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ABSTRACT. In this paper, we introduce the concept of vertex-edge lo-
cating Roman dominating functions in graphs. A vertex-edge locating
Roman dominating (ve— LRD) function of a graph G = (V, E) is a func-
tion f : V(G) — {0, 1, 2} such that the following conditions are satisfied:
(i) for every adjacent vertices u, v with f(u) = 0 or f(v) = 0, there exists
a vertex w at distance 1 or 2 from u or v with f(w) = 2, (ii) for every
edge uwv € E, maz|[f(u), f(v)] # 0 and (iii) any pair of distinct vertices
u,v with f(u) = f(v) = 0 does not have a common neighbour w with
f(w) = 2 . The weight of ve-LRD function is the sum of its function
values over all the vertices. The vertex-edge locating Roman domination
number of G denoted by 'yfe,LR(G) is the minimum weight of a ve-LRD
function in G. We proved that the vertex-edge locating Roman domi-
nation problem is NP complete for bipartite graphs. Also, we present
the upper and lower bonds of ve-LRD function for trees. Lastly, we give
the upper bounds of ve-LRD function for some connected graphs.
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1. INTRODUCTION AND PRELIMINARIES

In this paper, we introduce the concept of vertex-edge Locating Roman
dominating function. Let G = (V, E) be an undirected graph with vertex set
V' and edge set E. The number of vertices in G is the order of G and the
number of the edges in G is the size of the graph G. The set of all neighbors
of vertex u in G is the open neighborhood of u; that is Ng(u) = {v € V]uv €
E(G)}. The closed neighborhood of uw in G is G[u] = {u} U Ng(u). The
number of vertices at distance 2 from vertex v in G is denoted as Na(v).
The degree of vertex w in G is d(u) = |Ng(u)|. The path of order n is
written as Py, the size of P, is n — 1. The graphs Cy, K,, denote the cycle
and complete graphs of order n respecticely. The diameter of G, denoted by
diam(G) is define as the shortest mazimum distance between two vertices in
G, that is diam(G) = max{dist(z,y) : x,y € V(G)}.

A rooted tree is a tree whereby the vertex called the root is distinguished
from the other vertices of the tree. Let T denotes the rooted tree. Vertex of
degree one is the leaf of a tree and the support vertex is a vertex adjacent
to a leaf. A star and Bistar are trees with one and two non-leaf vertices
respectively. Let S(T) and L(T') denotes the set of all support vertices and
the set of leaves in T respectively. Let |L(T)| = I(T) and s(T) = |S(T)|,
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we denote L(u) as the set of all leaves adjacent to a support vertex u and
l(u) = |L(u)|. Let the core internal vertices I(T) denotes the set of vertices
in T that are not root, support and leaf vertices. Also, let i(T) = |I(T')| and
note that i(T) =n — U(T) — s(T).

A subset D C V' is known as a dominating set of G if every vertex u in
V' \ D has a neighbor in D. The dominating set with minimum cardinality
is known as the domination number ~(G) of G. Let 5 € {0,1,2} and for
any vertex u € G, we denote the set of vertices with f(u) = by V3.

Slater [15], [16] introduced the study of locating dominating sets in graphs
whereby he studied many graph related problems with various types of pro-
tection. His objective in the work is to locate the intruder. A locating dom-
inating set D C V(Q) is a dominating set with the property that the set
N(u) N D is unique for each vertex w € V(G) \ D. The locating dominating
set of G- with minimum cardinality is known as locating domination number
of G. Several domination parameters in the concept of locating domination
has been considered, for more result, see [2), 4, [5l 16].

A Roman dominating function (RDF) on G is a function f : V(G) —
{0,1,2} such that every verter v € V(G) with f(v) = 0 is adjacent to
at least one vertex u with f(u) = 2. The weight of RDF is the value
fV(G)) = Xpev(q) f(v), denoted by w(f). Roman domination number
denoted by Yr(G) is the RDF on G with minimum weight. Cockayne et
al. 9] introduced Roman domination which was motivated by the work of
Re Velle and Rosing [14] and Stewart [17]. See [7, 8] for more results on
Roman domination.

A RD-function is called a locating Roman dominating function (LRD-
function) if for any pair of vertices u,v with f(u) = f(v) =0, N(u) N Vs #
N(v) N Va. The minimum weight of LRD-function is known as the locating
Roman domination number denoted as v5(G). See [10, B] for more result
on LRD-function.

In this paper, we consider the case whereby there will be optimal location
of intruder, this lead to the study of vertex-edge locating Roman dominating
function. Nares Kumar and Venkatakrishnan [12,[13] studied the vertez-edge
Roman domination. A vertez-edge Roman dominating (ve-LRD) function
on a graph G is a function f : V(G) — {0,1,2} with the property that for
every edge uwv € E, either max{f(u), f(v)} # 0, or there exists w € N(u)
or N(v) such that f(w) = 2. The vertez-edge Roman domination number
of a graph G denoted by Yyer(G) is the minimum weight of a ve-RDF, i.e.,
Ywer(G) = min{w(f) : f is a ve— RDF on G}. More result on vertex-edge
domination number can be found in [1I, 1], [1§]

Our aim in this work, is to apply the analogue of vertex-edge on locating
Roman domination and establish the variation vertex-edge locating Roman
domination as follows.

A vertex-edge locating Roman dominating function of a graph G, abbrevated
ve-LRD function is a function f : V(G) — {0,1,2} satisfying the conditions
that (i) every adjacent vertices u,v with uw € Vo or v € Vy, there exists a
vertez w € Vo such that w € N(u) U N(v); (i) maz{f(u), f(v)} # 0 for
every edge wv € E and (i) for any pair of distinct vertices u,v of Vj,
N(u)NVa # N(v) N Va.
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In Section 2, we show that the vertex-edge locating Roman domination is
NP complete for bipartite graphs and in Section 3, we present the upper and
lower bonds of ve-LRD function for trees. In section 4, we presented the
ve-LRD function of complete graphs and upper bounds of ve-LRD function
for some connected graphs.

2. COMPLEXITY

In this section, we presents the complexity result for the vertex-edge lo-
cating Roman domination problem in bipartite graphs.
VERTEX-EDGE LOCATING ROMAN DOMINATION (ve-LRD)
Instance: Graph G = (V, E), positive integer k < |V|.
Question: Does G have a vertez-edge Locating Roman dominating function
of weight at most k?
Ezxact 3-cover (X3C)
Instance: A set X with | X| = 3q, a family C of 3-element subsets of X.
Question: Does G have a subcollection C' C C' such that any member of
X appears in only one element of C'?
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FIGURE 1. NP-completeness of vertex-edge locating Roman
domination for bipartite graphs

Theorem 2.1. ve — LRD is N P-complete for bipartite graphs.

Proof. ve-LRD is NP since it can be check in polynomial time that the
function f: V' — {0, 1,2} is an ve-LRD and has weight at most k. Given an
instance (X, C) of X3C with X = {z1,z2,...,23,} and C = {C4, Cy, ..., Ci}.
Bipartite graph G can be constructed as follows: for any x; € X, create a
single vertex x;. A tree T can be built for any C; € C' which comprises of
paths Ps = {u;,v;,w;,y;, 25, ¢;} and Q = {r1,...r¢} such that edges r;z; are
added to Pjs. To achieve the construction of G, we add edges cjx; when
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x; € C;j (see Figure 1). Set k = 5t +¢. Observe that for every ve-LRD, each
Ps has weight at least 5. The leaf neighbor r; of z;, w; and ¢; has weight 0,
while vertices u;,v; and z; are assign 1 and y; must be assigned 2.
Suppose C’ is a solution of the instance (X,C) of X3C. Then ve-LRD
function f on G of weight k can be constructed as follows: Assign value 0
to x; for each 4, then for each j, if C; € €, assign value 2 to vertex z;, value
0 to vertex w; and 1 to the remaining vertices of Pjs. Also, assign 0 to the
vertices of ;.

If Cj ¢ C’, assign 2 to vertex y; in each Pjg, assign 0 to vertices wj, ¢; and
the set (). Assign 1 to the remaining vertices of Pj.

Note that since C” exists, the order of C’ is ¢ and so the number of ¢; with
value 1 is ¢ and every vertex in X is at distance two to vertex z; with value
2. Therefore, f is ve-LRD with weight f(V) =5t + q = k.

Conversely, suppose that G has ve-LRD function with weight at most k.
Let a = (Vb, V1, Va), observe from above, each Pjs has weight at least 5.
We may assume that a(z;) =2 if C; € C" and o(y;) =2if C; ¢ C'. Tt
is clear that vertices of Pjs with value 0 is at distance two or one from the
vertex assign 2 such that any pair of vertices with value 0 does not have a
common neighbor assign 2 under a. Now since w(a) < 5t + ¢, we can see
that X N Vy # ¢. If a(x;) > 0 for some i, then this provides an ve-LRD
function of weight at most k& with weight greater than «. Therefore X C V}.
Now, since each vertex of X is at distance two from a vertex in V5 and the
sum of end points of each edge must be greater than 0, each a has exactly
three neighbors in {z1, 22, ..., 23,}. This will be possible only if there are ¢
vertices z; of T; that are assign 2 and q vertices ¢; of T that are assign 1.
We conclude that C" = {C}; : a(cj) = 1} is an exact cover for C. O

3. VERTEX-EDGE LOCATING ROMAN DOMINATION OF TREES

In this section, we gave the lower and upper bounds of ve-LRD function
of tree T in terms of s support vertices. Note that the core internal vertices
i=n—1—s. We begin with the following result.

4In+k . _
. = ifn=%k modb and k # 4
Proposition 3.1. Forn > 3, P, = 5 7
positi orn > 3, YveLr(Pn) {ém;rk_l, ifn=%k modb5 and k =4

Proof. Let P, = uy,us, ..., u, be a path of order n > 2. Let f be a function
defined on the V(P,) as f : V(P,) — {0,1,2}. The problem can be split
into the following two cases.

Case 1: If n =k mod 4,0 < k < 3. The function f is define as

0, ifj=1lord modband j<n-—k
fluj) =<1, ifj=00r2 modb,j<n—kandn—(k+1)<j<n.
2, ifj=3 modbandj<n-—k
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Case 2: If n=%k mod 5 and k = 4.
Define f on V(P,) as follows:

0, ifj=n-3,n
1, ifj=n—2
S =9, ifj=n—1

f(uj) in case 1 above, otherwise.
Clearly, f is a ve-LRD of P, and thus

dntk ifn=k mod5andk # 4
ve Pn < 5 ’
YoeLR( )—{4”;’“1, ifn=k modb5and k=14

To proof the inverse inequality, we establish it by induction on n. Let P’
be the a path obtained from path P, by removing one vertex (say u,) from
the path P,. Then P’ is a path of order n’ =n — 1. If f(u,) > 1, then the
retriction of f on P’ will give ve-LRD on P’ , that is w(f) > Yyerr(P’) + 1.
Thus, if k # 4,

w(f) > YeLr(P') + 1
_4n’+k’+1
5

4(n — _

_ (n—1)+k 1+1
5

4dn + k

.

If £k = 4, we have

w(f) > Ywerr(P') + 1
4/ /
_ n+k‘71+1
5

4(n -1 —
_ (n—1)+k 1_1_’_1
5
_4n—|—k:

5

1.

Thus,

y (P)>{4"5+k, ifn=%k mod5 and k #4
veLR\{'n) Z

%—1, ifn=%k modband k=4

Using the induction hypothesis, we get the desired lower bound. Hence, the
equality holds. O

Observation: For any star graph Sy, Yverr(Sn) = 3.

Theorem 3.2. IfT is a tree of order n > 6 with [ leaves, s support vertices,
i core internal vertices with i < 2s and T is not a path, then yyerr(T) < 3s.

Proof. We establish the proof by induction on n. Assume that diam(7T) >
4, let wug,...,u; be a diametral path . Then ug and wu; are the root and
leaf respectively and wu;—1 is a support vertex. We split the proof into the
following cases:

Case 1: d(u¢—1) > 3. Then u;—; is adjacent to atleast two leaves. Let T be
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the tree obtained from T' by deleting u;. Then T” has order n’ = n — 1 with
I!'=1-1, s = s and i/ = i. By induction hypothesis, T’ admits ve-LRD
function f’ such that w(f’) < 3s' =n' —1'+2s' — i/, since’ =n -1 — .
Define a function f: V(T') — {0, 1,2} as follows:
If f'(up—2) = 2 or f'(ug—1) > 1, set f(uy) = 0 and f(z) = f/'(z) for all
x €T —uy, if f/(up—2) <2 and f'(ug—1) < 1, then w1 is adjacent to a leaf
y in 7" with f'(y) > 1, set f(ur—2) = 2, f(u—1) = 1 and f(y) = f(u) = 0.
Also, f(v) = f'(v) for all v € T — {us—2,us—1,us,y}. Then f is a ve-LRD
function on T' of weight
w(f) < w(f)

<n —U+2¢5 -7

=n—1—-0l+14+2s5—1
n—1+2s—1
=n—I1+2s—(n—1—s)=3s.

Thus the statement is true.

Case 2: If d(us—1) = 2.

Subcase I: If d(u;—2) = 2. Let T” be the tree obtained from 7" by deleting
us—1 and uz. Thenn’ =n —2,I' =1,5 < s and 7/ <i. T' admits ve-LRD
function f’ by induction hypothesis such that w(f’) < 3s' =n'—1'+2s' —7'.
Define f: V(T) — {0,1,2} by f(ui—1) = f(ut) =1 and f(z) = f'(z) for all
x €T —{u—1,u}. The assignment gives a ve-LRD function f on T with
weight

w(f) =w(f")+2
<n —=U+2d—i+2
<n—-2-14+2s—i+2

=n—1+25s—1
n—1+2s—(n—1—s)=3s.

Therefore, the statement holds.

Subcase II: d(t;—2) > 3

Let T be the tree obtained from T by deleting u;_1 and u;. Then n/ =
n—2,0"=1-1,8 < s and i =i By induction hypothesis, 77 admits a
ve-LRD function f’ with w(f’) < 3s’ =n’ —1I' +2¢' — /. Define function
f in T as follows: If f'(u—2) = 1 and f'(us—3) = 2, set f(u—1) = 0 and
f(ug) = 1. Also, if f'(u—3) = 2 and f'(ur—2) = 0, set f(u—1) = 1 and
fug) = 0. If f'(ug—3) =1 and f'(t —2) =2, set f(uz—1) =1 and f(uz) = 0.
Therefore, the labeling gives a ve-LRD function f on T with weight

w(f) =w(f)+1
<n —-U+25—i+1
<n—2—-1l+1+2s—i+1
=n—[04+2s—1
=n—10+2s—(n—1—s)=3s.
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Theorem 3.3. If T is a treee with diam(T) > 4, | leaves, s support vertices
and i core internal vertices, then Vyerr(T) > s.

Proof. We use induction on n to establish the proof. Assume that || > 5
and i =n —1— s, let T be an arbitrary tree of order n’ such that |T"| < |T|
with diam(T") > 3. Assume that the statement is true for any tree T".
Also, let I',s’,i’ be the order of leaves, support vertices and core internal
vertices in T respectively. Assume that diam(T) > 4. Let ug,...,u; be a
diametral path and f a ve-LRD function on 7" with minimum weight, that
is w(f) = Yoernl(T)

Claim 1: If d(u1) > 2, then the statement is true.

Proof: The vertex u; is adjacent to atleast two vertices ug and say leaf y.
Let T' be the tree obtained from T by deleting y. Then n’ =n — 1,1’ =
l—1,8 = s and ¢ > 4. Define a function f : V(T) — {0,1,2} on T and
/" is a function define on 7". If f'(u1) = 1 and f'(ug) = 2 or f'(u2) = 2,
set f(y) = 0. Then the restriction of f on T” is a ve-LRD function on 77,
that is w(f) > Yeerr(T"). If f'(u1) = 0 and any of the vertices u;, j = 0,2,3
is assign 2, set f(y) = 1. If f'(u1) = 2 and f(up) = 0 or f'(uz) = 0 or
f'(u3) =0, set f(y) = 1. The restriction of f on T is a ve-LRD function on
T, so w(f) > Yuerr(T"). Therefore in all cases, we have

w(f) > w(f)

>n’—l’+s’—i’

- 2

>n—l—l+1+s—i

- 2

_nfl+sfi

B 2
n—Il+s—(n—-101-2s)

= 2 = S.

Let assume that d(u;1) = 2.
Claim 2: If there exist j € {2,..,t — 2} such that u; is a support vertex in
T, then the statement is true.
Proof. Let denote the leaf adjacent to w; in T by 2. Let T’ be the tree
obtained from T by deleting z. Thenn’' =n—1,I'=1-1,5' < sand ¢ > 1.
By induction hypothesis, yperr(T") > 2=t gince i’ = n/ — I — . If
f'(u;) =1 and f'(ui—1) or f'(uj+1) = 2, then set f(z) = 0. The restiction
of fon T" is a ve-LRD function on T”; so w(f) > yperr(T"). If f'(u;) =0,
set f(z) = 1. If f'(u;) = 2 and either f/(u;—1) or f/'(uit1) or f'(uiz2) =0,
set f(z) = 1 and f' = f otherwise. If neither f’(u;—1) nor f’(u;t1) nor
f(uiso) = 0 and f'(u;)) = 2, set f(z) = 0 and f' = f otherwise. Thus
w(f) > w(f ) > Yoerr(T). Tf there exist v € N(u;) \ {z} with f'(v) = 2,
set f(z) = 0, the restriction of f on 7" is a ve-LRD function on 7", so
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w(f) > YwerLr(T"). Therefore, in all cases we have

’Ll)(f) 2 ’YveLR(T/)
n —U+s -7

>

- 2

>n—1—l+1+8—i

- 2

n—l+s—1

B 2
n—Il+s—(n—-101-2s)

= 5 =s.
Thus, the statement holds.
Assume that the set {ug, ..., u;} does not have a support vertex in 7. Then
we have the following two cases:
Case 1: d(ug) > 2. Vertex ug is adjacent to a support vertex say y since ug
is not adjacent to any leaf and the path {ug,...,u;} is the diametral path.
Note that y ¢ {uj,us} and y is adjacent to a leaf 2. Let T’ be a tree
obtained from T by deleting vertices y and z. Then diam(T") = diam(T),
n=n—-21=1-1, =s—1and ¢ =i. If f(uz) > 1, then the restriction
of f on T" will give a ve-LRD function on 77, i.e. w(f) > Yoerr(T’). If
f(u2) = 0, then f(y) + f(z) > 1. Define a ve-LRD function f on T as
follows: If f’(u2) =1 and either f'(u1) or f'(u3) =2, set f(y) =0, f(2) =1
and f’ = f otherwise. Also, if f'(u2) = 2, set f(y) = 1 and f(z) = 0. If
f(u2) =0, set f(y) = f(z) =1 and f’ = f otherwise. Thus in all cases, we
have

w(f) > Yerr(T') + 1

n —U'+s -7

Zf—i—l

Zn—2—l+1+s—1—i+1
2

_n—l+s—i

B 2

n—Il+s—(n—-101-s)

= = s.

2

Thus the statement holds.

Case 2: d(u2) = 2. If diam(T) = 4, then T = P5 and by Proposition
YoeLrR(Ps) = 4 > s. Let assume that diam(T) > 5. Let T be the
tree obtained from T by deleting vertices ug and ui. So diam(T") > 3.
Also, n/ =n—-2I' =1, =sand ¢ = n' —1' — s < i. Assume that
f(up) + f(u1) > 1 and the restriction of f on f’ is a ve-LRD function on
T' with w(f’) > s’ = ==L Define f on T as follows: If f'(up) = 2, set
f(ur) =1, f(ug) =0 and f = f’ otherwise. If f'(u3) = 1 and f'(u3) = 2,
set f(u1) = 0 and f(up) = 1, f/ = f otherwise. Also, If f'(uz) = 1 and
f(us) # 2, set f(ug) = f(ur) =1 and f = f' otherwise. If f'(uz) = 0, set
f(up) = f(u1) =1 and f = f" otherwise. Therefore, in all cases above, we
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have
w(f) Z’VveLR(TI)+1
n’—l’—l—s’—i’+1
- 2
Zn—2—l—|—s—z_|_1
2
n—=l+s—1
B 2
:n—l—l-s—(n—l—s) .
2
Thus, the statement holds. O

4. VERTEX-EDGE LOCATING ROMAN DOMINATION OF CONNECTED
GRAPHS

In this section, we gave the vertex-edge locating domination number of
complete graphs and upper bound for the vertex-edge locating domination
number of connected graphs. We begin with the following result on ve-LRD
function of connected graphs.

Lemma 4.1. Let G be a connected graph of order n > 3 and G # K,,. If
v € V(G) with d(v) > 2, then Yperr(G) <n —1.

Proof. Let u,us € Na(v) and let vy € N(v) NN (u1) and v2 € N(v) NN (u2)
such that {u1,v1,v,v2,u2} is a path in G. If v has a leaf neighbor say z, the
function f: V(G) — {0,1,2} defined by f(v2) =2, f(v1) = f(z) = f(uz) =
0 and f(y) =1fory € V(G)\ {v1,v2, z,us} is a ve-LRD function on G with
weight n — 1. Therefore, Yyerr(G) < n — 1.

If only v; has leaf neighbor say = € [,,, then define f : V(G) — {0,1,2}
by f(v) = 2, f(x) = f(m) = f(va) = 0 and f(y) = 1 for y € V(G) \
{v,z,u1,v2}. The function f define above is a ve-LRD function on G with
w(f) <n-—1.

If only v2 has a leaf neighbor, say = € [,,, then define f : V(G) — {0, 1,2}
by f(v) = 2, f(z) = f(v1) = f(u2) = 0 and f(2) = 1 for = € V(G) \
{v,z,v1,u2}. The function f gives a ve-LRD function with w(f) <n — 1.
If u; and wuy has leaves neighbors, say x € [, Ul,,, define function f :
V(G) = {0,1,2} by f(u1) = f(us) = 2, f(z) = f(v) = 0 and [(t) = 1
for t € V(G) \ {u1,u2,z,v}. The function gives ve-LRD function with
w(f) <n—1. Thus Yperr(G) <n —1. O

Corollary 4.2. If T is a tree of order n > 3, then VyerLr(T) < n — 1.

Theorem 4.3. Let G be a connected graph of order n > 2, then VyerLr(G) =
n if and only if G = P3, K,,.

Proof. Obviously, if G = P53, vrLr(P3) = 3 by proposition Now let
G = K,,. Suppose Yyerr(G) = n, then this implies that all vertices in G are
adjacent , that is, G = K. Suppose all vertices in G are not adjacent . Let
u,v € V(G) such that uv ¢ E(G). Then d(v) < n—2 and u, v are at distance
2 from each other. Let vertex z € N(u) N N(v) in G. Since G is connected
with n > 3, then uxzv is a path of length 2 and the function f define on
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V(G) \ {v} is a ve-LRD function in G which implies that y,e—LrG < n —1,
a contradiction.

Assume that G = K, then all the vertices are adjacent. For u,v € V(G),
define the function f : V(G) — {0,1,2} by f(u) =2, f(v) =0 and f(y) =1
for y € V(G) \ {u,v}. The above function f gives ve-LRD function of G
with weight n. Therefore, vyerLr(G) = n. O

Corollary 4.4. Let G be a connected graph of order n such that yyer,r(G) =
n, then diam(G) < 2.

Proof. We establish the proof by contradiction. Assume that diam(G) > 3
and let P = uy,ug, ...,uq be a diametral path in G. The vertices {ua,ug} €
Ns(uyg) which implies that d(ug) > 2 and by Lemma YoeLr(G) <m — 1.

This is a contradiction. O
Theorem 4.5. Let G be a cycle of order n > 3, then Yyerr(G) = %,
n = (k mod 5).

Proof. Applying Proposition (case 1) for all values of k gives the desired
result. O
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