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As a continuation of our earlier investigations into electron wave—spin, we analyze the electron spin and its qubit in a cavity by
treating the electron as a physical wave obeying the Dirac equation. In this view, a qubit is a current—density configuration whose
orientation is fixed by the relative phase, rather than a particle carrying simultaneous “up” and “down” spin states with assigned
probabilities. The resulting magnetic-moment density, derived from the current, displays a richer vector distribution and
topology than the fixed axial dipole weighted by probability density in the conventional wave—particle model. Both frameworks
yield the same total moment of one Bohr magneton and are indistinguishable in uniform external fields, yet their ontological
differences predict distinct couplings to structured fields and spin—spin interactions. These contrasts motivate further
exploration of dynamical consequences within the wave—entity framework, including Aharonov-Bohm-like responses that

provide testable alternatives to conventional wave—particle duality.
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I. Introduction

The electron, a cornerstone of modern physics and technology, remains enigmatic. Conventionally modeled as a point-like particle of
charge ¢ = —e = —1.602 x 10719 C, its electromagnetic behavior is described by the Lorentz—covariant four—current
§# = (cq(x,t), j(r,t)), where g(r,t) and j(r,t) denote charge and current densities (Il This four—current governs both the

generation of and interaction with the electromagnetic field A* = (¢/¢, A), with scalar and vector potentials ¢ and A:
04" = )u’Ujuv A(:int = 7jMAu = 7q¢+jAv (1)
where [J is the d’Alembertian and we adopt the Minkowski metric (+, —, —, —), consistent with —j# A4, = —q¢ + j-A.

Electrons also exhibit unmistakably wave—like behavior, from double—slit interference 21314 1o diffraction V€], Recent
experimental progress highlights that spin qubits in silicon and related platforms can now achieve high fidelity even above 1 K (7,

scalable integration [812] and advanced control via engineered magnetic textures (o1,

A comprehensive quantum description is therefore required, in which the four—current is expressed through the wavefunction

¥(r,?):
q(r,t) = —e i (r,t)¥(r,1), j(r,t) = —ec¥l(r,t)a¥(r, ). (2)
The wavefunction evolves according to the Dirac equation (2],
HOU(r,t) = [7ihca~v+’yomec2 U(r, 1), (3)

with electron mass m., speed of light ¢, and reduced Planck constant 4. The Dirac formalism unifies charge, current, and spin within

a single Lorentz—covariant wave equation.

For an energy eigenstate ¥(r,t) = e~#/% ¥(r), the current density can be written [2)[14];
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j(r) = —%CZ[VX (\Iﬁ(r) %E\Il(r)) +ik ((V\Iﬁ)\y - ‘Iﬁvw)] , (4)

L

where ¥ = +
2i

a X« is the spin operator. The first term represents a circulating spin—associated current; the second, translational
motion. Thus the electron wave inherently carries spin, even in the absence of external fields. The observed spin value f/2 arises
after integrating spatial interactions with magnetic fields, indicating that spin is not a localized attribute but a structured, intrinsic

feature of the electron wave—here termed wave—spin [141015] distinguish it from the conventional particle—spin picture.

From this standpoint, the electron wave itself emerges as a natural candidate for the fundamental entity, carrying charge, current,
and spin in a Lorentz—covariant and self-consistent manner. This perspective avoids attributing a hidden particle structure to the

electron and avoids reducing the wave to a purely statistical abstraction.

Crucially, the wave—entity (a real, spatially extended object) is not identical to the abstract Hilbert-space wavefunction. The
wavefunction remains a mathematical device that evolves deterministically under the Dirac equation and computes observables; the
wave—entity is the physical carrier whose charge and current densities are expressed through the wavefunction. What is usually
called “collapse of the wavefunction” is reinterpreted as a transition of the wave—entity from one physical configuration to another,
not the disappearance of a real object.

Within this framework, no localized “particle electron” with definite size or shape exists. Apparent particle-like behaviors—such as
cathode-ray impacts or electron—beam lithography—arise from the small collision cross—section of a real wave interacting with
matter, in close analogy with electromagnetic scattering.

This wave—based ontology depicts the electron as a deterministic physical wave evolving under relativistic equations, positioning
the wave—rather than the particle—as the basic entity for quantum devices. Using this framework, we examine electron spin and
qubits by solving the Dirac equation in a cylindrical cavity and representing spin—qubit states through current—density
configurations. We then analyze their interaction with external fields by calculating the magnetic—-moment density and comparing
it with the corresponding quantity in the conventional wave—particle view. These distinctions connect naturally to Aharonov—
Bohm-like responses, where modern treatments have explored complex vector potentials 16l and spin—dependent analogues of the
AB effect 171 Together, these results provide a concrete basis for experimental verification and naturally motivate Aharonov—Bohm-

like tests of structured—field couplings, which we pursue in companion work.

I1. Electron wave—spin in a cavity

We derive analytical wavefunctions and current densities of an electron confined in a finite cylindrical quantum dot, modeled as a
three—dimensional cavity with partial radial confinement and complete axial confinement. The confined Dirac electron exhibits a
toroidal wave—spin topology, which differs from the conventional particle-based interpretation of spin and demonstrates spin as an

extended spatial structure rather than an intrinsic point-like attribute.

We begin with the Dirac equation in a cylindrically symmetric potential:
. 0 . 0, 2
zhE‘I/(r,t) = [—ihca -V +9"mec® + U(r)] ¥(r,1), (5)

where U(r) models the confinement [181019],
0, 0<p<R,-d<z<d (Regionl),
Ur)=< U, p>R, -d<z<d (RegionlIl), (6)
00, z< —dorz>d (RegionIII).

The Dirac momentum operator in cylindrical coordinates (p, ¢, z) is
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7] 10 7]
a-V=q,—+ay—— +a,—, 7
% Op a¢p [e] 52 @
with o, = a; cos¢ + aysing and oy = —a, sing + o, cos¢ so that p~19; acts only on the spinor components while the ¢—

dependence of the basis vectors is encoded in «, and a4. Together with o, they satisfy
ap=al=al=1 lopay =28, {apas}=0. ®)

The electron is fully confined along z but only partially confined radially, giving rise to an evanescent wave outside the cavity 131
While Schrédinger solutions for related geometries are known for planar systems [201 wye solve the full Dirac equation to expose the

relativistic wave—spin structure.

Assuming a stationary state ¥ (r,t) = e /" 4(p, ¢, z) with eigenenergy £, we solve for 1 in Regions I and II (vanishing in Region

III). As established in Ref. 151 the interior solution remains accurate despite evanescent components at the boundary.

By separation of variables, we obtain eigenfunctions for spin—up and spin—down, labeled by (n,l,m). For brevity we display the
general forms and then specialize to the ground state. The spin—up state ;¢ is

Ji(Gump) € cos(ky, 2)

0

N i ilp 3 ) Region I,
i1 km Ji(Goim p) €% sin(kn, 2) g

—in [C”ém (JI—I(Cnlmp) - Jz+1(anmp)) - ;sz(anmp)] €€l cos(kmz)

wnlmT (P, ¢7 z) = . (9)
K1 (&nimp) €' cos(km 2)
1}
Fontm N . db - , RegionII,
nim inm km K (Enim p) € sin(ky, 2) &
—in [én%( — K- 1(&nimp) — Kl+1(§nlmp)) - ;lKl(ﬁnsz) €% e'? cos(kn 2)
The spin—down state ¥y, is
0
Ji(Gatmp) €% cos(kp z)
N T eum . i , Region,
fwn[ 5 (Jl—l(Cnlmp) - Jz+1(anmp)) + 5 Ji(Cump) | €€ cos(knz)
—in1 ky, Ji(Cutmp) € sin(ky, 2)
¢nlm£ (P, ¢7 Z) = (10)
0
K1 (€nimp) €' cos(k 2)
Knim IN ) m . 5 il , Region II.
-1 TTII[ B ( - Kl—l(gnlmp) - Kl+1(§nlmp)) + ;Kl (gnlmp)] e—szez # COS(ka)
—i 11 by, K (Enim p) €% sin(ky, 2)
Here ¢/ encodes the azimuthal quantum number [ = 0,1,2,...,and k,, = % withm = 1,3,5,. ... The radial functions are Bessel
J; and modified Bessel K. The radial wave numbers relate to &, by
. &2 —mict — Rk, . (Enim — U)? — m2c* — R2C2KZ, (11)
nlm h2c2 ? nlm K22 .
The geometric factors are
ke ke
m= m= (12)
Enim + Mec Enim — U + mec
which converge in the nonrelativistic limit to
h
A R = o (13)
mec
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At p = R, continuity yields

Jl((nlmR) = HnlmKl(gnlmR)7 m CnlmJl,(CnlmR) _Jl(CnlmR):| = Knim M1 |:€nlmK (é.nlmR) EKl(gnlmR) (14)

which together determine (,;, (@nd hence &njm, Knim, and Epim ).

For the ground state (n,l,m) = (1,0,1) we write k; = k = %, CGo1 = ¢, &101 =€, and k191 = k. The spin—up and spin—down

wavefunctions are

((p cos(kz)
N Region I
inkJy (p) sin(kz) ’ eson %
in¢Ji(¢p)e cos(kz)
1/’1(/374% Z) = (15)
Ko(ép) COS(kZ)
N Region IT
" ink Ky Ep sin(kz) ’ eston
in& K1 (&p)e' cos(kz)
Ji k
N 0(¢p) COS( 2) | Region],
in¢J1(¢p)e * cos(kz)
—inkJo(¢p) sin(kz)
¢i(pa ¢7 Z) = (16)
K (kz)
kN 0 (§p cos(kz) Region II.
in& K1 (&p)e ™ cos(kz)
—ink Ko(€p)sin(kz)
These states are degenerate and can be superposed without energy splitting, enabling qubit constructions without beating.
The ground—state boundary conditions reduce to
Jo(CR) = K Ko(€R),  CJ1(CR) = nEK1(ER). (17)
Normalization (f ¥1¥ d3r = 1) gives
2 _ ! 4 (18)
nR2d [J1(CR)? + K2K1(ER)?]
The current density for the spin—up ground state is
. —2N2ecn ¢ Jo(Cp) J1(¢p) cos?(kz2), Region I . .
,2) = ! ,2) =0, j.(p,z) =0. 19
Js(p:2) { — 2k N2ecné Ko(¢p) K1(€p) cos? (kz), RegionIl, Jo(p:2) 7:(p,2) (19)

The azimuthal current highlights the wave—spin character of the electron, forming a toroidal topology even for [ = 0. Moreover, the
current extends beyond the cavity boundary, demonstrating an evanescent wave—spin.

For R=8nm, d =4nm, and U = 10 meV, solving Eq. 17 yields the ground—state energy &1 — m.c’ = 8.06 meV. These
parameters fix , £, x, N via Egs. 11, 12, and 18, enabling three—dimensional contour visualization of the current density (Fig. 1). For
contrast, Fig. 1(a) depicts the particle-spin model.

Revealing the toroidal topology underscores that the electron wave is a spatially extended physical entity; reducing it to a point
discards physically meaningful structure. Such topology encodes persistent features that may be comparatively robust to
perturbations, potentially informing studies of long-lived coherence 211 and the design of stable, fault—tolerant spin qubits. This

perspective also aligns with recent comprehensive analyses of decoherence mechanisms in solid—state spin qubits 221 underscoring

the importance of physically grounded models for understanding robustness.
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(a) Electron Spin as a Spinning Ball

(b) Electron Spin as a Circulating
Current Density within a cavity

Figure 1. (a) Conventional particle—spin model,
depicting the electron as a rotating corpuscular ball. (b)
Toroidal contour of the current density plotted at two—
thirds of its peak value. The electron is confined within
a cylindrical cavity of radius R = 8 nm, height

d = 4 nm, and potential energy U = 10 meV. The
spin—up and spin—down components are degenerate in
the ground state (nlm = 101), with eigenenergy

5101 - mecz = 8.06 meV.

I11. Electron wave—spin qubit

We now examine the electron spin qubit within the wave—entity framework, which is both a basic physics problem and a

cornerstone of quantum computing.

The spin—qubit state is the superposition
P = COS% Py +sin%eﬁ) Py, (20)

where 0 < © < 7 and 0 < ® < 27 locate the state on the Bloch sphere [E]‘, and logical operations act as sphere rotations 28] The

parameter © sets the amplitudes, and the relative phase ® governs interference between basis states. The physical significance of
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phase control in qubits has been further underscored in recent demonstrations of coherent control and coupling in multielectron
spin states [251 and in baseband-driven qubit architectures [26]

The centrality of ® in quantum information is well established: in the quantum Fourier transform [271[28] phases encode periodicity
exploited by Shor’s algorithm 291 i Grover’s search 9 phase inversion drives interference; and many algorithms hinge on phase
control 31321, Within the wave—entity picture this abstract role becomes concrete: the phase ® enters directly into the current

density, and thus into the field interaction, tying qubit phases to measurable real—space flow.

Combining Egs. 15, 16, and 20 yields (Region I/II forms shown compactly)

o — N2ecn sin© sin(® — @) k Jo(Cp)? sin(2kz), Region I,
Je —k*NZ%ecn sin O sin(® — ¢) k Ko(¢p)? sin(2kz), Region II,

. —2N?ecn cos O ¢ Jo(Cp)J1({p) cos?(kz) + N2ecn sin© cos(® — @) k Jo({p)? sin(2kz), Region I, (21)
¢ —2k2N2ecn cos © £ Ko(£p) K1 (€p) cos?(kz) + k2 N2ecn sin © cos(® — @) k Ko(£p)? sin(2kz), Regionll,

o 2N2%ecn sin © sin(® — ¢) ¢ Jo(¢p)J1(¢p) cos?(kz), Region I,

Iz 22 N%ecn sin © sin(® — ¢) £ Ko(£p) K1 (€p) cos?(kz), Region II.

For the equal superposition © = 7/2,

o — N%ecn sin(® — @) k Jo(¢p)? sin(2kz), Region I,
Je — k2 N2ecn sin(® — ¢) k Ko(p)? sin(2kz), Region II,
. N2ecn cos(® — ¢) kJo(¢p)? sin(2kz), Region I, 929
Jo = 2 n2 2 : (22)
Kk?NZ?ecn cos(® — ¢) k Ko(€p)* sin(2kz), Regionll,
o 2N2%ecn sin(® — ¢) ¢ Jo(¢p)J1(¢p) cos? (kz), Region I,
Iz 2x2N2ecn sin(® — ¢) £ Ko(£p) K1 (£p) cos?(kz), Region IL.

The transverse components (j,, jg) vary as (sin(® — ¢), — cos(® — ¢)), i.e. along the unit tangent at azimuth ¢ = ®. Thus, in the zy
—plane the current points at angle ® — ¢ + /2, making the relative phase ® directly set the local current orientation. Together with
O, this phase fixes the current configuration. Figure 2(b) illustrates this geometry: the current circulates around an axis aligned with
¢ = ®. In the wave—entity picture, the superposition produces a coherent and well-defined current pattern, providing a physical

representation of the qubit state traditionally depicted by vectors on the Bloch sphere in Fig. 2(a).
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(a) Bloch sphere representation of qubit

(b) Current density representation of qubit

0=m/2,0=0 0=1/2,0=m1/2

Figure 2. (a) Bloch—sphere representation of a qubit as an abstract state vector. (b) Three—dimensional contour plots of the current density
for the wave—spin qubit, drawn at two—thirds of the peak value, reveal toroidal topologies circulating around ¢ = ® = 0 (red, z—axis) and

¢ = ® = 7 (green, y—axis). These configurations highlight the phase—dependent character of the wave—spin qubit. Parameters: cylindrical
cavity with R = 8 nm, d = 4 nm, U = 10 meV. The spin—up and spin—down components are degenerate in the ground state (nlm = 101),

with €191 — mec® = 8.06 meV.

IV. Interaction with external fields

The wave—entity framework establishes a distinct ontology for the electron relative to the standard wave—particle duality. This
difference is not merely interpretive; it entails physical consequences accessible to experiment. In particular, interactions with

structured electromagnetic fields and long—range couplings become sensitive to the local vector structure of the current 33,

To place the two views on equal footing, we compare their predictions for the magnetic moment. Within the wave—entity

framework, the magnetic—-moment density follows from classical electromagnetism as

M(r) = Lrx j(r), (23)
which in cylindrical coordinates gives
M) = 3| = 25s b + (25— p3:) 6+ pisd] (24)
For the spin—up ground state, Eq. 19 yields
) s N?[2¢T0(Cp) J1(¢p) cos® (kz) p — p¢To($p) J1({p) cos® (kz) 2], Region],
M(wave--entlty)(p’ 8, Z) _ (25)

s K N? [2€Ko(6p) K1 (€p) cos® (kz) p — pEKo(€p) K1(£p) cos®(kz)z], RegionT,
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after substituting n from Eq. 13 and introducing the Bohr magneton pug = eh/(2m, ). The resulting azimuthal current j, generates a

poloidal magnetization.

By contrast, in the standard wave—particle treatment the electron carries an intrinsic magnetic dipole of magnitude p ~ pp aligned

with the abstract spin axis, and the magnetization density is the dipole weighted by local probability density,

2 2 .2 P .
) R —upN*Jy(¢p)” cos® (k=) z, Region I,
MOSPD) (o, 6, 2) = — 4 (,0,2) (0,6, 2 = { (26)
— upk N2Ky(€p)® cos®(kz)z, Region IL
This description is strictly axial: orientation is fixed along —z and spatial variation enters only through the scalar probability

amplitude. In the wave—entity framework, by contrast, circulating currents yield a poloidal magnetization with intertwined radial

and axial components.
For visualization we compare magnitudes,

us N2 Jo(¢p)? cos® (kz), Region I,

'M(wave--pa.rticle)' _
pg K2N? Ko(€p)? cos® (kz), RegionII,

27
(NP 2 D)o (), Region], @
'M(wave--entlty)' _

up K2N2E 4/ p* + 2% Ko(€p) K1 (€p) cos® (kz), Region IL

which reveals the characteristic contrast seen in the contour plots of Fig. 3. In the wave—particle picture the moment density mirrors
the probability distribution, resulting in a genus—0, sphere-like topology. In contrast, the wave—entity expression reflects the
current density, giving rise to a genus—1 toroidal topology. The accompanying poloidal vector pattern, confined to the meridional

plane, is described explicitly in Eq. 25.
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(a) Electron magnetic moment distribution (wave-particle duality)

(b) Electron magnetic moment distribution (wave-entity)

Figure 3. Contour plots of magnetic-moment density magnitudes for the ground state

(101) in a cylindrical cavity (R = 8 nm, d = 4 nm, U = 10 meV). (a) Wave—particle picture:
the moment density mirrors the probability distribution, resulting in a genus—0, sphere—like
topology. (b) Wave—entity picture: the current density generates a genus-1 toroidal topology,
with the corresponding poloidal vector pattern confined to the meridional plane, as

described in Eq. 25. Contours are drawn at two—thirds of the maximum.

Despite local differences, integrating the moment density yields

2r pd
u(wave--entlty) _ A /0 /d M(wave-—ennty)(p’ ¢’ Z) pdp d¢ dz = — B i,

with the p contribution vanishing by odd parity in z, and radial integrals

/ T(G) 1(Go) o do = 2 cRY, / Ko(60) K (€9) @ dp = 1 Ky (€R).

2¢ 2

Thus |p(vave-entity) | — ;5 recovering g ~ 2. In the wave—particle framework,

ave--particle 5
plrevepastidle) — _ g3,

(30)

Both approaches thus agree on the total moment in uniform fields, but differ in local vector structure; those differences are exposed

by structured fields (gradients, curvature, or nontrivial vector potentials) and connect naturally to Aharonov—-Bohm-like energy

geios.com doi.org/10.32388/M4X95C.2


https://www.qeios.com/
https://doi.org/10.32388/M4X95C.2

responses developed in our companion work.

V. Conclusions

Within the wave—entity framework, a spin qubit is not an abstract binary label but a tangible, spatially extended circulation of
current density. This enhances the traditional Bloch—sphere representation with a coherent, physically real wave—spin configuration.
The qubit phase ® emerges as a genuine physical parameter: it directly orients this circulation and ties phase control to real-space

current flow.

From these currents we obtain the magnetic-moment density, which in the wave—entity picture assumes a poloidal form with nodal
structure—by contrast with the strictly axial form of the conventional wave—particle model. Both frameworks yield the same total
magnetic moment (one Bohr magneton) and are therefore indistinguishable in uniform external fields. Yet the local topologies differ,
leading to distinct couplings with structured external fields and with spin—spin interactions. This motivates targeted experiments—

closely allied to Aharonov-Bohm-like protocols—to discriminate between the frameworks.

More broadly, the wave—entity framework offers a physically grounded and deterministic ontology that may help clarify the
connections between quantum and classical descriptions of matter, while providing concrete, testable predictions for current—field

interactions in engineered structures.
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