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In this paper, we introduce the concept of vertex-edge locating Roman dominating functions in
graphs. A vertex-edge locating Roman dominating (ve — LRD) function ofa graph G = (V,E) isa
function f : V(G) — {0, 1, 2} such that the following conditions are satisfied: (i) for every adjacent
vertices u, v with f(u) = 0 or f(v) = 0, there exists a vertex w at distance 1 or 2 from u or v with

f(w) = 2, (ii) for every edge uv € E, maz|[f(u), f(v)] # 0and (iii) any pair of distinct vertices u, v with
f(u) = f(v) = 0 does not have a common neighbour w with f(w) = 2. The weight of ve-LRD function
is the sum of its function values over all the vertices. The vertex-edge locating Roman domination
number of G denoted by v/, _; »(G) is the minimum weight of a ve-LRD function in G. We proved that
the vertex-edge locating Roman domination problem is NP complete for bipartite graphs. Also, we
present the upper and lower bonds of ve-LRD function for trees. Lastly, we give the upper bounds of ve

-LRD function for some connected graphs.
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1. Introduction and Preliminaries

In this paper, we introduce the concept of vertex-edge Locating Roman dominating function. Let
G = (V, E) be an undirected graph with vertex set V and edge set E. The number of vertices in G is the
order of G and the number of the edges in G is the size of the graph G. The set of all neighbors of vertex
w in G is the open neighborhood of ; that is N¢ (u) = {v € V|uv € E(G)}. The closed neighborhood of
u in G is G[u] = {u} U Ng(u). The number of vertices at distance 2 from vertex v in G is denoted as
N, (v). The degree of vertex u in G is d(u) = | Ng(u)|. The path of order n is written as P,, the size of

P, is n — 1. The graphs C,, K,, denote the cycle and complete graphs of order n respecticely. The

geios.com doi.org/10.32388/MA4AUS


mailto:abolape.akwu@uam.edu.ng
mailto:eagbajicomfort@gmail.com
https://www.qeios.com/
https://doi.org/10.32388/MA4AUS

diameter of G, denoted by diam(G) is define as the shortest maximum distance between two vertices in

G, thatis diam(G) = maz{dist(z,y) : z,y € V(G)}.

A rooted tree is a tree whereby the vertex called the root is distinguished from the other vertices of the
tree. Let T' denotes the rooted tree. Vertex of degree one is the leaf of a tree and the support vertex is a
vertex adjacent to a leaf. A star and Bistar are trees with one and two non-leaf vertices respectively.. Let
S(T) and L(T) denotes the set of all support vertices and the set of leaves in T' respectively. Let
|L(T)| = (T) and s(T") = |S(T)|, we denote L(u) as the set of all leaves adjacent to a support vertex
u and I(u) = |L(u)|. Let I(T) denotes the set of vertices in T that are neither root, support nor leaf

vertices. Also, let i = |I(T)|.

A subset D C V is known as a dominating set of G if every vertex w in V' \ D has a neighbor in D. The
dominating set with minimum cardinality is known as the domination number (G) of G. Let

B € {0,1,2} and for any vertex u € G, we denote the set of vertices with f(u) = 8 by V3.

Slater 2] introduced the study of locating dominating sets in graphs whereby he studied many graph
related problems with various types of protection. His objective in the work is to locate the intruder. A
locating dominating set D C V(G) is a dominating set with the property that the set N(u) N D is unique
for each vertex u € V(G) \ D. The locating dominating set of G with minimum cardinality is known as
locating domination number of G. Several domination parameters in the concept of locating domination

has been considered, for more result, see [24151(6]

A Roman dominating function (RDF) on G is a function f : V(G) — {0,1,2} such that every vertex
v € V(G) with f(v) = 0 is adjacent to at leaast one vertex v with f(u) = 2. The weight of RDF is the
value f(V(G)) = > ,cv(q) f(v), denoted by w(f). Roman domination number denoted by vr(G) is the
RDF on G with minimum weight. Cockayne et al. Il introduced Roman domination which was
motivated by the work of Re Velle and Rosing [&l and Stewart 2. See 191 for more results on Roman
domination.

A RD-function is called a locating Roman dominating function (LRD-function) if for any pair of
vertices u,v with f(u) = f(v) = 0, N(u) N Vo # N(v) N V,. The minimum weight of LRD-function is
known as the locating Roman domination number denoted as v (G). See 21031 for more result on LRD

-function.

In this paper, we consider the case whereby there will be optimal location of intruder, that is, all the

intruder in the whole empire will be located easily. This lead to the study of vertex-edge locating Roman
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dominating function. Nares Kumar and Venkatakrishnan [4[15] studied the vertex-edge Roman
domination. A vertex-edge Roman dominating (ve-LRD) function on a graph G is a function
f:V(G) — {0,1,2} with the property that for every edge uv € E, either max{f(u), f(v)} # 0, or there
exists w € N(u) U N(v) such that f(w) = 2. The vertex-edge Roman domination number of a graph
G denoted by Yoer (G) is the minimum weight of a ve-RDF, ie,
Yer(G) = min{w(f) : f is a ve — RDF on G}. More result on vertex-edge domination number can be
found in [6I07108]

Our aim in this work, is to apply the analogue of vertex-edge on locating Roman domination and
establish the variation vertex-edge locating Roman domination as follows.

A vertex-edge locating Roman dominating function of a graph G, abbrevated ve-LRD function is a
function f:V(G) — {0,1,2} satisfying the conditions that (i) every adjacent vertices u,v with
u € Vp or v € Vj, there exists a vertex w € V; such that w € N(u) U N(v); (ii) maz{f(u), f(v)} # 0 for
every edge uv € Fand (iii) for any pair of distinct vertices u, v of Vg, N(u) N V2 # N(v) N Vz.

In Section 2, we show that the vertex-edge locating Roman domination is NP complete for bipartite
graphs and in Section 3, we present the upper and lower bonds of ve-LRD function for trees. In section 4,
we presented the ve-LRD function of complete graphs and upper bounds of ve-LRD function for some

connected graphs.

2. Complexity

In this section, we presents the complexity result for the vertex-edge locating Roman domination
problem in bipartite graphs.

VERTEX-EDGE LOCATING ROMAN DOMINATION (ve-LRD)

Instance: Graph G = (V, E), positive integer k < |V|.

Question: Does G have a vertex-edge Locating Roman dominating function of weight at most k?

Exact 3-cover (X3C)

Instance: A set X with | X| = 3¢, a family C of 3-element subsets of X.

Question: Does G have a subcollection C' C C such that any member of X appears in only one element

of C'?
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Figure 1. NP-completeness of vertex-edge locating Roman domination for bipartite graphs

Theorem 2.1. ve — LRD is N P-complete for bipartite graphs.

Proof. ve-LRD is NP since it can be check in polynomial time that the function f : V' — {0, 1, 2} is an ve-
LRD and has weight at most k. Given an instance (X,C) of X3C with X = {z1,22,...,23,} and
C={C,0Cs,...,C¢}

Bipartite graph G can be constructed as follows: for any z; € X, create a single vertex z;. A tree T; can be
built for any C; € C which comprises of paths Py = {u;,v;, w;,y;,2,¢;} and @ = {ry,...7} such that
edges r;z; are added to Pjs. To achieve the construction of G, we add edges c;z; when z; € C (see Figure
1). Set k = 5t + ¢. Observe that for every ve-LRD, each Ps has weight at least 5. The leaf neighbor r; of z;,
w; and c; has weight 0, while vertices u;, v; and z; are assign 1 and y; must be assigned 2.

Suppose C' is a solution of the instance (X, C') of X3C. Then ve-LRD function f on G of weight k can be
constructed as follows: Assign value 0 to z; for each ¢, then for each j, if C; € C’, assign value 2 to vertex
z;, value 0 to vertex w; and 1 to the remaining vertices of Pjs. Also, assign 0 to the vertices of Q;.

If C; ¢ C', assign 2 to vertex y; in each Pjs, assign 0 to vertices w;,c; and the set Q;. Assign 1 to the
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remaining vertices of Pjg.

Note that since C’ exists, the order of C’ is g and so the number of ¢; with value 1 is g and every vertex in
X is at distance two to vertex z; with value 2. Therefore, f is ve-LRD with weight f(V) = 5t + ¢ = k.
Conversely, suppose that G has ve-LRD function with weight at most k. Let a = (Vg, V4, V2), observe
from above, each Pjs has weight at least 5. We may assume that a(z;) = 2 if C; € C' and a(y;) = 2 if
C; ¢ C'.1tis clear that vertices of Pj; with value 0 is at distance two or one from the vertex assign 2 such
that any pair of vertices with value 0 does not have a common neighbor assign 2 under «. Now since
w(a) < bt + g, we can see that X NV, # ¢. If a(z;) > 0 for some 4, then this provides an ve-LRD
function of weight at most k& with weight greater than «. Therefore X C V. Now, since each vertex of
X is at distance two from a vertex in V, and the sum of end points of each edge must be greater than 0,
each a has exactly three neighbors in {1, x3, ..., zs,}. This will be possible only if there are g vertices
z; of T; that are assign 2 and g vertices c¢; of T; that are assign 1. We conclude that

C' ={C; : a(c;) = 1} isan exact cover for C. [J

3. Vertex-edge locating Roman domination of trees

In this section, we gave the value of vertex-edge domination number of paths. We also gave the upper
bound of ve-LRD function for bistar. Lastly, we establish the lower and upper bounds of ve-LRD function
for tree T in terms of [ leaves, s support vertices and ¢ internal vertices. We begin with the following

result.

. dnth ifn=k mod 5and k # 4
Proposition 3.1. Forn > 3, yyerr(Pn) = 5

“E 1, ifn=k mod 5andk=4

Proof. Let P, = uq,us,...,u, be a path of order n > 2. Let f be a function defined on the V(P,) as
f:V(R,) — {0,1,2}. The problem can be split into the following two cases.

Casel:Ifn =k mod 4,0 < k < 3. The function f is define as

0, ifj=lord mod 5andj<n—k
flu;)=4¢1, ifj=00r2 mod5,j<n—kandn—(k+1)<j<n.
2, ifj=3 mod 5andj<n—k
Case2:Ifn =%k mod 5and k = 4.

Define f on V(P,) as follows:

0, ifj=n-3,n
N A ifj=n—2
Flug) =4 ifj=n—1
f(u;) in case 1 above, otherwise.
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Clearly, f is a ve-LRD of P, and thus

ntk ifn =% mod 5andk # 4

Yoe. Pn < 5
ok (Fn) {#—1, ifn=k mod 5andk =4

To proof the inverse inequality, we establish it by induction on n. Let P’ be the a path obtained from path
P, by removing one vertex (say u,) from the path P,. Then P’ is a path of order n’' =n — 1. If
f(un) > 1, then the retriction of f on P’ will give ve-LRD on P’ | that is w(f) > yerr (P’) + 1. Thus, if
k # 4,

w(f) = yerr(P') +1
! ]
_4An'+k i1
5
4n—-1)+k-1
_ (n—1)+ 41
5
in+k

5

If K = 4, we have
w(f) 2 ’YveLR(PI) +1
_ A+ K

4n—-1)+k—-1
- 1+1

n+k

Thus,

ntk ifn =% mod 5andk # 4

’Y’UELR(PR) 2 5
{4";’“ ~1, ifn=k mod 5and k = 4

Using the induction hypothesis, we get the desired lower bound. Hence, the equality holds. [
Observation: For any star graph Sy, Yerr (Sn) = 3.
Proposition 3.2. For any bistar BS,, of order n > 6, yer.r (BSy) < 6.

Proof. Let u, v be the support vertices in BS,, and define a function f : V(BS,,) — {0,1,2} as follows: If
I, <2and!, > 2, then set f(u) = 2 and f(v) = 1. Also, assign 1 to only one leaf neighbor of support
vertex u and assign 0 to the remaining leaves in BS,,. The above assignment will give a ve-LRD function
with weight 4.

Ifl, =3 and l, > 3, set f(u) =2, f(v) = 1. Assign 1 to only two leaves neighbors of v and 0 to the
remaining leaves in BS,,. The labeling gives a ve-LRD function with weight 5.

If l,,l, >3, set f(u)=f(v)=1 and f(z) = f(y) =2, where z €, and y € [,. Assign 0 to the
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remaining leaves in BS,,. This gives a ve-LRD function with weight 6. In all cases, y,err (BS,) < 6.

Assume that BS,, admits a ve-LRD function h with w(h) > 6. Assume that h is of minimum weight. If
{h(s),h(r)} > 1, where s € [, \ z and r € [, \ y, then the restriction of h on BS, — {s,r} is a ve-LRD
function on BS, — {s,r} with weight less than 6, a contradiction. Thus h(s) = h(r) = 0. Hence,

7'ueLR(BSn) S 6.0

Theorem 3.2. If T' is a tree of order n > 6 with [ leaves, s support vertices and i internal vertices and T' is not a

path, then vyerr (T) < n — 1+ 2s — 1.

Proof. We establish the proof by induction on n. Assume that diam(T) > 4, let uy,...,u; be a diametral
path . Then uy and u; are the root and leaf respectively and u;_; is a support vertex. We split the proof
into the following cases:

Case 1: d(uz—1) > 3. Then u;_ is adjacent to atleast two leaves. Let T be the tree obtained from T by
deleting u;. Then T has order n’ =n —1with ' =1—1, s’ = s and ¢’ = . By induction hypothesis,
T' admits wve-LRD function f’ such that w(f’)<n' -0l +2s—14. Define a function
f:V(T)— {0,1,2} as follows:

If f'(ui—2) =2 or f'(ue—1) > 1, set f(u;) =0 and f(z) = f'(z) forall z € T — wy, if f'(us—2) < 2 and
f'(us—1) < 1, then u;_; is adjacent to a leaf y in 7" with f'(y) > 1, set f(ui—2) = 2, f(us—1) = 1 and
fly) = f(us) = 0. Also, f(v) = f'(v) forallv € T — {us_2,us_1,us,y}. Then f is a ve-LRD function on

T of weight

w(f) < w(f')
n =1 +2s -7
n—1—-1l+14+2s—1
n—1+2s—1.

I IAIA

Thus the statement is true.

Case 2: If d(ut—1) = 2.

Subcase I If d(u;_2) =2. Let T’ be the tree obtained from T by deleting w; 1 and w;. Then
n'=n—-2l'=1,s <sand i <i. T' admits ve-LRD function f’ by induction hypothesis such that
w(f) <n' =1 +2s —4. Define f: V(T) — {0,1,2} by f(u—1) = f(ut) = 1and f(z) = f'(x) for all

z € T — {us_1,u; }. The assignment gives a ve-LRD function f on T' with weight

w(f) =w(f)+2
<n—-U+4+2s—i+2
<n—2-I0+2s—i+2

n—1+2s—1.
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Therefore, the statement holds.

Subcase II: d(t;—2) > 3

Let T be the tree obtained from T by deleting u;_; and ;. Thenn' =n —2,I' =1—1,s' < sandi’ =i.
By induction hypothesis, 7’ admits a ve-LRD function f’ with w(f’) <n' —1' + 2s' —¢'. Define
function f in T as follows: If f'(u;—2) =1 and f'(us—3) = 2, set f(u;—1) =0 and f(u;) = 1. Also, if
f'(us—3) =2 and f'(us—2) =0, set f(us—1) =1 and f(u¢) =0. If f'(ur—3) =1 and f'(t —2) = 2, set

f(u—1) = 1and f(us) = 0. Therefore, the labeling gives a ve-LRD function f on T with weight

w(f) = (') +1
<n-l+2—-4i+1
<n—-2-1l4+142s—i+1
=n—14+2s—1.

d

Theorem 3.4. If T is a treee with diam(T') > 4, | leaves, s support vertices and 1 internal vertices, then

n—l4+s—i

YveLR (T) Z

Proof. We use induction on n to establish the proof. Assume that |T'| > 5, let T’ be an arbitrary tree of
order n’ such that |T"| < |T| with diam(T") > 3. Assume that the statement is true for any tree T". Also,
let ', s',i’ be the order of leaves, support vertices and internal vertices in T respectively. Assume that
diam(T) > 4. Let ug, ..., u; be a diametral path and f a ve-LRD function on 7' with minimum weight,
that is w(f) = Yeerr (T)

Claim 1: If d(u1) > 2, then the statement is true.

Proof: The vertex u; is adjacent to atleast two vertices uy and say leaf y. Let T’ be the tree obtained from
T by deleting y. Thenn’ =n —1,' =1—1,s' = sand ¢’ > 4. Define a function f : V(T') — {0,1,2} on
T and f' is a function define on T". If f'(u;) = 1 and f'(up) = 2 or f'(uz2) = 2, set f(y) = 0. Then the
restriction of f on T is a ve-LRD function on 7", that is w(f) > Yuerr(T"). If f'(u1) = 0 and any of the
vertices u;,j = 0,2,3 is assign 2, set f(y) = 1. If f'(u1) = 2and f(ug) =0 or f'(u2) = 0or f'(u3) =0,
set f(y) = 1. The restriction of f on 7" is a ve-LRD function on T, so w(f’) > ~Yyerr(T"). Therefore in

all cases, we have

w(f) = w(f’)

! ! ! -/
> —UI'+s" —1
2
> n—1—-1l4+1+s—1
2
_n—Il+s—1
—
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Let assume that d(u;) = 2.

Claim 2: If there exist j € {2,..,t — 2} such that ; is a support vertex in T', then the statement is true.
Proof. Let denote the leaf adjacent to u; in T by z. Let T be the tree obtained from T' by deleting z. Then
n=n—-10I=1-1,s <s and ¢ >i. By induction hypothesis, ~yerr(T') > # If
f'(u;) = 1and f'(u;—1) or f'(uit1) = 2, thenset f(z) = 0. The restiction of f on T is a ve-LRD function
onT";s0 w(f) > Yerr(T'). If f'(u;) = 0, set f(z) = 1. If f'(u;) = 2 and either f'(u;_1) or f'(u;y1) or
f'(uir2) = 0, set f(z) = 1and f’' = f otherwise. If neither f'(u;_1) nor f'(u;41) nor f'(u;+2) = 0 and
f'(ui) =2, set f(z) =0 and f'= f otherwise. Thus w(f) > w(f') > Ywerr(T'). If there exist
v € N(uj) \ {z} with f'(v) = 2, set f(z) = 0, the restriction of f on T" is a ve-LRD function on 7", so

w(f) > Ywerr (T"). Therefore, in all cases we have

w(f) > ’Y’ueLR(T,)
n -1 + s — i

>
- 2
> n—1—-1+14+s5—1
- 2
o n—Il+s—1
—
Thus, the statement holds.
Assume that the set {uy,...,u;} does not have a support vertex in 7. Then we have the following two

cases:
Case 1: d(ug) > 2. Vertex us is adjacent to a support vertex say y since u, is not adjacent to any leaf and
the path {uq,...,u;} is the diametral path. Note that y € {u1,u3} and y is adjacent to a leaf 2. Let T’ be a
tree obtained from T by deleting vertices y and z Then diam(T') = diam(T),
n=n-20I=1-1,s=s—1and i =i.If f(uz) > 1, then the restriction of f on T’ will give a ve-
LRD function on T', ie. w(f) > Yerr(T'). If f'(uz2) =0, then f(y)+ f(z) > 1. Define a ve-LRD
function f on T as follows: If f'(uz) =1 and either f'(u;) or **—————- f'(us) =2, set f(y) =0,
f(2) =1 and f’' = f otherwise. Also, if f'(uz) =2, set f(y) =1 and f(z) =0. If f'(uz) =0, set

f(y) = f(2) = 1and f’ = f otherwise. Thus in all cases, we have

'U.J(f) > YveLR (T/) +1
n—U+s -1

> — +1
2
> n—2—l—|—1+s—1—z+1
2
_n—Il+s—1
—
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Thus the statement holds.

Case 2: d(uz2) = 2. If diam(T') = 4, then T = P; and by Proposition 2, v,err(P5) = 4 > i;_’ Let
assume that diam(T') > 5. Let T' be the tree obtained from T by deleting vertices up and u;. So
diam(T’) > 3. Also, n' =n —2,I' =1,s' =s and ¢’ <4i. Assume that f(ug)+ f(u1) > 1 and the

2! Define f on T as follows: If

restriction of f on f’ is a ve-LRD function on 7" with w(f’) >
f'(ug) =2, set f(u1) =1, f(up) =0 and f = f' otherwise. If f'(uz) =1 and f'(u3) =2, set
f(ur1) =0 and f(uw) =1, f'=f otherwise. Also, If f'(us)=1 and f'(u3)#2, set
f(uo) = f(u1) =1 and f = f’ otherwise. If f'(ug) =0, set f(ug) = f(u1) =1 and f = f' otherwise.

Therefore, in all cases above, we have

w(f) > 'YveLR(T/) +1
n -1 +s—7

> - " 41
> 5 +
> n—2—l+s—z+1
2
_ n—Il+s—1i
—

Thus, the statement holds. []

4. Vertex-edge locating Roman domination of connected graphs

In this section, we gave the vertex-edge domination number of complete graphs and upper bound for the
vertex-edge domination number of connected graphs. We begin with the following result on ve-LRD

function of connected graphs.

Lemma 4.1. Let G be a connected graph of order n > 3 and G # K,,. If v € V(G) with d(v) > 2, then
Yoerr(G) <n — 1.

Proof Let wj,us € Na(v) and let v; € N(w)NN(u1) and vy € N(v) N N(uz) such that
{u1,v1,v,v9,us} is a path in G. If v has a leaf neighbor say z, the function f : V(G) — {0, 1,2} defined
by f(v2) =2, f(vi) = f(z) = f(uz) =0 and f(y) =1 for y € V(G)\ {v1,ve,z,u2} is a ve-LRD
function on G with weight n — 1. Therefore, yyeLr (G) < n — 1.

If only v; has leaf neighbor say z €l,, then define f:V(G)— {0,1,2} by f(v)=2,
f(z) = f(u1) = f(vz) =0and f(y) =1for y € V(G) \ {v,z,u1,v2}. The function f define above is a
ve-LRD function on G with w(f) <n —1.

If only v, has a leaf neighbor, say z €l,, then define f:V(G) — {0,1,2} by f(v)=2,

f(z) = f(v1) = f(u2) =0 and f(2) =1 for z € V(G) \ {v,z,v1,u2}. The function f gives a ve-LRD
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function with w(f) <n —1. If u; and u, has leaves neighbors, say = € Il,, Ul,,, define function
f:V(G) —{0,1,2} by f(u1) = f(uz) =2, f(z) = f(v) =0and f(t) =1fort € V(G) \ {u1,uz2,z,v}.

The function gives ve-LRD function with w(f) < n — 1. Thus v,ezr(G) <n — 1.0
Corollary 4.2.If T is a tree of order n > 3, then vyerr(T) < n — 1.
Theorem 4.3. Let G be a connected graph of order n > 2, then v,.Lr(G) = nifandonly if G = P;, K.

Proof. Obviously, if G = Ps, yerr(P3) = 3 by proposition 2. Now let G = K,,. Suppose Yerr(G) = n,
then this implies that all vertices in G are adjacent , that is, G = K,,. Suppose all vertices in G are not
adjacent . Let u,v € V(G) such that uv ¢ E(G). Then d(v) < n — 2 and u, v are at distance 2 from each
other. Let vertex z € N(u) N N(v) in G. Since G is connected with n > 3, then wzv is a path of length
2 and the function f define on V(G)\ {v} is a ve-LRD function in G which implies that
Yoe—LRG < n — 1,a contradiction.

Assume that G = K,,, then all the vertices are adjacent. For u,v € V(G), define the function
f:V(G) —{0,1,2} by f(u) =2,f(v) =0 and f(y) =1 for y € V(G) \ {u,v}. The above function

f gives ve-LRD function of G with weight n. Therefore, y,.rr (G) = n.O
Corollary 4.4. Let G be a connected graph of order n such that v,er (G) = n, then diam(G) < 2.

Proof. We establish the proof by contradiction. Assume that diam(G) > 3 and let P = g, us,...,uqbea
diametral path in G. The vertices {us,ug} € No(uq) which implies that d(us) > 2 and by Lemma 4.1,
Yerr(G) < n — 1. This is a contradiction. (J

Theorem 4.5. Let G be a cycle of order n > 3, then v,.Lr(G) = 4"; il ,n=(k mod 5).

Proof. Applying Proposition 3.1 (case 1) for all values of k gives the desired result. [
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