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Abstract

Recent advances in Retrieval-Augmented Generation (RAG) systems have popularized semantic chunking, which

aims to improve retrieval performance by dividing documents into semantically coherent segments. Despite its growing

adoption, the actual benefits over simpler fixed-size chunking, where documents are split into consecutive, fixed-size

segments, remain unclear. This study systematically evaluates the effectiveness of semantic chunking using three

common retrieval-related tasks: document retrieval, evidence retrieval, and retrieval-based answer generation. The

results show that the computational costs associated with semantic chunking are not justified by consistent

performance gains. These findings challenge the previous assumptions about semantic chunking and highlight the

need for more efficient chunking strategies in RAG systems.

Corresponding author: Renyi Qu, renyi@vectara.com

1. Introduction

In Retrieval-Augmented Generation (RAG) systems, cutting documents into smaller units called “chunks” has a crucial

effect on the quality of both retrieval and generation tasks[1][2][3][4]. By retrieving the most relevant chunks for a given

query and feeding them into a generative language model, these systems aim to produce accurate and contextually

appropriate answers. However, the effectiveness of chunking strategies remains a significant challenge in optimizing

retrieval quality and computational efficiency[5][6].

Known as fixed-size chunking, the traditional way to chunk is to cut documents into chunks of a fixed length such as 200

tokens[7]. While computationally simple, this approach can fragment semantically related content across multiple chunks,

leading to suboptimal retrieval performance. Recently, there has been a surge of interest in semantic chunking, where

documents are segmented based on semantic similarity, with some industry applications suggesting promising

improvements in performance[8][9][10]. However, there is no systematic evidence that semantic chunking yields a

performance gain in downstream tasks, and if there is, the gain is significant enough to justify the computational overhead

than fixed-size chunking.
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Such a systematic evaluation is not trivial due to the lack of data that can be directly used to compare chunking strategies.

Therefore, we design an indirect evaluation using three proxy tasks: (1) document retrieval, measuring the ability to

identify relevant documents; (2) evidence retrieval, measuring the ability to locate ground-truth evidence; and (3) answer

generation, testing the quality of answers produced by a generative model using retrieved chunks. Our findings challenge

prevailing assumptions about the benefits of semantic chunking, suggesting that its advantages are highly task-dependent

and often insufficient to justify the added computational costs. This study lays the groundwork for future exploration of

more efficient and adaptive chunking strategies in RAG systems.

Figure 1. Illustration of the three chunkers tested in this study. Colored segments represent different topics within the sample document: Purple for

psychology, Green for programming, and Yellow for food. Red blocks mark chunk breakpoints. (a) Fixed-size Chunker splits the document into

consecutive, uniform chunks without considering semantic content. (b) Breakpoint-based Semantic Chunker segments the text by detecting

semantic distance thresholds between consecutive sentences to maintain coherence. (c) Clustering-based Semantic Chunker groups semantically

similar sentences, potentially combining non-consecutive text to form topic-based chunks.

In general, our contributions are:

We present a novel, large-scale evaluation framework comparing semantic and fixed-size chunking across diverse

tasks.

We demonstrate that while semantic chunking shows some benefits in certain scenarios, these are inconsistent and

often insufficient to justify the computational cost.

2. Chunking Strategies

In this paper, a document is first split into sentences which are then grouped into chunks. We evaluate three chunking
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strategies, hereafter referred to as “chunkers.”

Fixed-size Chunker

This is our baseline chunker that splits a document sequentially into fixed-size chunks, based on a predefined or user-

specified number of sentences per chunk.

Although this approach is simple and computationally efficient, it may separate contextually related sentences, leading to

potential degradation in retrieval quality[5][6][7]. To alleviate this, we use overlapping sentences between consecutive

chunks, a common practice to maintain some degree of contextual continuity.

Breakpoint-based Semantic Chunker

A break- point-based chunker scans over the sequence of sentences and decide where to insert a breakpoint to separate

sentences before and after it into two chunks. A breakpoint is inserted if the semantic distance between two consecutive

sentences exceeds a thredshold, meaning a significant topic change.

We tested four relative thresholds for determining breakpoints, as proposed by[8].Additionally, we tested two absolute

thresholds, which use predetermined values to determine chunk boundaries, reducing computational overhead.

However, the breakpoint-based chunkers make decisions using only two sentences each time. This strategy maybe

locally greedy. To chunk with more information at a bigger scope, we propose a new type of semantic chunkers next.

Clustering-based Semantic Chunker

This type of chunkers leverage clustering algorithms to group sentences together semantically, capturing global

relationships and allowing for non-sequential sentence groupings. However, it risks losing losing contextual information

hidden in the proximity of sentences. To mitigate this, we defined a new distance measure that combines positional and

semantic distances. Specifically, we calculate a weighted sum between the positional distance (i.e., the sentence index

difference) and the cosine distance between two sentence xa and xb:

d(xa, xb) = λdpos(xa, xb) + (1 − λ)dcos(xa, xb)

dpos(xa, xb) =

|a − b |
n

dcos(xa, xb) = 1 − max (cos(emb(xa), emb(xb)), 0)

where n is the total number of sentences in the document, emb( ⋅ ) is the embedding function, and λ is a hyperparameter.

When λ = 0, the chunker operates purely based on semantic similarity; when λ = 1, it mirrors the Fixed-size Chunker. In

Eq. (3), a cosine similarity of 0 indicates orthogonal (unrelated) sentence embeddings, while negative cosine similarity

values are treated as 0, as they do not aid in retrieval or generation.

Without losing generality, we employed single-linkage agglomerative clustering and DBSCAN[11] as representatives of
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clustering algorithms. Further details on these methods an their adjustments during experimentation are provided in

Appendix A.

3. Experiments

In the absence of ground-truth chunk data, we designed three experiments to indirectly assess the quality of each

chunker: document retrieval, evidence retrieval, and answer generation. Different datasets and evaluation metrics were

used for each experiment to align with the specific task requirements. All documents were first split into sentences using

SpaCy’s en_core_web_sm model[12] before being embedded and chunked. We tested three embedding models selected

to represent a range of performances based on their rankings on the MTEB Leaderboard[13]. See Appendix E.2 for details.

3.1. Document Retrieval

This experiment assessed the effectiveness of chunkers in retrieving relevant documents for a given query. We used 10

datasets, shown in Tables 1 and 6. Most documents on the BEIR benchmark[14] are too short for chunking to be effective.

To address this, we synthesized longer documents by stitching short documents from six datasets where documents are

too short (see Appendix C for details). We randomly sampled 100 queries from each dataset and retrieved the top k

 chunks, where k ∈ [1, 3, 5, 10]. Each retrieved chunk was mapped to its source document, and the retrieved documents

were evaluated by comparing them to a set of relevant documents for each query.

3.2. Evidence Retrieval

Here we evaluate chunkers at a finer granularity than the previous experiment by measuring their abilities to locate

evidence sentences. We selected additional datasets from RAGBench[15], shown in Tables 2 and 5, because few datasets

contain long documents with ground-truth evidence sentences. We measured the number of ground-truth evidence

sentences present in the retrieved top-k chunks.

3.3. Answer Generation

This experiment measured how chunkers impacted the quality of LLM-generated answers. We used gpt-4o-mini as the

generative model. The top-5 retrieved chunks were used as input for the LLM, and generated answers were compared to

ground-truth responses using semantic similarity measures. We reused the datasets from Section 3.2, as they included

long documents, evidence, and reference answers.

4. Results

4.1. Measuring and reporting performances
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As mentioned earlier, we used three proxy tasks the study chunking. We cannot directly assess the quality of retrieval at

the chunk level due to the lack of ground-truth at the chunk level. Instead, each retrieved chunk is mapped back to either

the source document or the included evidence sentences.

Since the number of relevant documents or evidence sentences is not fixed (unlike the k value for retrieved chunks),

traditional metrics such as Recall@k and NDCG@k are not suitable. F1 provides a balanced measure that accounts for

both precision and recall under these circumstances. Therefore, we use F1@5 as the metric. For further details, see

Appendix D.

For each dataset, results are reported based on the best hyperparameter configuration for each chunker, determined by

the average F1 score across all k values. All results to be reported below are obtained using

dunzhang/stella_en_1.5B_v5 as the embedder for being the best among those tested.

In the following subsections, Bold values indicate the best performance on the respective dataset. The results for Answer

Generation closely matched those of Evidence Retrieval and are discussed in Appendix E.1. Additional analysis of

hyperparameters is provided in Appendix B. Inspection of the outputs of different chunkers is provided in Appendix E.4.

4.2. Document Retrieval

Table 1 shows varied chunker performance, with Fixed-size Chunker excelling on non-stitched datasets and Semantic

Chunkers performing better on stitched datasets.

Dataset Fixed-size Breakpoint Clustering

Miracl* 69.45 81.89 67.35

NQ* 43.79 63.93 41.01

Scidocs* 16.82 17.60 19.87

Scifact* 35.27 36.27 35.70

BioASQ* 61.86 61.87 62.49

NFCorpus* 21.36 21.07 22.12

HotpotQA 90.59 87.37 84.79

MSMARCO 93.58 92.23 93.18

ConditionalQA 68.11 64.44 65.94

Qasper 90.99 89.27 90.77

Table 1. F1@5 for Document Retrieval (%).

Datasets marked with * are stitched. Rows are

sorted by the average number of sentences per

document (before stitching) in ascending order for

easier comparison.

As described in Appendix C, stitched documents, averaging 100 sentences, were formed by combining short documents
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(fewer than 10 sentences) from datasets like Miracl and NQ, leading to high topic diversity. In such cases, Breakpoint-

based Semantic Chunker outperformed others by better preserving topic integrity, splitting sentences based on semantic

dissimilarity to form chunks similar to the original documents. In contrast, Fixed-size and Clustering-based Chunkers often

mixed sentences from different documents, increasing noise and lowering retrieval quality.

As document length increased, fewer documents were stitched together, reducing topic diversity. This diminished the

advantage of Breakpoint-based Semantic Chunker, while Clustering-based Semantic Chunker improved. The gap

between semantic and fixed-size chunkers narrowed, with Fixed-size Chunker benefiting from higher topic integrity.

These results suggest that in real life, the topics in a document may not be as diverse as in our artificially noisy, stitched

data, and hence semantic chunkers may not have an edge over fixed-size chunker there.

4.3. Evidence Retrieval

As shown in Table 2, Fixed-size Chunker performed best on 3 out of 5 datasets, indicating a slight edge in capturing core

evidence sentences. However, the performance differences between the Fixed-size Chunker and the two semantic

chunkers were minimal, suggesting no clear advantage for any specific chunking strategy. See Appendix B for more

details.

Further inspection revealed that despite variations in chunking methods, the top-k retrieved chunks frequently contained

the same evidence sentences, explaining the minimal performance differences. This suggests that adding semantic

information did not significantly enhance performance, as the benefits of semantic grouping were often redundant when

core evidence was already captured by sentence positions. These findings indicate that the performance of the chunkers

largely depends on how effectively the embedding models capture the semantic richness of individual sentences, rather

than the chunking strategy itself.

Dataset Fixed-size Breakpoint Clustering

ExpertQA 47.11 47.08 46.87

DelucionQA 43.05 43.24 43.36

TechQA 28.98 28.49 27.96

ConditionalQA 18.23 19.83 19.14

Qasper 8.66 8.16 8.50

Table 2. F1@5 for Evidence Retrieval (%). Rows

are sorted by the average number of sentences

per document in ascending order for easier

comparison.

4.4. Results for Answer Generation

As shown in Tables 3, Semantic Chunkers performed slightly better than Fixed-size Chunker based on BERTScore, but
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the differences are minimal, making it difficult to draw any definitive conclusions.

Dataset Fixed-size Breakpoint Clustering

ExpertQA 0.65 0.65 0.65

DelucionQA 0.76 0.76 0.76

TechQA 0.68 0.68 0.68

ConditionalQA 0.42 0.43 0.43

Qasper 0.49 0.49 0.50

Table 3. BERTScore for Answer Generation.

5. Conclusion

In this paper, we evaluated semantic and fixed-size chunking strategies in RAG systems across document retrieval,

evidence retrieval, and answer generation. Semantic chunking occasionally improved performance, particularly on

stitched datasets with high topic diversity. However, these benefits were highly context-dependent and did not consistently

justify the additional computational cost. On non-synthetic datasets that better reflect real-world documents, fixed-size

chunking often performed better. Overall, our results suggest that fixed-size chunking remains a more efficient and reliable

choice for practical RAG applications. The impact of chunking strategy was often overshadowed by other factors, such as

the quality of embeddings, especially when computational resources are limited or when working with standard document

structures.

Limitations

Sentence-level Chunking

Our study focuses on sentence-level chunking, where documents are split into individual sentences, and each sentence is

treated as a segment for grouping. This approach results in sentence embeddings that lack contextual information. While

we attempted to address this by overlapping sentences in Fixed-size Chunker and incorporating positional distance in

Semantic Chunker (global), the embeddings themselves remained context-free. Further exploration of contextual

embeddings is necessary before definitively concluding the limitations of semantic chunking.

Lack of Chunk Quality Measures

As noted in Section 4, while the output chunks differed between methods, retrieval and generation performances were

similar across chunkers. In addition to the influence of embedding models, the absence of direct chunk quality metrics

likely contributed to this issue. Having ground-truth query-chunk relevance scores would provide more accurate

evaluations than relying solely on document or evidence mapping.
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Lack of Suitable Datasets

Despite testing multiple datasets, our selection was constrained by a lack of comprehensive datasets. An ideal dataset

would include long documents representative of real-world use cases, diverse query types, human-generated answers,

query-document relevance scores, and human-labeled evidence sentences. Our synthetic documents had artificially high

topic diversity due to random stitching, potentially leading to unreliable results. Additionally, the answer sets in

RAGBench[15] were generated by LLMs, which may not accurately assess chunk quality. A dataset containing all these

elements is needed for a more thorough evaluation of chunking strategies.

Appendix

A. Clustering methods for Clustering-based Semantic Chunker

We applied single-linkage agglomerative clustering to sentence embeddings in two stages. First, we computed a distance

matrix where each entry represents the distance between pairs of sentences in the document. Second, we iteratively

formed clusters by merging sentence pairs with the smallest distances, ensuring that the resulting cluster does not exceed

a predefined maximum chunk size. This process continued until all distances had been processed, after which we

relabeled the merged clusters.

To address challenges encountered during experimentation, we implemented the following adjustments:

Chunk Size Constraint

Without a size constraint, this chunker tends to form one large chunk while leaving a few isolated sentences as individual

chunks. To avoid this, we imposed a maximum chunk size threshold that directly depends on the number of chunks and

the total number of sentences in the input document.

Distance Threshold for Stopping

To prevent isolated sentences from being grouped arbitrarily, we introduced a distance threshold. Once this threshold is

exceeded, clustering stops, and any remaining sentences are left ungrouped. In this paper, the threshold was set to be

0.5.

A limitation of the single-linkage method is its requirement to specify the number of clusters, which can be difficult without

prior knowledge. To mitigate this, we also experimented with DBSCAN[11], a density-based clustering method that adjusts

the number of clusters dynamically based on the density of sentence embeddings. DBSCAN follows the same initial steps

as single-linkage clustering but replaces the merging process with density-based clustering.
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B. Hyperparameters

Fixed-size Chunker

We tested two hyperparameters: the number of chunks and the number of overlapping sentences between consecutive

chunks. For the number of chunks, we tested integer values between 2 and 10 to observe performance changes with

different chunk sizes. For the overlapping sentences, we tested two settings: 0 or 1. If set to 1, one sentence overlaps

between consecutive chunks; if set to 0, there is no overlap.

Breakpoint-based Semantic Chunker

We tested two hyperparameters: the type of breakpoint threshold and the threshold amount. Sentences were split into

chunks when the distance between consecutive sentences exceeded a predefined threshold. We evaluated four relative

threshold types from[16]:

Percentile: The nth percentile of the linear interpolation of the distance array. We tested [10, 30, 50, 70, 90].

Standard deviation: The mean of the linear interpolation plus a fraction of the standard deviation. We tested [1, 1.5, 2,

2.5, 3].

Interquartile: The mean of the linear interpolation plus a fraction of the interquartile range. We tested [0.5, 0.75, 1,

1.25, 1.5].

Gradient: The nth percentile of the second-order accurate difference in the distance array. We tested [10, 30, 50, 70,

90].

Additionally, we tested two absolute versions of "Percentile" and "Gradient":

Distance: A cosine distance threshold value. We tested [0.1, 0.2, 0.3, 0.4, 0.5] based on empirical distance values.

Gradient: A threshold value based on the second-order accurate difference. We tested [0.01, 0.05, 0.1, 0.15, 0.2]

based on empirical gradient values.

Note that the number of chunks or chunk size is not tunable in the Breakpoint-based Semantic Chunker.

Clustering-based Semantic Chunker

For the single-linkage chunker, we tested two hyperparameters: λ, which controls the weight of the positional distance in

the overall distance calculation, and the number of chunks, as in the Fixed-size Chunker. We tested [0, 0.25, 0.5, 0.75, 1]

for λ.

For the DBSCAN chunker, we evaluated three hyperparameters: λ, similar to single-linkage; EPS, the maximum distance

between two samples for them to be considered part of the same neighborhood; and "min_samples", the minimum

number of samples required in a neighborhood for a point to be classified as a core point. For EPS, we tested [0.1, 0.2,

0.3, 0.4, 0.5]. For "min_samples", we tested [1, 2, 3, 4, 5].
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C. Document Stitching and Dataset Choices

Most document retrieval datasets consist of short documents (fewer than 20 sentences), which are inadequate for

effectively evaluating chunkers. Initially, we experimented with datasets from BEIR[14], but the short length of these

documents showed no performance improvement with chunking. Short documents lack the complexity required to assess

how chunkers manage context and semantic coherence across longer spans of text.

To overcome this limitation, we created long documents by stitching shorter documents from existing datasets. Each

stitched document contains approximately 100 sentences, better reflecting real-world long-document retrieval scenarios.

In this setup, if a short document is relevant to a query, the corresponding stitched long document is considered relevant.

This creates a coarser granularity for document retrieval and motivated the need for the evidence retrieval experiment,

which offers a finer level of evaluation.

We selected datasets based on diversity in document topics and query types. Keyword-specific queries tend to favor

lexical search, which can degrade the performance of semantic search methods. For the document retrieval task, we used

the datasets listed in Table 4, including NFCorpus, NQ, HotpotQA, Scidocs, and Scifacts from BEIR[14].

Dataset Type Split #D S/D(*) S/D D/Q

Miracl[17] Stitched train 1184 102 4 3

NQ[18] Stitched test 488 88 5 1

Scidocs[19] Stitched test 1692 88 8 5

Scifact[20] Stitched test 420 99 8 1

BioASQ[21] Stitched train 2368 93 9 6

NFCorpus[22] Stitched test 364 118 12 37

HotpotQA[23] Original test 800 20 20 2

MSMARCO[24] Original dev 398 64 64 1

ConditionalQA[25] Original dev 652 120 120 1

Qasper[26] Original test 416 130 130 1

Table 4. Datasets for Document Retrieval. "#D" means

the number of selected long documents. "S/D" means

the average number of sentences per long document.

"S/D(*)" means the average number of sentences per

long document (after stitching). "D/Q" means the

average number of relevant long documents per query.

The synthesized datasets are labeled as "Synthetic".

For evidence retrieval and answer generation, we used the datasets listed in Table 5. No stitched document was used.

Qeios, CC-BY 4.0   ·   Article, November 26, 2024

Qeios ID: M7YKDZ   ·   https://doi.org/10.32388/M7YKDZ 10/29



Dataset Split #D S/D E/Q

ExpertQA[27] test 777 20 12

DelucionQA[28] test 235 23 9

TechQA[29] test 648 49 15

ConditionalQA[25] dev 652 120 5

Qasper[26] test 416 130 4

Table 5. Datasets for Evidence

Retrieval and Answer Generation. "#D"

means the number of selected long

documents. "S/D" means the average

number of sentences per long

document. "E/Q" means the average

number of evidence sentences per

query.

D. Choice of Evaluation Metrics

Document Retrieval

Retrieval can be viewed as two tasks: classification and ranking. In this paper, a document is considered retrieved if any

chunk from it is retrieved, irrespective of the query-chunk relevance score. This approach shifts the focus from query-

chunk relevance to query-document evaluation, reducing the influence of ranking metrics such as NDCG, MAP, or MRR.

Recall@k: Fraction of relevant documents retrieved within the top-k chunks, over all relevant documents.

Precision@k: Fraction of relevant documents retrieved within the top-k chunks, over all retrieved documents.

F1@k: The harmonic mean of precision and recall.

In typical retrieval experiments, recall is often the primary metric. However, our setup requires balancing recall with

precision and F1 score. Since the number of retrieved chunks is fixed but the number of retrieved documents varies,

precision and F1 are crucial. For instance, if five chunks are retrieved for a query with only one relevant document,

retrieving all five chunks from this document would result in 100% recall and precision. However, if only one chunk is

relevant and the rest are from irrelevant documents, the recall remains 100%, but precision drops, leading to a different

quality of retrieval. In such cases, the F1 score better captures this trade-off by balancing recall and precision.

Evidence Retrieval

In evidence retrieval, recall and precision are sensitive to chunk size when considered separately. Larger chunks tend to

have higher recall, as they are more likely to contain evidence sentences, but also lower precision, as they may include

more irrelevant sentences. Larger chunks are often less desirable as they introduce more noise. For example, "No

Chunker" will consistently have the highest recall and lowest precision, as it treats entire documents as single chunks. The
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F1 score helps balance these biases, providing a better indicator of whether the chunker produces appropriately sized

chunks that capture relevant evidence. Therefore, we focus on F1 scores in our analysis.

Recall@k: Fraction of retrieved evidence sentences over all evidence sentences.

Precision@k: Fraction of retrieved evidence sentences over all retrieved sentences.

F1@k: The harmonic mean of precision and recall.

Answer Generation

Generated answers were assessed using BERTScore for semantic similarity between generated and actual answers, and

cosine similarity between the queries and generated answers.

BERTScore[30]: A measure of the semantic similarity between generated answers and reference answers using

contextual embeddings. We used the best model microsoft/deberta-xlarge-mnli for calculating this score.

QA Similarity: The cosine similarity between the query and generated answer, providing a measure of consistency

and correctness in relation to the original query.

E. Additional Results and Analyses

We present full results and analyses that are not reported in Section 4 in this section. See Table 8 for F1 scores at all k

 values for document retrieval. See Table 9 for F1 scores at all k values for evidence retrieval.

E.1. Results for Answer Generation

As shown in Table 7, semantic chunkers performed slightly better than Fixed-size Chunker in terms of QA cosine

similarity. However, the differences are minimal, making it difficult to draw any definitive conclusions from the results.

Dataset Fixed-size Breakpoint Clustering

ExpertQA 0.81 0.82 0.81

DelucionQA 0.82 0.82 0.82

TechQA 0.89 0.88 0.89

ConditionalQA 0.36 0.36 0.36

Qasper 0.44 0.44 0.44

Table 7. QA Cosine Similarity for Answer

Generation.

E.2. Impact of Embedding Models

The choice of embedding model significantly affected retrieval performance (See Table 6 for tested models). In the
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Evidence Retrieval experiment, BAAI/bge-large-en-v1.5  outperformed all-mpnet-base-v2  by 1.06% on F1@1 and 1.32%

 on F1@10, both statistically significant at the 5% level. dunzhang/stella_en_1.5B_v5 showed an average improvement

of 7.44% over BAAI/bge-large-en-v1.5  across all F1 values. This result was statistically significant with p = 1.59 × 10−5,

highlighting the critical role of embedding models in retrieval tasks. See Tables 9-11 for full F1 scores from the three

embedding models on evidence retrieval.

Name Rank
Model Size
(millions)

dunzhang/stella_en_1.5B_v5[31] 3 1543

BAAI/bge-large-en-v1.5[32] 36 335

all-mpnet-base-v2[33] 105 110

Table 6. Embedding models used in the experiments.

"Rank" represents the rank of the model on the MTEB

Leaderboard[13]. "Model Size" represents the number of

parameters in the embedding model.

E.3. Hyperparameter Analysis

For Figures 2-5, all scores are normalized and averaged across datasets and k values. We aimed to identify chunker

configurations that perform well across various datasets and k values, making it logical to average the results. The title of

each plot row indicates the chunker and experiment being analyzed, while each subplot title specifies the fixed

hyperparameter. The y-axis shows the metric score, and the x-axis represents the hyperparameter being analyzed. Blue

lines denote recall, orange lines represent precision, and green lines indicate the F1 score.

Clustering-based Semantic Chunker (Single-linkage)

As n_clusters  increases, the average chunk size decreases. This has little effect on document retrieval since chunks are

mapped to their source documents regardless of size. However, Figure 2 shows that while recall remains steady,

precision rises significantly as chunk size decreases, even when λ = 1 (the Fixed-size Chunker case). This occurs due to

a drop in the number of retrieved documents as smaller chunks from the same document are retrieved.

No clear trend for λ was observed, indicating that shifting the weight between semantic and positional information does

not significantly affect document retrieval. This suggests two possibilities: (1) Sentences close in position are often

semantically similar; (2) Chunks with non-contiguous, yet semantically similar sentences do not enhance document

retrieval.

In Figure 2, evidence retrieval shows an inverse trend. As chunk size decreases, fewer sentences are retrieved, lowering

the chance of retrieving evidence sentences and causing a sharp decline in recall. Thus, the F1 score remains relatively

unchanged.
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In addition, Figure 2 shows that as λ approaches 1 (representing the Fixed-size Chunker), the F1 score (green line)

gradually increases, indicating that positional information contributed more to retrieval performance than semantic

similarity, likely because core evidence sentences were often located close together.

Clustering-based Semantic Chunker (DBSCAN)

As EPS increases, the threshold for grouping samples into the same cluster loosens, increasing average chunk size. As

seen in Figure 3, this leads to a decrease in precision and an increase in recall for document and evidence retrieval,

respectively, similar to the single-linkage case.

Breakpoint-based Semantic Chunker

As the distance threshold between consecutive sentences increases, fewer breakpoints appear, resulting in larger

chunks. Regardless of the threshold type, it ultimately determines chunk size. In Figure 4, we observe similar trends to

Figure 2 and 3: as chunk size increases, precision decreases in both retrieval tasks, while recall increases sharply for

evidence retrieval. The rise in standard deviation is expected, as values from standard deviation-based thresholds are

generally higher than those from percentiles or interquartile ranges.

Fixed-size Chunker

Figure 5 shows results for the Fixed-size Chunker. The trends mirror those seen in other chunkers. Adding one

overlapping sentence between chunks does not notably improve performance, indicating that a single overlapping

sentence is insufficient to significantly boost contextual coherence.

E.4. Chunk Inspection

We examined the output chunks to (1) confirm that different chunkers were functioning as intended, and (2) investigate

the reasons behind performance differences. BEIR’s HotpotQA dataset[14][23] was selected for its reasonably sized

documents. We randomly sampled five documents, stitching the first four together to form a stitched document (Figure 6),

and keeping the fifth as a normal document (Figure 7. The document IDs are:

Stitched: 44547136, 14115210, 5580754, 54045118.

Normal: 30214079.

Inspection on Stitched Documents

In Figure 6, Documents 1 and 3 have four sentences each, while Documents 2 and 4 contain three and five sentences,

respectively. The Fixed-size Chunker, which ignores semantic relationships and document structure, frequently

misassigned sentences, leading to errors that propagated through subsequent chunks. For instance, a sentence from

Document 3 was appended to Document 2, illustrating the limitations of Fixed-size Chunking with stitched documents

containing numerous short segments. This explains its poor performance under such conditions. However, simply splitting
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the document into structured sections before applying fixed-size chunking will solve this issue.

In contrast, both semantic chunkers performed better on stitched documents, but still had issues. The Clustering-based

Chunker made one error by grouping Sentence 16 (the last sentence of Document 4) into Chunk 2. This happened

because, despite the large positional distance, the semantic similarity was high, causing the sentence to be incorrectly

included. Without considering positional structure like the Fixed-size and Breakpoint-based Chunkers, the Clustering-

based Chunker often mixed sentences from different documents. While this might be useful for multi-document

tasks[34][35], it was problematic here, leading to worse performance when many short documents were stitched together.

The Breakpoint-based Chunker also made errors. It could, like the Fixed-size Chunker, group a sentence with a different

chunk due to low semantic similarity with neighboring sentences, as seen with Sentence 4 being moved to Chunk 2. This

shows the advantage of the joint distance measure in Equation 1, which prevented this error for the Clustering-based

Chunker. Moreover, controlling chunk size was challenging; higher thresholds led to overly large chunks, while lower

thresholds resulted in single-sentence chunks lacking contextual information, such as Chunk 4’s meaningless "Name

binding" phrase.

Inspection on Normal Documents

In Figure 7, the document about "Interact Home Computer" was naturally divided into four sections, though this structure

was not provided to the chunkers. The Fixed-size Chunker repeated its issue from stitched documents, occasionally

grouping sentences from adjacent sections into the same chunk, and this error could be easily fixed by splitting the

document by sections beforehand.

Although this example did not fully highlight the Clustering-based Chunker’s limitations, it still demonstrated the

downsides of relying solely on semantic similarity. Sentences 8-9, though belonging to Chunk 3, were grouped into Chunk

2 due to high semantic similarity. This showed that even with added positional information, semantic-based chunking

could misgroup content that shared context, as these sentences were clearly about the sales of Interact Home Computer.

For the Breakpoint-based Chunker, errors seen in stitched documents were even more pronounced. Despite using the

optimal configuration for each chunker (minimizing errors), Breakpoint-based Chunker still produced chunks containing

only a single sentence, such as Chunk 3 and 5. Additionally, separating Sentences 5 and 6, which both discussed

"Interact Electronics Inc," was an especially poor decision. These examples underscore that semantic similarity alone is

not a reliable measure for effective chunking, and it may be less useful than straightforward positional information.

Table 8. F1 scores for all k values for Document Retrieval (%). Datasets marked with * are stitched. Rows are sorted by the average number of

sentences per document (before stitching) in ascending order for easier comparison.
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Metric F1@1 F1@3 F1@5 F1@10

Chunker
Fixed-
size

Breakpoint Clustering
Fixed-
size

Breakpoint Clustering
Fixed-
size

Breakpoint Clustering
Fixed-
size

Breakpoint Clustering

Miracl* 67.55 69.73 68.61 76.03 83.55 75.24 69.45 81.89 67.35 49.89 67.83 46.59

NQ* 92.92 92.36 88.63 62.29 83.37 60.29 43.79 63.93 41.01 24.02 36.18 22.56

Scidocs* 7.60 7.73 10.40 15.16 14.92 18.93 16.82 16.60 19.87 16.96 16.88 19.94

Scifact* 55.07 53.38 55.09 43.97 52.91 46.60 35.27 36.27 35.70 22.33 27.59 22.32

BioASQ* 53.09 55.95 53.14 61.92 70.74 61.84 61.86 61.87 62.49 54.37 56.82 55.44

NFCorpus* 11.41 12.49 11.42 19.00 19.10 20.24 21.36 21.07 22.12 22.95 23.48 24.09

HotpotQA 66.00 66.00 66.67 92.06 91.83 92.33 90.59 87.37 84.79 61.34 52.22 51.30

MSMARCO 99.00 97.00 98.00 95.35 94.92 94.73 93.58 92.23 93.18 85.75 84.34 77.57

ConditionalQA 83.03 79.70 79.34 78.67 74.63 76.09 68.11 64.44 65.94 44.66 40.37 39.35

Qasper 96.50 93.53 95.96 95.21 92.20 95.14 90.99 89.27 90.77 68.86 69.59 62.41

Metric F1@1 F1@3 F1@5 F1@10

Chunker
Fixed-
size

Breakpoint Clustering
Fixed-
size

Breakpoint Clustering
Fixed-
size

Breakpoint Clustering
Fixed-
size

Breakpoint Clustering

ExpertQA 42.43 35.25 40.83 48.67 48.49 48.73 47.11 47.08 46.87 33.18 36.53 33.92

DelucionQA 39.40 28.12 34.60 44.18 45.43 44.05 43.05 43.24 43.36 37.29 36.16 36.32

TechQA 39.38 29.27 31.68 28.98 28.49 27.96 28.98 28.49 27.96 16.92 16.76 14.51

ConditionalQA 23.14 23.61 22.15 19.81 22.01 17.32 18.23 19.83 19.14 14.56 15.41 15.25

Qasper 8.22 8.58 8.36 9.67 8.83 8.75 8.66 8.16 8.50 6.99 6.78 6.52

Table 9. F1 scores for all k values for Evidence Retrieval (%).

Metric F1@1 F1@3 F1@5 F1@10

Chunker
Fixed-
size

Breakpoint Clustering
Fixed-
size

Breakpoint Clustering
Fixed-
size

Breakpoint Clustering
Fixed-
size

Breakpoint Clustering

ExpertQA 40.34 33.39 38.31 44.60 43.71 44.36 42.25 41.46 43.03 29.54 31.89 29.28

DelucionQA 33.88 27.02 32.73 42.10 43.58 40.79 40.85 40.89 41.22 37.29 36.16 35.99

TechQA 34.90 28.25 29.57 23.09 23.92 22.24 19.82 20.90 19.27 13.00 13.25 12.92

ConditionalQA 20.09 20.09 19.40 18.24 16.93 14.27 14.83 13.89 10.73 10.72 9.24 6.39

Qasper 7.80 6.20 5.34 6.88 6.83 6.76 6.59 6.43 5.70 4.99 4.71 4.34

Table 10. F1 scores for all k values for Evidence Retrieval (%), from BAAI/bge-large-en-v1.5.

Table 9. F1 scores for all k values for Evidence Retrieval (%), from dunzhang/stella_en_1.5B_v5. Table 10. F1 scores for all k values for Evidence

Retrieval (%), from BAAI/bge-large-en-v1.5. Table 11. F1 scores for all k values for Evidence Retrieval (%), from all-mpnet-base-v2.
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Metric F1@1 F1@3 F1@5 F1@10

Chunker
Fixed-
size

Breakpoint Clustering
Fixed-
size

Breakpoint Clustering
Fixed-
size

Breakpoint Clustering
Fixed-
size

Breakpoint Clustering

ExpertQA 40.96 32.75 38.83 42.76 43.39 43.38 41.78 41.56 42.07 31.82 29.64 31.37

DelucionQA 38.02 32.22 31.67 39.78 42.22 39.68 41.31 35.34 41.04 35.94 27.77 36.11

TechQA 31.04 23.30 27.24 24.62 23.41 24.60 19.42 21.24 19.56 16.56 14.07 12.21

ConditionalQA 18.01 20.87 17.73 14.73 18.65 14.24 11.67 16.09 11.05 7.25 12.95 7.11

Qasper 8.09 6.92 6.98 6.97 6.23 6.67 6.56 5.98 6.24 4.23 4.12 3.62
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Figure 2. Performance vs. hyperparameter values for Clustering-based Semantic Chunker (Single-

linkage). Left: Document Retrieval; Right: Evidence Retrieval. The x-axis shows nn_clusters, and the y-
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axis shows the metric value. Each subplot’s y-label indicates the fixed hyperparameter value, with λ

 increasing from top to bottom.
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Figure 3. Performance vs. hyperparameter values for Clustering-based Semantic Chunker (DBSCAN).
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Left: Document Retrieval; Right: Evidence Retrieval. The x-axis shows eps, and the y-axis shows the

metric value. Each subplot’s y-label indicates the fixed hyperparameter value, with λ increasing from top

to bottom.
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Figure 4. Performance vs. hyperparameter values for Breakpoint-based Semantic Chunker. Left:

Document Retrieval; Right: Evidence Retrieval. The x-axis shows nn_clusters, and the y-axis shows the

metric value. Each subplot’s y-label indicates the breakpoint threshold type.

Figure 5. Performance vs. hyperparameter values for Fixed-size Chunker. Left: Document Retrieval;

Right: Evidence Retrieval. The x-axis shows nn_chunks, and the y-axis shows the metric value. Each

subplot’s y-label indicates the fixed hyperparameter value, with n_sents_overlap increasing from top to

bottom.
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Figure 6. Example of chunking a stitched document using different chunkers. Each line shows a sentence and its original index in the

document. Bold red lines indicate errors where a sentence is incorrectly assigned to a chunk. The configuration listed next to each

chunker name represents the optimal setup for minimizing errors.
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Figure 7. Example of chunking a normal document using different chunkers. Each line shows a sentence and its original index in the

document. Bold red lines indicate errors where a sentence is incorrectly assigned to a chunk. The configuration listed next to each

chunker name represents the optimal setup for minimizing errors.
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