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The widespread adoption of deep learning models for plant species classi�cation has achieved remarkable

accuracy, yet these models operate as “black boxes,” limiting their interpretability and trustworthiness in

critical applications such as biodiversity assessment and agricultural monitoring. This study addresses the

transparency challenge by applying Gradient-weighted Class Activation Mapping (Grad-CAM) to visualize

and interpret convolutional neural network (CNN) decision-making processes in plant classi�cation tasks.

We evaluated �ve architectures: two custom CNNs (Baseline and Improved) and three pre-trained models

(VGG16, ResNet50, DenseNet121) on two comprehensive datasets containing 100 and 30 plant species,

respectively, with a total of 69,354 images. DenseNet121 demonstrated superior classi�cation performance,

achieving 80.70% average accuracy on the 100-species dataset and 91.54% on the 30-species dataset.

Through systematic Grad-CAM analysis, we identi�ed a consistent bias toward light-colored plant features

across all architectures, with activation intensities signi�cantly higher for light-colored regions compared

to green foliage. While Grad-CAM effectively highlighted decision-relevant regions and provided

meaningful visual explanations, this color bias presents signi�cant limitations for plant species lacking

prominent light-colored characteristics, potentially affecting model reliability in real-world applications.

Our �ndings contribute to the growing body of explainable AI research by providing the �rst

comprehensive analysis of Grad-CAM limitations in botanical applications and establishing

methodological guidelines for responsible deployment of interpretation tools in plant classi�cation

systems. These results emphasize the critical importance of bias detection and domain-speci�c validation

when implementing explainable AI techniques in specialized domains.
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1. Introduction

Arti�cial Intelligence has undergone rapid evolution in recent years, transforming from theoretical concepts

into practical applications with signi�cant real-world impacts across healthcare, education, and security

sectors[1]. This transformation has been driven by intelligent machines with adaptive capabilities, reasoning,

and learning abilities, fueled by the abundance of data that propels machine learning advancement into

diverse industries. Notably, AI has demonstrated unprecedented results in solving complex numerical and

computational problems, shaping the future of human society[2].

Autonomous AI-powered systems, now prevalent in �elds like defense, law, and medicine, raise critical needs

to understand their decision-making processes[3]. The �eld faces a fundamental dichotomy between earlier

“white-box” models, which provide explainable results but lack state-of-the-art performance[4], and recent

“black-box” models like deep learning, which achieve high performance but are challenging to interpret[5][6]

[7].

The adoption of black box machine learning models in crucial sectors such as healthcare and security raises

moral concerns about fairness, transparency, and the reliability of uninterpretable decisions[8]. Stakeholders

demand understanding and justi�cation for decisions made by these complex models[9]. Skepticism

surrounding the use of uninterpretable techniques, coupled with rising emphasis on ethical AI, has led to the

emergence of Explainable Arti�cial Intelligence (XAI)[10].

XAI has become one of the recent focuses in the scienti�c community, shifting attention from solely

predictive algorithms to understanding and interpreting AI system behavior. The goal is to create more

reliable and explainable models while maintaining high-level learning performance, ultimately bridging the

trust gap with stakeholders[11]. Plant species classi�cation presents an ideal domain for XAI exploration,

acknowledging the challenges posed by vast variations in plant characteristics[12]. Despite global biodiversity

decline[13], accurate knowledge of plant identity and distribution remains crucial for future biodiversity

endeavors[14].

This project aims to explore the explainability of a plant species classi�er, with a focus on applying

Explainable Arti�cial Intelligence to enhance the transparency of deep learning models, speci�cally

Convolutional Neural Networks (CNNs). We employed Grad-CAM, a technique for generating visual

explanations, to gain deeper understanding of these models’ decision-making processes. The signi�cance of

this project lies in its ability to bridge the gap between plant classi�cation with deep learning and explainable

arti�cial intelligence on plant species.
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2. Literature Review

2.1. Background on Explainability and Interpretability

“Explainability” and “interpretability” are often used interchangeably, yet they differ in concepts and

ideologies[8][15]. While attempts have been made to clarify these terms, there is no mathematical evidence

supporting their de�nitions. Interpretability, in the context of AI and machine learning, denotes a model’s

characteristics making sense to a human observer, emphasizing intuitive understanding[15]. In contrast,

explainability in AI focuses on the internal logic and procedures within a model or machine learning

system[16]. Explainable Arti�cial Intelligence (XAI) centers on decision understandability for end-users, with

challenges in quantifying interpretability gain[9]. XAI is de�ned as an approach providing details to make a

model’s functionality easy to understand[17].

In plant classi�cation, a crucial task in plant taxonomy, CNN models have proven effective. However, there is a

need to understand how these models make their choices. Wäldchen et al.[18] used a CNN model to investigate

explanatory factors for plant classi�cation due to its precision in achieving results.

2.2. Explainable AI (XAI)

AI systems can be hard to understand and operate like a mystery box, popularly known as the ‘black box.’

Adadi and Berrada[19] pointed out how tough it is to trust these systems and introduced Explainable AI (XAI),

which helps us see inside the mystery box and understand how AI works. They also identi�ed problems with

XAI, including lack of clear evaluation methods and trade-offs between understandability and prediction

accuracy.

Guidotti et al.[20] provided additional details, discussing challenges in explaining black box models. In their

work, they mentioned the need to specify what kind of explanations are wanted, either for a part (local) or for

the whole system (global). They also discussed different types of black box models, acknowledging diversity

in models like neural networks and support vector machines. Explaining these models is complicated,

considering the massive data involved and intricate relationships.

Murdoch et al.[21] emphasized the importance of making AI systems understandable, helping �nd errors and

biases. However, they recognized challenges in �nding balance between understanding and making accurate

predictions. They noted that measuring how understandable AI is can be dif�cult and that there’s no ultimate

solution for making AI systems understandable—it depends on the speci�c application.
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Overall, these studies show that AI systems are dif�cult to understand and there’s no one perfect solution,

hence the need to �nd appropriate ways to understand AI operations so that we can trust and use AI

con�dently in our daily lives.

2.3. Plant Classi�cation Using Deep Learning

In 2018, Xiao et al.[22]  proposed a novel approach to plant species identi�cation in real-world images using

deep convolutional neural networks (CNNs) and visual attention. Their framework utilizes visual attention to

crop images to focus on plants, followed by CNNs to classify species. They evaluated their approach on two

datasets and found that it outperforms other methods.

Liu et al.[23]  investigated plant species classi�cation using hyperspectral imaging and deep learning. They

addressed limitations of traditional RGB imaging for plant species classi�cation and introduced a lightweight

convolutional neural network (CNN) model for hyperspectral image classi�cation. The CNN model, called

LtCNN, achieved a kappa coef�cient of 0.95 for plant species classi�cation, outperforming other CNN models.

The authors found that using green-edge (591 nm), red-edge (682 nm), and near-infrared (762 nm) bands

from hyperspectral images was most effective for classifying plant species.

Generally, there is no direct work done on the explainability of plant species classi�cation. In this project, we

used the Grad-CAM technique on visual explanations for decisions made by CNNs to explain what occurs

within the models. It is important to note that Grad-CAM operation is based on gradients of a speci�c target

to result in a coarse localization map of highlighted signi�cant portions/regions of an image[24]. This raises

the question: is Grad-CAM able to contribute to visual explanations for CNN decisions in plant classi�cation,

and how does it aid in identifying dataset biases?

3. Materials and Methods

3.1. Data Description

Two datasets of different plant species were downloaded from Kaggle[25][26]. The �rst contains 100 different

plant species, referred to as the 100 plant species dataset, and the second contains 30 plant species.

The 100 species plant dataset contains 39,354 images of plant species and was split into 31,438 train and 7,916

test directories. It originally had both image and XML �les which were separated for image classi�cation. The

average height and width of images were 596.83 and 578.35 pixels respectively for the train folder and 596.64

and 579.09 pixels for the test folder.
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The 30 species plant dataset contains 30,000 plant images, with 1,000 images per class and a diverse

collection of 30 plant classes and 7 plant types, including crops, fruit, industrial, medicinal, nuts, tubers, and

vegetable plants. These images were split into 24,000 train, 3,000 test, and 3,000 validation directories. The

train folder has an average height and width of 378.19 and 482.24 pixels, while the test has 366.77 and 475.18

pixels, and the validation folder has 372.76 and 478.63 pixels.
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3.2. Dataset Visualization

Figure 1. Size distribution histograms showing height and width distributions for train, test, and validation images.

Top two panels show the 100 species dataset, bottom panel shows the 30 species dataset.
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Figure 2. Representative sample images from both datasets. Top two rows display examples from the 100 species

dataset showing various plant types at different growth stages. Bottom two rows show samples from the 30 species

dataset including crops, fruits, and other plant categories.
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3.3. Image Preprocessing

For consistency, both datasets were uniformly resized to dimensions of 224×224 pixels. Analysis was �rst

conducted on original-sized images and later on resized images.

3.4. Model Construction and Architecture

For analysis of all plant species, �ve different models were employed, consisting of two custom-developed

Convolutional Neural Network (CNN) models and three pre-trained models.

Baseline CNN Model: The Baseline CNN model employed a straightforward architecture, consisting of three

convolutional layers, max-pooling layers for down-sampling, and a dense layer for classi�cation. To prevent

over�tting, dropout with a rate of 0.5 was incorporated. The model was compiled using the Adam optimizer

with a learning rate of 0.0001, utilizing categorical crossentropy loss and accuracy as the evaluation metric.

During training, data augmentation techniques were applied to enhance the model’s generalization. The

training process was logged over multiple epochs, followed by evaluation on a distinct test dataset.

Improved CNN Model: The Improved CNN model extended the Baseline CNN architecture by introducing an

additional convolutional layer and a dropout layer. This augmentation aimed to enhance feature extraction

capabilities. Like the Baseline CNN, the model was compiled, trained, and evaluated using the same

con�guration on a separate test dataset, providing insights into its improved performance.
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3.5. Model Architectures

Figure 3. Architecture diagrams of the custom CNN models. (a) Baseline CNN showing three convolutional layers

with max-pooling and dense classi�cation layer. (b) Improved CNN with additional convolutional and dropout

layers for enhanced feature extraction.
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VGG16-Based Transfer Learning Model: The third model utilized transfer learning with the VGG16

architecture. The convolutional base of the pre-trained VGG16 model was employed, and custom fully

connected layers were added for classi�cation. To retain learned features, the layers of the pre-trained model

were frozen. The model was compiled with the Adam optimizer, featuring a learning rate of 0.0001, and used

categorical crossentropy loss and accuracy as evaluation metrics. Data augmentation during training

contributed to the model’s robustness, and performance was tracked over epochs before evaluation on an

independent test dataset.

ResNet50-Based Transfer Learning Model: Employing a similar transfer learning approach, the fourth model

utilized the pre-trained ResNet50 model. Custom fully connected layers were added to adapt the model for the

speci�c classi�cation task. Like the VGG16 model, the layers of the pre-trained ResNet50 model were frozen to

retain learned features. The model was compiled, trained, and evaluated using the same con�gurations as the

VGG16 model, providing comparative analysis of the performance of these two architectures.

DenseNet121-Based Transfer Learning Model: The �fth model leveraged transfer learning with the

DenseNet121 architecture. Dense blocks and transition layers from the pre-trained DenseNet121 model were

utilized, and custom classi�cation layers were added. The layers of the pre-trained model were frozen to

preserve learned features. The model’s pipeline and training process were the same as VGG16.
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Figure 4. Architecture diagrams of pre-trained transfer learning models. (a) VGG16-based model with frozen

convolutional base and custom classi�cation head. (b) ResNet50-based model with residual connections. (c)

DenseNet121-based model with dense connectivity pattern.

3.6. The Grad-CAM Technique

Grad-CAM is a technique used to visualize and interpret CNNs. It highlights important regions of an input

image that contribute to the network’s prediction. The process involves calculating gradients of the predicted

class score with respect to the last convolutional layer’s feature maps, global average pooling to summarize

the importance of each feature map, and generating a heatmap that indicates the signi�cant regions in the

input image for the network’s decision.
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4. Results

4.1. 100 Plant Species Dataset Results

This dataset contains about 200 to 900 images for each species and has diverse stages of plant life, from

seedlings to full-grown plants with �owers, fruits, or vegetables. The test images number about 50 to 100 per

species. For this reason, the initial approach involved running the models on the datasets and later

subdividing into 13 different species selected randomly.

The 13 species were grouped based on the number of images: the �rst group contains images of less than 190

labeled as Normal_Grey_LT_190 and the second group contains images of above 600 labeled as

Normal_Grey_GT_600. This approach was taken to determine how models work with various numbers of

datasets. For the �rst two models (Baseline CNN and Improved CNN), models were also run in greyscale for

the 13 plant species.
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Model Species Group Training Accuracy Validation Accuracy Test Accuracy

Baseline CNN

100 plant classes 0.5152 0.1609 0.1921

Original Normal_Grey_GT_600 0.8169 0.5042 0.5198

Greyscale Normal_Grey_GT_600 0.8249 0.3586 0.3543

Original Normal_Grey_LT_190 0.8271 0.6550 0.6272

Greyscale Normal_Grey_LT_190 0.6886 0.3915 0.4090

Improved CNN

100 plant classes 0.2295 0.2318 0.2714

Original Normal_Grey_GT_600 0.6066 0.5499 0.5802

Greyscale Normal_Grey_GT_600 0.5415 0.4220 0.4420

Original Normal_Grey_LT_190 0.8596 0.6705 0.6424

Greyscale Normal_Grey_LT_190 0.8822 0.6047 0.5969

VGG16

100 plant classes - 0.1055 0.1804

Original Normal_Grey_GT_600 - 0.6023 0.6548

Original Normal_Grey_LT_190 - 0.6330 0.7152

ResNet50

100 plant classes - 0.0309 0.0315

Original Normal_Grey_GT_600 - 0.2053 0.2061

Original Normal_Grey_LT_190 - 0.1831 0.2152

DenseNet121

100 plant classes - 0.7454 0.6556

Original Normal_Grey_GT_600 - 0.9427 0.8411

Original Normal_Grey_LT_190 - 0.9701 0.9242

Table 1. Results of 100 Plant Species Analysis

4.2. 30 Plant Species Dataset Results

This dataset contains a more uniform distribution of images across train (800), test (100), and validation (100)

folders. The �rst approach was achieved by running models through the dataset and �nally running them

through two distinct selected species (pepper chili and pineapple).
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Model Species Group Training Accuracy Validation Accuracy Test Accuracy

Baseline CNN

30 plant classes 0.8313 0.7413 0.7596

2 plant classes 0.9944 0.9650 0.9800

Improved CNN

30 plant classes 0.7624 0.7223 0.7400

2 plant classes 0.9744 0.9350 0.9750

VGG16

30 plant classes - 0.5589 0.6763

2 plant classes - 0.9744 0.9950

ResNet50

30 plant classes - 0.0438 0.0610

2 plant classes - 0.6787 0.8200

DenseNet121

30 plant classes - 0.9144 0.8807

2 plant classes - 0.9956 0.9500

Table 2. Results of 30 Plant Species Analysis

4.3. Training Performance Analysis

Since model performance conforms generally with the trend of various classi�ed datasets, training and

validation curves are shown for the highlighted results in the tables, speci�cally focusing on the

Original_Normal_Grey_LT_190 subset which demonstrated optimal performance across models.
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Figure 5. Training and validation curves for all �ve models on the Original_Normal_Grey_LT_190 subset of the 100

species dataset. (a) Baseline CNN, (b) Improved CNN, (c) VGG16, (d) ResNet50, (e) DenseNet121. The curves show loss
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and accuracy over epochs, demonstrating convergence patterns and potential over�tting indicators.
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4.4. Grad-CAM Visualization Analysis
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Figure 6. Grad-CAM heatmap visualizations for each model on representative plant images from the 100 species

dataset. Each row shows: original image, Grad-CAM heatmap, and heatmap overlay. (a) Baseline CNN, (b) Improved

CNN, (c) VGG16, (d) ResNet50, (e) DenseNet121. The visualizations demonstrate consistent emphasis on light-colored

plant features across all models.

4.5. Greyscale Analysis Results

For comparison, we also analyzed model performance on greyscale versions of the datasets to understand

color dependency.
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Figure 7. Comparative analysis of Baseline and Improved CNN models on greyscale versions of the

Normal_Grey_LT_190 dataset. (a) Training curves for Baseline CNN, (b) Training curves for Improved CNN, along

with corresponding Grad-CAM visualizations showing reduced but persistent bias patterns.
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4.6. 30 Species Dataset Analysis
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Figure 8. Training and validation curves for all �ve models on the complete 30 species dataset. (a) Baseline CNN, (b)

Improved CNN, (c) VGG16, (d) ResNet50, (e) DenseNet121. The curves demonstrate generally improved performance

compared to the 100 species dataset due to more uniform class distribution.
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Figure 9. Grad-CAM visualizations for each model on representative images from the 30 species dataset. Examples

include cucumber, papaya, soybeans, and other species, demonstrating the persistent light-color bias across

different plant types and model architectures.

5. Discussion

For the 100 plant species dataset, DenseNet121 outperformed other models with an average accuracy of

80.70%, followed by VGG16 model (51.68%), while ResNet50 model was the least performing with an accuracy

of 15.09%. Performing the same analysis for greyscale images did not improve model performance, with

accuracy around 51.34%.

For the 30 plant species dataset, the DenseNet121 model (91.54%) was the best, followed by Baseline CNN

(85.32%), VGG16 (83.57%), Improved CNN (82.87%), and ResNet50 model (44.05%) respectively.

In both datasets, the DenseNet121 model was the best, consistent with �ndings of Xiao et al.[22], who also

found that pre-trained models are highly effective architectures for plant species classi�cation. Moreover, the

Baseline model also gave good results for the 30 plant species dataset, corresponding with Liu et al.[23], who

achieved strong performance for their LtCNN model across different evaluation metrics like the kappa

coef�cient. This performance was possibly due to the larger number of images and more uniform distribution

of plant species.

In understanding the model’s decision making using Grad-CAM, we observed that light colors, speci�cally

colors closer to white as well as bright colors, were highlighted as signi�cant features in Grad-CAM heatmaps.

In their paper, Selvaraju et al.[24] also found that Grad-CAM is most effective at highlighting salient regions in

images that contain these colors. For example, in the 100 plant species dataset, speci�cally the

Original_Normal_Grey_LT_190 analysis, probability predictions show that ResNet50 (36.97%) model performed

better, followed by DenseNet121 (23.93%), VGG16 (22.86%), Baseline CNN (15.76%) and Improved CNN (14.88%).

This is inconsistent with their overall performance and could be because images with good performance had

bright colors as signi�cant features, as seen in the Grad-CAM visualizations. Additionally, in the 30 plant

species dataset, predictions showed that DenseNet121 model (80.97%) was the best, then Improved CNN

(78.03%), ResNet50 (60.79%), VGG16 (12.13%), and Baseline CNN model (4.60%). These inconsistencies could

be due to bias towards light colors, thereby limiting effectiveness for plant species classi�cation, as many

plant species are not predominantly light-colored. For example, green plant species may not be well-
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represented in Grad-CAM heatmaps, as the algorithm is more sensitive to changes in color in green plant

species than in other plant species.

6. Conclusions

The application of Explainable Arti�cial Intelligence (XAI) using Grad-CAM in the context of plant species

classi�cation with CNNs provided valuable insights into the decision-making processes of complex models.

The use of Grad-CAM in visual explanations for decisions made by CNNs revealed interesting patterns.

Notably, light colors, particularly those closer to white and bright hues, were consistently emphasized in Grad-

CAM heatmaps. This �nding aligned with previous research by Selvaraju et al.[24], con�rming Grad-CAM’s

effectiveness in highlighting salient regions in images containing such colors. However, this project also

identi�ed a potential limitation in Grad-CAM’s bias towards light-colored features, raising concerns about its

effectiveness in accurately representing plant species that are not predominantly light-colored.

The integration of Grad-CAM as an XAI tool contributes to deeper understanding of CNN decision-making

processes, with potential implications for improving model trustworthiness and addressing biases. Although

XAI addresses challenges posed by the “black box” nature of deep learning models, especially in critical

sectors such as healthcare, plant taxonomy, and security, where transparency and interpretability are

paramount[8], further research needs to be done on Grad-CAM to mitigate its color bias if it is to be directly

applied in these sectors. Additionally, exploring other visual explanatory tools such as LIME (Local

Interpretable Model-agnostic Explanations), SHAP (SHapley Additive exPlanations), DeepLIFT (Deep Learning

Important FeaTures), etc., could provide more comprehensive understanding of XAI.
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