richness pattern using a novel, mechanistic microbial community assembly model

parameterised with empirically constrained thermal dependencies of bacterial carbon use efficiency and its underlying

metabolic traits. The results show that, in general, microbial community richness, when measured across a sufficiently

wide thermal gradient, will follow a unimodal pattern with temperature. This pattern, along with the average community

CUE, is always predictable if given the TPCs of life-history traits (e.g. growth rate, resource uptake rate, respiration rate) at

any empirical site. Our parameterisation using the global dataset of bacterial traits indicates that, in general, species

richness globally is expected to peak at a relatively cool temperature between 10-15oC.

Our study has general implications for understanding biodiversity under both long-term (e.g., anthropogenic global

warming) and short-term temperature fluctuations and the emergent geological distributions of global bacterial diversity.

For example, in our prediction of the pattern of microbial diversity along global temperature gradients (Figure 4), an

increase in temperature, such as annual warming caused by ongoing climate change, could induce diversity loss,

especially in temperate and tropical regions. In all thermal regimes, species sorting is vital in determining the emergence

and response of microbial communities to temperature fluctuations. Species that are outcompeted at certain temperatures

could still exist within the species pool as “latent functional diversity”[50], dormant and waiting for their preferred (or

preadapted) thermal environments, where species sorting would once again favour these species. Our model predicts that

the pattern of microbial diversity along the global temperature gradient is always unimodel within when measured over a

sufficiently wide temperature range. The ostensibly conflicting findings on the microbial temperature-diversity pattern

reported by previous empirical studies[22] are likely due to the varying temperature ranges examined in the regions
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studied, which would result in different subsets of the unimodal temperature diversity curve. Consistent with our

prediction, microbial community diversity reported by the Earth Microbiome Project (EMP)’s global survey[49] exhibits a

unimodal pattern that peaks at relatively cool temperatures (Figure 4). Thompson et al.[49] also reported nestedness

wherein the composition of communities with fewer species is generally a subset of their more diverse counterparts,

suggesting that species sorting plays an important role in driving microbial diversity. It is important to note that our

prediction of microbial diversity along the global geological temperature gradient is a general macroecological pattern. It is

a compilation of all temperature-driven microbial diversity patterns of local communities along the entire gradient. These

local communities are the result of species sorting based on species’ thermal metabolic strategies in the respective

species pool. Additionally, we have validated our prediction of this global geological temperature-diversity pattern by

incorporating the evenness of species abundances, using the Shannon and Simpson diversity indices (Figure SI.2).

The temperature for the peak diversity that we predict coincides with the peak diversity temperature in the mean richness

values along global temperature gradients, but slightly deviates from the maximum richness temperature observed in the

97% quantile of the EMP data. This probably stems from i) biases in our global dataset of TPCs, which do not contain the

TPCs of resource uptake rates, even though these theoretically align with the growth rates of species, and the specific

measurements of resource uptake rates might result in small differences in the variation and the covariance between

normalisation constant and activation energy, shifting the diversity peak along the temperature gradient. ii) Biases in the

EMP sampling, such as the relatively extensive sampling in temperate regions. iii) Other environmental factors that could

have an effect on the diversity of the local community, such as climate (e.g., precipitation), geochemical and resource

contents at sampling sites, sampling seasons, and habitat types of focus.

We stress the importance of bringing together population dynamics and metabolic theory of ecology[51], that community-

level properties such as diversity are species sorting results based on species’ metabolic strategies, rather than a

summation of species-level temperature dependencies as previously proposed[10]. Previous theoretical studies that

attempted to bring these together in predicting species diversity along temperature gradients used a phenomenological

model, the generalised Lotka-Volterra model (GLV). They incorporated the temperature dependencies of metabolic rates

into this model[52][53], which also provided unimodal patterns of temperature diversity. With an effective version of our

MiCRM, we were able to produce a similar pattern predicted by Clegg & Pawar[53], who calculated the probability of

feasibility along temperature gradients using a mean field approximation (Figure SI.3). However, the “unrealistic” GLV

model[54] purely incorporated the observed competitive interactions between species, without explaining the underlying

mechanism of these interactions in terms of metabolic strategies. Another study using a similar version of the consumer-

resource model also demonstrated a unimodal pattern of temperature-diversity pattern[55], but only reproduced the pattern

observed in EMP by simply increasing the maintenance costs of all species for temperatures away from the optimal

temperature recorded in Thompson et al.[49], without discussing the mechanisms that determined this biodiversity pattern.

The value of diversity and richness in our global prediction (Figure 4) is generally lower compared to the empirical field

measurements for the following reasons. Firstly, we started from a system of just 100 species competing for 50 types of

resource, which is sufficient to generate qualitatively robust predictions. In addition, our species pool is not classified by
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OTU, but by functional groups, where in general the bacterial community assemblies converge on functional groups based

on metabolic niches[56][57]. Therefore, our richness measurements are more representative of functional diversity, where

each functional group contains various taxonomic-level species[58][59].

We ran our assembly simulations only within 0-30oC because the OTR of most ectotherm species lies within this

range[60][38], and this temperature range covers most of the global annual temperatures[61]. Our predictions can be

extended to higher temperatures, provided that data sets of trait TPCs are available, such as those relevant to complex

microbiomes that reside within homeotherms (e.g., the human microbiome[62]) that normally operate in a higher

temperature range of approximately 36 - 42 oC[63] and species that reside in hot springs that are adapted to temperatures

up to boiling[64]. Extending our prediction towards lower temperatures (e.g., the polar regions) would require the

consideration of low-temperature deactivation[65][66] within the temperature performance function.

As a result of species sorting, we suggest that there is no universal advantage in any particular shape of the CUE-

temperature pattern along temperature gradients[31], while species with relatively the highest CUE value always

outcompete at any given temperature. Therefore, for the same species pool, thermal generalists might have a better

chance of succeeding at relatively lower temperatures, and increasing temperatures would result in a community mainly

composed of thermal specialists. We have shown that with the constant exclusion of species with relatively lower CUE at

all temperatures, the average species-level CUE within the community does not respond significantly to changing

temperatures. This constant ecological selection in species with relatively high CUE is possibly due to a general lack of

abiotic stress and resource limitation in our simulated environment[67]. For communities living in stressful environments,

such as chemical or physical stresses (e.g., draught) or a deficiency of simple degradable resources, species tend to

partition energy into stress tolerance (maintenance costs) or resource acquization, instead of increasing biomass

yields[68]. In these environments, species with higher tolerance or specific biodegradability would be favoured.

In conclusion, our findings indicate that community assembly along temperature gradients is driven by species’ life-history

strategies, particularly their metabolic traits and CUE. Coexisting species at each temperature are those with the highest

CUEs that are thermodynamically and metabolically feasible at that temperature. Our study offers a relatively simple

framework for mechanically linking microbial diversity and functioning with local to global carbon cycling. For future

empirical studies on temperature effects on community dynamics (e.g., climate change, etc.), our work highlights the

importance of measuring the thermal performance curves of a representative set of species’ metabolic traits. This

approach would allow an adequate charting of the distribution of species’ thermal strategies within a particular community.

In addition, we expect the rapid development of methodologies and technologies in empirical studies to validate and refine

our theoretical understanding and prediction.

4. Methods

4.1. The Microbial Community Model

Qeios, CC-BY 4.0   ·   Article, October 7, 2024

Qeios ID: M1XFXL   ·   https://doi.org/10.32388/M1XFXL 9/18



We perform microbial community assemblies using the Microbial Community Model (MiCRM), a McArthur-style consumer-

resource model[32][33][34][35] through random immigration of microbes from a global species pool with different thermal

physiologies of metabolic strategies along the temperature gradient. This model tracks carbon fluxes in a consumer-

resource system with metabolic mechanisms such as resource uptake, metabolic by-product secretion (including

facilitation mechanisms such as cross-feeding among species), and maintenance respiration. For N species competing for

M resource types, the biomass dynamic of species i and the resource dynamic of resource type α is given by:

dCi
dt = Ci

M

∑
α=1 uiα(T)Rα 1 −

M

∑
β=1 liαβ − mi(T) ,

dRα
dt = ρα −

N

∑
i=1 Ciuiα(T)Rα −

M

∑
β=1 Ciuiβ(T)Rβliβα .

Here, Ci denotes the biomass abundance of the ith consumer and Rα denotes the resource abundance of the αth type of

resource. In this set of equations, species growth is determined by the uptake of preferable resources (ui) and

maintenance loss mainly through respiration (mi). The uptake preferences of each consumer are encoded in an uptake

preference matrix, in which uiα denotes the uptake preference of the resource α by species i. For resource uptake at the

species level, a proportion of resource abundance consumed by each species (for example, species i) is lost through

inefficiency liαα  or transformation into metabolic by-products liαβ  that is then returned to the resource pool and become

available carbon sources for other species. Constraints on assimilation efficiency are set for both resources 1 − ∑iβliαβ > 0

 and species 1 − ∑αβliαβ > 0. The resource abundance dynamics are controlled by the input through the constant external

supply of all types of resources plus the secretion of metabolic by-products; and the output, which is species uptake of

carbon resources according to their preference matrix uiα. The parameter descriptions are given in table 1.

Table 1. Definitions for parameters in the microbial community

model.

( ( ) )
( )

( ) ( )
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Symbols Definition

M Number of resource types

N Number of consumer species

Ci Biomass concentration of consumer i

Rα Resource concentration of resource α

uiα Uptake rate of consumer i on resource α

mi Maintenance loss of consumer i

liα β
Leakage/transformation fraction of resource α to β by species 
i

ρα External resource supply of resource α

In these equations, the resource uptake rate and maintenance respiration rate for each species are temperature-

dependent and are denoted by (T). The equations for their temperature dependencies are shown in the following section.

4.2. Temperature Dependency of Metabolic Traits

Species metabolic rates typically display unimodal shapes with temperature[44][46], which increase exponentially with

rising temperatures toward their thermal optimum followed by an exponential decrease due to high-temperature effects.

These are normally depicted as temperature performance curves (TPCs). We describe the TPCs of metabolic rates

(resource uptake rate and maintenance respiration rate) using the modified Sharpe-Schoolfield equation[44]:

B(T) =

B0 × e

−E
k ⋅

1
T −

1
Tr

1 +

E
ED−E

e

ED

k ⋅
1

Tpk −
1
T

(3)

Here, B(T) denotes the trait value at a given temperature T and B0 denotes the normalisation constant, the value of which

is the metabolic rate value at reference temperature Tr. As the temperature increases, the metabolic trait increases

exponentially following the rate E (which is the activation energy of typically responsible enzyme reactions) until their

optimum performance temperature, then the acceleration drops as enzymes begin to deactivate at higher temperatures

and the trait value reaches its highest performance at Tpk. As the temperature continues to increase and exceeds Tpk, the

value of metabolic traits decreases exponentially following the rate ED, which is the apparent deactivation energy. The

parameter descriptions are given in table 2.

( )
( )
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Symbols Definition Units

B0 Normalization constant -

E Activation energy eV

k Boltzmann constant eV/K

T Model temperature K

Tr Reference temperature K

ED Deactivation energy eV

Tpk
Peak temperature for metabolic
rates

K

Table 2. Parameters for the temperature

dependencies of uptake and respiration.

The Sharpe-Schoolfield equation is chosen here to approximate more realistic metabolic rates at all temperatures.

However, the results have proven not to be qualitatively dependent on the specific choice of TPC model as long as rates

are unimodal with exponential increases within the OTR.

4.3. Carbon Use Efficiency (CUE)

Species’ carbon use efficiency (CUE, henceforth denoted by ε) reflects the resource utilisation ability of a species. It is

usually quantified as the partitioning of harvested resources into cell growth versus carbon loss mainly through

maintenance[36]:

εi =

∑M
α=1uiα(T)R̂α 1 − liα − mi(T)

∑M
α=1uiα(T)R̂α (4)

Where R̂α denotes the initial abundance of the αth resource and liα here is a simplified representation of ∑M
β=1liαβ: the total

carbon or biomass lost during resource utilization due to the inefficiency of consumption as well as transformation of

consumed resources into other resource types. Generally speaking, here, CUE is the ratio (proportion) of carbon allocated

to growth accounting for loss through respiration and leakage (production of metabolic byproducts through the

biochemical transformation of carbon resources) to that gained from uptake (the term in the denominator).

Here, metabolic traits (u and m) are temperature dependent and are denoted with (T). This means that the temperature

performance of species’ CUE is solely determined by the thermal physiologies of metabolic traits.

( )
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4.4. Numeric Link between R∗ and CUE

According to the competitive exclusion principle, within a community where species exploit a certain resource niche, only

species with relatively lower resource requirements could survive at equilibrium. In contrast, species with higher resource

requirements for growth would be driven to extinction. This equilibrium resource requirement represents the relative

fitness of the species within the community and is usually denoted as R∗. Here, we use a simplified quantification for R∗,

which calculates each species’ intrinsic equilibrium resource requirement based on our microbial community model,

considering each species growing on a single resource. The equation for our simplified R∗ standardized by the initial

concentration of each resource 

^
Rα  for species i is as follow:

R∗
i =

mi

uiα 1 − liα

^
Rα

. (5)

A simple rearrangement after combining equations 4 and 5 gives:

εi = 1 − R∗
i 1 − lα , (6)

which suggests that species’ intrinsic CUE directly links to their relative fitness within the community (Figure 2 b). In this

context, species’ metabolic strategies determine their competitiveness in species sorting during community assemblies

under all given environmental conditions. This means that species with comparatively higher CUE also have lower

equilibrium resource requirements (R∗) and therefore should survive in competitive exclusion.

4.5. Simulations

To investigate the effect of temperature on emergent species richness, we assembled heterotrophic bacterial

communities under different temperatures through random immigration from a global species pool with different thermal

metabolic strategies (TPCs of resources uptake rates and maintenance respiration rates). We simulate community

assembly based on equation 1 and equation 2 with a random pool of 100 species competing for 50 carbon resources. For

each assembly simulation, we numerically integrated the system until a dynamic equilibrium is reached for both the

abundance of resources and the abundance of consumer biomass (which is dCi/dt = 0 and dRα/dt = 0), i.e., the surviving

species coexisted.

In the MiCRM model, for each species, the uptake rates (uiα) of all resources are uniform random subsets of the species-

level uptake rate (ui). This is achieved by setting α = 1 while assigning uptake preferences of resources using a Dirichlet

distribution. This also allows all subset uptake rates of M resources to sum up to the species-level uptake rate. The

leakage-transformation tensor liαβ  is also sampled using a Dirichlet distribution, and the sum of the inefficiency of

species-level resource utilisation for each resource liα  is 0.3. The sampling of both u and l is visually demonstrated in

( )

( )

( )( )

( )
( )
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figure 1.

We parameterized the TPC of the species using data collected by Smith et al.[38][13] from global online databases and

empirical experiments in the laboratory. We used the E values for the species growth rates in these datasets as a proxy

for the E values for the resource uptake rates. Empirical data on the thermal sensitivities of resource uptake rates are

lacking; therefore, we assumed similar thermal sensitivities for uptake as those for growth rate. This is a reasonable

assumption because the metabolic mechanisms of resource uptake by species mainly govern the maximum growth rates

of microbial species. The parameterisation of TPCs of metabolic traits based on these datasets is explained in detail in

Section SI.1 of the Supplementary Material. We particularly focused on the variance of normalisation constants, the

variance of activation energies (standardised for uptake and maintenance respiration rates with the normalisation

constants of both rates) and the covariance of these two parameters for both life-history traits (Figure SI.1).

The richness of emergent coexisting species at equilibrium is recorded at the end of each simulation as the number of

species with biomass abundance Ci > 0. The uptake rates at species level and the maintenance respiration rate, CUE and

R∗ of each species are collected alongside the emergent richness for each simulated assembly. The assembly

simulations were replicated 670 times at each temperature ranging from 0 to 30 oC.

All simulation code was written in the Julia language[69].
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