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Children in sub-Saharan African countries, especially Nigeria, continue to suffer increased mortality

owing to the comorbidity of infections such as anaemia and malaria, which are known to

epidemiologically overlap. In order to examine the risk factors and spatial patterns of comorbidity of

anaemia and malaria using the 2021 Nigeria Malaria Indicator Survey (NMIS), a multinomial logit

model was extended by incorporating a spatially weighted random effect. The impact of climatic

variation on childhood disease comorbidity was explored by weighting the spatially structured

component based on the 2021 NMIS average cluster temperature of each state in Nigeria. A number of

spatially weighted geo-additive models were �tted and compared using the deviance information

criterion. Inference was fully Bayesian, and an Intrinsic Conditional Autoregressive prior was used for

structured random effects. Based on the map generated from the best-�tted model, which unveiled

states that are more susceptible to the risk of disease comorbidity, the average temperature used as a

weighting factor, however, has a strong relationship with the spatial pattern of disease comorbidity.

States with low temperatures have a higher risk of comorbidity of anaemia and malaria compared to

states with higher average temperatures. Area of residence, level of education of the mother, economic

status of the mother, and owning mosquito-treated nets were identi�ed as signi�cant risk factors

associated with the disease comorbidity. Findings from this study will be helpful to policymakers and

health authorities in their effort to combat the comorbidity of childhood anaemia and malaria, thereby

reducing child mortality in Nigeria.
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1. Introduction

The high prevalence of childhood infections such as anaemia and malaria is a source of great concern to

world public health[1]. Anaemia can be thought of as a signi�cant decrease in hemoglobin concentration,

which leads to reduced oxygen delivery to the body's tissues and organs[2]. The World Health

Organisation (WHO) classi�ed anaemia for children aged 6 months to 59 months based on the level of

concentration of hemoglobin in the red blood cells. A child is free of anaemia if the Hb level is at least

11g/dL; it is mild anaemia if the level of Hb is between  , it is moderate if the Hb level is

between   and it is severe if the level of Hb is less than 7g/dL[3]. Anaemia and malaria are

two of the leading causes of illness and death in children under the age of �ve[4]. Young children have a

weak immune system to combat malaria, as evident in the 2018 total deaths due to malaria infection,

where over 65% of those deaths were children below the age of �ve. The progress made in ensuring that

the burden or cases of anaemia is reduced has been very slow, and the global target of reducing anaemia

cases by 50% by the year 2025 may not be achieved[5]. In 2019, about 571 million of reproductive age,

representing 29%, and 269 million of children below the age of �ve years, representing 38.9%, were

affected by anaemia, and about 40% of children below the age of �ve years, 37% of expectant mothers,

and 30% of women of reproductive age were also affected[6]. Malaria is regarded as an acute febrile

infection caused by a parasite known as P. falciparum. Malaria infection is pervasive in the African

region, especially Nigeria, which has a high prevalence of P. falciparum and a reasonable number of

anaemia cases, especially among under-�ve children, attributed to malaria infection[7]. Children with

severe anaemia are at a higher risk for contracting malaria, as the condition can weaken the immune

system and make it more dif�cult for the body to �ght off infection[8]. In the year 2019, Africa accounted

for a whopping share of 94% of the global malaria cases, estimated at 229 million[9]. Anaemia has grave

consequences as it makes a young child more susceptible to other infections aside from malaria, thereby

increasing the risk of death. It weakens cognitive performance, hinders growth, and retards motor

development of a child[10]. Besides, malaria in young children could cause anaemia, damage to the

cerebra, and respiratory pain[11]. Anaemia and malaria are considered major indicators of a child’s overall

well-being[5]. In the past, studies on anaemia and malaria with respect to their risk factors were based on

available records or data in hospitals and clinics. Such studies were grossly inadequate to reveal the

(10  −  10.9)g/dL

(7 − 9.9) g/dL,
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required knowledge on the risk factors of these infections. In recent years, a number of national surveys

have been conducted to collect comprehensive data on child health outcomes, including the Demographic

and Health Survey (DHS) and the Malaria Indicator Survey (MIS). These data are available and accessible

to researchers if a due request is made, and they are used to estimate the prevalence of these infections,

especially among young children, as well as their risk factors for effective policy formulation. A number

of studies have examined the individual risk factors for anaemia and malaria, as well as the spatial

variation of these conditions in Nigeria and other sub-Saharan African countries. Phillip et al.[6], in their

study of anaemia prevalence among children aged 6-59 months, utilized a multiple binary logistic

regression model to quantify the risk factors of anaemia and the associated predicted probability across

the states in Nigeria, including the Federal Capital Territory. Bilal et al.[12] used a geo-statistical model to

analyze the risk factors of anaemia among preschool children in Ethiopia using the 2016 Demographic

and Health Survey of the country. Alfred and Lawrence[13]  investigated the risk factors associated with

the severity of anaemia among children in Malawi by proposing an ordered categories model, using

multinomial cumulative logistic regression. Abbas et al.[14]  utilized two national surveys, the DHS and

MIS, to examine the association of malaria endemicity and other causes of mortality across varying age

strata among under-�ve children in Nigeria by developing binomial geo-statistical models and a

Bayesian piecewise Cox proportional hazard to link mortality to the risk of malaria, considering the

spatial disparity of the survey data. Huge efforts have also been made by other authors in the modelling

of single diseases[15][16][17].

Studies on the comorbidities of childhood diseases such as anaemia and malaria are, however, scanty.

Jecinta et al.[18]  used a Bayesian spatial model to analyze the spatial patterns of anaemia and malaria

among children under the age of �ve in Nigeria, using data from the 2015 and 2010 Nigeria Malaria

Indicator Surveys. Gayawan et al.[19]  also modeled childhood morbidity in West Africa using a

Distributional Bivariate Probit Model. Adebayo et al.[8]  adopted a geoadditive latent variable model to

examine the effects of different risk factors on anaemia-malaria morbidity among children below the age

of �ve years in Nigeria. Also, Gayawan et al.[10], Kezembe et al.[20], and Adeyemi et al.[21] have also utilized

a multinomial model to examine the comorbidity of multiple diseases among under-�ve children in

various Sub-Saharan African countries. However, the impact of climatic variation on the risk of

childhood comorbidity of anaemia and malaria has not been explored. The spatial components have not

been weighted to re�ect the geographical variation in climates across the regions being considered.

Children are particularly vulnerable to the effects of climate change because they rely on caregivers to
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meet their needs, and their developing bodies are more sensitive to environmental changes, Eduard[22].

In this study, we used different spatially weighted multinomial model formulations to analyze the

in�uence of covariates of different types on the comorbidity of malaria and anaemia. The climatic

factors, such as average temperature, were used as spatial weighting factors. The generated maps, which

would unveil the risk of anaemia and malaria comorbidity across the 36 states of the federation,

including the FCT, and the correlation between climatic variation and the spatial distribution of disease

risk, add to the uniqueness of the work. This would provide accurate insight to policymakers in designing

relevant strategies to combat the menace of the two most common childhood diseases in the country.

2. Source of Data

This study utilized data from the 2021 Nigeria Malaria Indicator Survey, a cross-sectional survey

conducted from August to December 2021. Access to download the data was granted after a proposal

submitted to the DHS website was approved. The components of the variables extracted from the 2021

NMIS include the dependent variables, which are anaemia and malaria, each having a binary status of 0

and 1, signifying the absence or presence of the disease in a child. The independent variables are the

covariates of different kinds. There are categorical covariates that represent the demographic factors

(area of residence of the child’s parent), socio-economic factors (wealth index, mothers’ level of

education, sex). The metrical covariates include the age of the child and the age of the mother. The spatial

covariates include the 36 states of the federation, including the FCT, and the cluster average temperature

of each state.

3. Methodology

Let the anaemia and malaria status of a child be denoted by   while the probability of comorbidity of

the two infections be denoted by  . The child’s infection status has four categories as de�ned below

This study assumes that , a child’s infection status follows a multinomial

distribution.

Given categorical covariates  ,  metrical covariates  ,  spatial covariates  ,  and  ,  and 

 which represents the weighted parameter, the probability of a child belonging to each of the infection

yijc

pijc

=Yij

⎧

⎩
⎨

⎪⎪

⎪⎪

1
2
3
4

 if a child has neither anaemia nor malaria 
 if a child has only anaemia 
 if a child has only malaria 
 if a child has both anaemia and malaria 

  ∼ MN(1,   )Yijc πijc

( )Xij,   ( )Zij,  (θi )ϕi

ψi
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categories is modeled as:

,   is a predictor which is extended so that the spatial weighted multinomial model has the

following formulations.

Model 1:  +  (2)

Model 2 :  + +  (3)

Model 3:  ( ) +  (4)

Model 4:  ( )  +  (5)

 is a predictor function having a logit link function,   is the regression parameter vector associated

with the linear explanatory or categorical variables,    represents the smooth function for the metrical

covariates assumed to have a non-linear relationship with the response variables,    denotes the state

random effects (structured variation) which is geographically weighted with    and    denotes the

unstructured variation (heterogeneity).

Model 1 contains the linear covariates (�xed effect model) with spatially weighted structured effects;

model 2 contains linear covariates with spatially weighted structured and unstructured effects. Models 3

and 4 include the nonlinear covariates, therefore containing all the covariates. In this study, the reference

category is the �rst group (  when a child has none of the two infections).

A full Bayesian approach is applied in the estimation of model parameters. The regression parameters are

assigned informative priors. The smooth functions for the metrical covariates are assigned p-priors,

while the spatial effect functions were modeled using priors of Gaussian Markov random �elds, in

particular the intrinsic conditional autoregressive model (ICAR). This assumes that the mean of each

area   written as   conditional on the rest of its neighbors is normally distributed with the same mean

as the average of its neighbors (   and variance which is inversely proportional to the size of its

neighboring areas denoted as   Each pair of areas that shares a border usually takes a weight equal to 1,

and 0 otherwise. The full conditional speci�cation of the ICAR prior is

  implies that areas    and    are adjacent to each other on the map.    represents the spatial

smoothing variance. The unstructured or area-speci�c effect    which measures the degree of

=p
(c)
ij

exp( )η
(c)
ij

1 + exp( )∑c
s=1 ηijs

(1)

c = 1 , 2 3, 4 η
(c)
ij

=η
(c)
ij Xij  βc ψi θi

=η
(c)
ij Xij  βc ψiθi ϕi

= +η
(c)
ij Xij  βc fc Zij,  ψi θi

= +η
(c)
ij Xij  βc fc Zij  +ψiθi ϕi

ηijc βc

fc

θi

ψi ϕi

for c = 1,

i θi,

)θ−i

.mi

|   ∼ N( ,   )θi θ−i
1

mi

∑
−i∼i

θ−i

σ2
θ

mi

(6)

−i ∼ i −i i σ2
θ

ϑi
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heterogeneity, was estimated using normal priors as

To compare the robustness or goodness of �t of the various model speci�cations, the Deviance

Information Criterion (DIC) given by Spiegelhalter[23] is employed

 is the model deviance which was estimated at the posterior mean,   represents the effective number

of parameters used to examine model complexity. The model with the smaller value of    is

considered to have a good �t, be more parsimonious, and hence be a better model.

The prior for the �xed effects from a Bayesian viewpoint is given as

The nonlinear function   is modeled by a basis function approach given by

Where   are known basis functions and  . A prior for a function   is de�ned by

specifying an appropriate design matrix    and a prior distribution for the vector    of unknown

parameters. The prior for    with  \(K_{j}\\)as the penalty matrix and    as the variance parameter is

given as

Highly dispersed gamma priors are assigned for the variance parameter   as provided below.

The corresponding probability density function is given as

In this work,   is the choice for the hyperparameters.

The posterior of the model using the Bayesian approach is given as

ϑ ∼ N(0,   )σ2
ϑ

(7)

DIC = + ρDD
¯ ¯¯̄ (8)

D
¯ ¯¯̄

ρD

DIC

p ( ) ∝ constXj (9)

fc

f(z) = ( (z))∑
k=1

K

βkBk (14)

Bk β = (     .   .   .    )β1,   β2 βk fj

zj βj

βk τ 2
j

p ( ∣ ) ∝   exp(− )βj βj
1

( )σ2
j

rank( )Kj

2

1

2σ2
j

β1
jKjβj (10)

σ2
j

p( ) ∼ IG( ,   )σ2
j aj bj (11)

∝ exp(− )σ2
j ( )σ2

j

− −1aj −bj

σ2
j

(12)

=   = 0.001aj bj
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Where    refers to the likelihood which, under the assumption of conditional independence, is

calculated by multiplying the individual likelihood contributions of each observation.

MCMC simulation techniques are used to estimate the parameters of the posterior distribution.

4. Results Analysis

While BayesX, version 2.1, was used for model �tting, descriptive analysis and the two-way cross-

tabulation with the Pearson Chi-square test were performed using SPSS software. Descriptive analysis of

the variables on the anaemia and malaria status of under-�ve children is presented in Figure 1 and Table 1

below. The children’s infection statuses are; None, Anaemia only, Malaria only, and both Anaemia and

Malaria.

Figure 1. Prevalence of Anaemia and Malaria among Under-�ve children

p (   …       …     | ) ∝ L (   …    )β1, βp, σ
 2
1  σ2

p,  ωc yijc β1, βp,

(p( )p( ))p( )p( ) (13)∏
j=1

p

βj∣∣σ
2
j σ2

j fθ∣∣σ
2
j fθ∣∣σ

2
j

L(. )
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Variables/child illness

status
None Anaemia only

Malaria

only

Anaemia

and malaria

Total no of

children/%

Pearson’s ch-

square test

Sex

Male

Female

1357(27.9,14.4)

1388(30.3, 14.7)

2630(54.1, 27.9)

2396(52.3, 25.4)

277(5.7, 2.9)

254(5.5, 2.7)

596(12.3, 6.3)

540(11.8, 5.7)

4860(51.5)

4578(48.5)

6.581(0.087)

Residence

Urban

Rural

1001(36.2, 10.61)

1744(26.1, 18.5)

1354(49.0, 14.3)

3672(55.0, 38.9)

147(5.3, 1.6)

384(5.8, 4.1)

260(9.4, 2.8)

876(13.1, 9.3)

2762(29.3)

6676(70.7)

1.049E2(0.00)

Wealth Index

Poorest

Poorer

Middle

Richer

Richest

374(19.6, 4.7)

440(23.3, 4.7)

554(28.6, 5.9)

642(33.6, 6.8)

735(40.9, 7.8)

1161(61.0, 12.3)

1056(56.0, 11.2)

1028(53.0, 10.9)

979(51.2, 10.4)

802(44.7, 8.5)

95(5.0, 1.0)

99(5.2, 1.0)

129(6.6, 1.4)

102(5.3, 1.1)

106(5.9, 1.1)

274(14.4, 2.9)

291(15.4, 3.1)

229(11.8, 2.4)

189(9.9, 2.0)

153(8.5, 1.6)

1904(20.2)

1886(20.0)

1940(20.6)

1912(20.3)

1796(19.0)

2.89E2(0.00)

Highest education

No education

Primary

Secondary

Tertiary

911(22.6, 9.7)

362(26.0, 3.8)

1026(33.7, 10.9)

446(45.9, 4.7)

2330(57.9, 24.7)

745(53.6, 7.9)

1553(51.0, 16.5)

398(40.9, 4.2)

212(5.3, 2.2)

87(6.3, 0.9)

177(5.8, 1.9)

55(5.7, 0.6)

574(14.3, 6.1)

197(14.2, 2.1)

292(9.6, 3.1)

73(7.5, 0.8)

4027(42.7)

1391(14.7)

3048(32.3)

972(10.3)

2.809E2(0.00)

Availability of

mosquito net

No

Yes

1078(31.4, 11.4)

1667(27.8, 17.7)

1865(54.3, 19.8)

3161(52.6, 33.5)

167(4.9, 1.8)

364(6.1, 3.9)

322(9.4, 3.4)

814(13.6, 8.6)

3432(36.4)

6006(63.6)

48.3(0.001)

Child age group

6 – 11

2.478E2
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Variables/child illness

status
None Anaemia only

Malaria

only

Anaemia

and malaria

Total no of

children/%

Pearson’s ch-

square test

12 – 23

24 – 35

36 – 47

48 – 59

162(17.3, 1.8)

386(20.2, 4.2)

515(26.4, 5.6)

687(33.4, 7.5)

839(35.9, 9.1)

619(66.1, 6.7)

1161(60.7, 12.6)

1074(55.0, 11.7)

1038(50.5, 11.3)

1134(48.6, 12.3)

32(3.4, 0.3)

77(4.0, 0.8)

101(5.2, 1.1)

104(5.1, 1.1)

125(5.4, 1.4)

123(13.1, 1.3)

288(15.1, 3.1)

264(13.5, 2.9)

225(11.0, 2.4)

236(10.1, 2.6)

936(10.2)

1912(20.8)

1954(21.3)

2054(22.4)

2334(25.4)

Age group of mothers

15 – 19

20 – 24

25 – 29

30 – 34

35 – 39

40 – 44

45 – 49

102(25.8, 1.1)

417(24.9, 4.4)

771(29.7, 8.2)

690(30.2, 7.3)

496(31.9, 5.3)

203(28.4, 2.2)

66(29.7, 0.7)

221(55.9, 2.3)

938(56.0, 9.9)

1315(50.7, 13.9)

1230(53.9, 13.0)

802(51.6, 8.5)

396(55.3, 4.2)

124(55.9, 1.3)

23(5.8, 0.2)

107(6.4, 1.1)

170(6.6, 1.8)

103(4.5, 1.1)

86(5.5, 0.9)

32(4.5, 0.3)

10(4.5, 0.1)

49(12.4, 0.5)

213(12.7, 2.3)

337(13.0, 3.6)

260(11.4, 2.8)

170(10.9, 1.8)

85(11.9, 0.9)

22(9.9, 0.2)

395(4.2)

1675(17.7)

2593(27.5)

2283(24.2)

1554(16.5)

716(7.6)

222(2.4)

44.134(0.01)

Zone

North central (NC)

North East (NE)

North West (NW)

South East (SE)

South South (SS)

South West (SW)

637(36.2, 6.7)

438(25.2, 4.6)

589(21.6, 6.2)

307(29.0, 3.3)

411(33.1, 4.4)

363(39.8, 3.8)

892(50.7, 9.5)

1031(59.4, 10.9)

1433(52.5, 15.2)

553(52.3, 5.9)

649(52.2, 6.9)

468(51.4, 5.0)

84(4.8, 0.9)

79(4.5, 0.8)

202(7.4, 2.1)

58(5.5, 0.6)

77(6.2, 0.8)

31(3.4, 0.3)

147(8.4, 1.6)

189(10.9, 2.0)

505(18.5, 5.4)

140(13.2, 1.5)

106(8.5, 1.1)

49(5.4, 0.5)

1760(18.6)

1737(18.4)

2729(28.9)

1058(11.2)

1243(13.2)

911(9.7)

3.451 (0.00)

Table 1. Prevalence of Anaemia and Malaria by risk factors.

Figure 1 shows that out of 9438 children who participated in the survey, 28.9% are free of both anaemia
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and malaria, 52.9% had anaemia only, 5.6% had malaria only, and 12.6% had both anaemia and malaria,

respectively. Table 1 reveals the prevalence of anaemia and malaria by some risk factors. The percentage

of the infection within the covariate group is shown by the �rst value in the bracket, while the second

value shows the percentage of the total children infected. Out of 4860 male children involved in the

survey, 27.9% are infection-free, 54.1% had anaemia only, 5.7% had malaria only, and 12.3% had both

malaria and anaemia. Similarly, among 4578 female children, 30.3% had none of the diseases, 52.3% had

anaemia only, 5.5% had malaria only, and 11.8% had both malaria and anaemia. However, the Pearson

chi-square test revealed that sex as a risk factor of childhood infection is not signi�cant. Among children

from both rural and urban residences, anaemia had the highest infection rates: 49% (1354/2762) and 55%

(3672/6676) for urban and rural areas, respectively. The area of residence is a signi�cant risk factor, as

revealed by the chi-square test. The descriptive analyses of other risk factors are similarly captured in

Table 1.

Model �t & complexity Model 1 Model 2 Model 3 Model 4

19656.426 19653.137 18836.982 18829.27

125.88701 124.88603 173.18146 173.96167

19908.2 19902.909 19183.345 19177.193

Table 2. Model �t and complexity

Table 2 gives the model �t and complexity. Model 1, which contains the linear and spatially weighted

structured effects, is considered the most complex �tted model given that it recorded the highest value of

DIC. Inclusion of both spatially weighted structured effect and unstructured random effects improves the

�t of Model 2 as it reduces its DIC value. Model 3 also has an improvement in model �t compared to

Model 2. Model 4, which is regarded as a convolution model as both spatially weighted structured and

unstructured effects are incorporated, including linear and non-linear covariates, appeared as the best-

�tted and least complex model. Estimates of the �xed effects in Table 3 are given in line with the best-

Deviance ( )D
¯ ¯¯̄

ρD

DIC
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�tted model (Model 4). The estimated odds ratios for probabilities of the comorbidity of anaemia and

malaria versus none of the diseases are also contained in Table 3.
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Variable

Anaemia vs no

infection

ROR & 95% CI

Malaria vs no

infection

ROR & 95% CI

Both Anaemia and Malaria vs No

Infection

ROR & 95% CI

Residence

Urban

Rural

1

1.123(1.00198, 1.646)

1

1.116(1.021, 1.360)

1

1.0293(1.165, 2.218)

Child sex

Male

Female

1

-0.146(-0.241, -0.0427)

1

-0.106(-0.354, 0.0830)

1

-0.152(-0.298, 0.00621)

Own mosquito treated

net

No

Yes

1

0.0252(0.140, 0.824)

1

0.202(0.0182, 0.732)

1

0.310(0.0143, 0.983)

Education status

No education

Primary education

Secondary education

Tertiary education

1

0.0766(-0.040, 0.0846)

0.235 (0.152, 0.634)

0.212(0.0783, 0.872)

1

0.381 (0.143, 0.591)

0.114(0.243, 0.821)

0.107(0, 0.104, 0.514)

1

0.313(-0.215, 0.837)

0.371(0.214, 1.674)

0.421(0.523, 0.928)

Wealth index

Poorest

Poorer

Middle

Richer

Richest

1

-0.214(-0.437, -0.0231)

0.001(0.092, 0.151)

0.0566(0.041, 0.213)

0.037(0.021, 0.921)

1

-0.168(-0.481, 0.217)

0.0477(0.023, 0.688)

0.244(0.07, 0.874)

0.231(0.198, 0.329)

1

0.087(0.04, 0.641)

0.298(0.127, 0.921)

0.021(0.0193, 0.391)

0.0109(0.0284, 0.581)
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Variable

Anaemia vs no

infection

ROR & 95% CI

Malaria vs no

infection

ROR & 95% CI

Both Anaemia and Malaria vs No

Infection

ROR & 95% CI

Geo-political Zone

North Central

North East

North West

South east

South South

South West

1

1.274(1.653, 2.837)

0.541(0.06, 1.0581)

0.577(0.0833, 0.324)

0.461(0.0617, 0.943)

0.363(0.176, 1.942069)

1

1.165(0.579, 1.982)

0.0821(1.139, 2.622)

0.342(0.322022, 0.932)

0.165(0.0181, 1.4059)

0.132(0.092, 1.576)

1

1.261(1.004, 1.951)

0.473(0.202884, 0.896)

1.06(1.513, 2.38)

0.065(0.432, 0.923)

0.224(0.081, 0.873)

Table 3. Model Estimates and Odd ratios

Area of residence is identi�ed as a signi�cant determinant of anaemia and malaria. Children in rural

areas have an increased risk of contracting anaemia (1.123(1.00198, 1.646)), malaria (1.116(1.021, 1.360)), and

both infections (1.0293(1.165, 2.218)) compared to urban children. Being female is associated with a

reduced risk of contracting anaemia, malaria, or both. Although the results revealed that gender is not a

signi�cant determinant of anaemia and malaria among under-�ve children, the estimate of �xed effects

covariates also showed that children from households that own mosquito-treated nets have a reduced

risk of being infected with anaemia, malaria, and both compared to those whose parents do not have

mosquito-treated nets (0.0252(0.140, 0.0824), 0.202(0.0182, 0.732), 0.310(0.143, 0.483)). The odds of a child

in Nigeria having anaemia, malaria, or both are lower for parents who acquired at least primary school

education compared with children from parents without education. However, having primary education

is only a signi�cant factor for malaria. The likelihood of a child having anaemia, malaria, or both is

signi�cantly lower for children from higher socioeconomic backgrounds. Children from poorer, middle,

rich, and richest parents have lower odds of contracting diseases compared with children from the

poorest parents. However, among the wealth indices observed, only the poorer category is not associated

with the odds of a child having anaemia, malaria, or both infections. Also, children from the North East
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and South West have the highest and lowest risk of having anaemia compared with children from the

Central Geo-political zone. Children from the North East were 27%, 16%, and 26% more likely to have

suffered from anaemia, malaria, and comorbidity of both infections, respectively, in comparison with

children from the North Central zone. Children from the North West are 54%, 8%, and 47% less likely to

contract anaemia, malaria, or both infections, respectively, compared with their counterparts from the

North Central zone. South East children have a 57% and 34% reduced chance of being infected with

anaemia and malaria, respectively, while they are 6% more likely to suffer from both diseases. Under-�ve

children from South South are 46%, 17%, and 7% less likely to have contracted anaemia, malaria, and

both infections compared with children from North Central. Besides, in comparison with children from

the North Central part of Nigeria, children from the South Western zone of Nigeria are 36%, 13%, and 22%

less likely to have suffered from anaemia, malaria, and both infections, respectively. Figures 2-4 present

the non-linear effects of the age of the child and the age of the mother alongside the posterior modes and

95% CI. Essentially, the risk of anaemia decreases as children grow and develop. The sinusoidal curve that

describes the nonlinear relationship between the age of the mother and the risk of a child contracting

anaemia in Figure 2 shows that a child is at higher risk of contracting anaemia when the mother is

between the ages of 15 and 22 years. The chance declines when the mother is between 23 and 30 years,

and the risk rises when the mother is between the ages of 31 and 40 years, and declines when the mother

is above 40 years. Figures 3 and 4 also describe the non-linear relationship between the child’s age and

the risk of contracting malaria and the age of the mother and the associated risk of malaria. As presented

in Figure 3, the risk of malaria in a child rises sharply from the �rst month until the 10th month of birth.

It maintains a constant high value till the age of �ve years. Also, the relationship between the mother’s

age and the risk of a child having malaria can also be described by a nonlinear curve. The risk rises

among children from mothers between the ages of 15 and 20 years, and the likelihood of a child having

malaria declines sharply as mothers reach the age of 45. However, the �nding for the comorbidity of

anaemia and malaria, as shown in Figures 4, shows that the likelihood of a child having both infections

increases from the �rst month until the age of the 10th month, after which it maintains a constant

pattern till the child reaches the age of 5 years. The nonlinear relationship between the age of the mother

and the likelihood of a child contracting both anaemia and malaria is also best described by a sinusoidal

curve. The risk was observed to rise sharply when the mother is between the ages of 15 and 20. It

maintains a steady pattern when the mother is between 21 and 45 years and declines after the age of 45

years. Figure 5 reveals the residual geographical pattern for anaemia, malaria, and comorbidity of
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anaemia and malaria. The left maps show the posterior modes and the 95% CI. The right maps show the

states at high and low risk of the infections. As revealed by Figure 7, the odds of a child in Nigeria testing

positive for the comorbidity of anaemia and malaria based on NMIS (2021) are signi�cantly higher in four

states, which are Bayelsa, Akwa Ibom, Lagos, and Kwara; it is lower in states like Borno, Ogun, and

Kaduna. However, the odds are not signi�cant in other states.

Figure 2. Nonlinear effect of child’s age and mother’s age on the risk of childhood anaemia

Figure 3. Nonlinear effect of child’s age and mother’s age on the risk of childhood malaria in Nigeria
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Figure 4. Nonlinear effect of child’s age and mother’s age on the risk of childhood comorbidity of anaemia

and malaria

Figure 5. Residual spatial weighted effects at state levels for anaemia only versus no infection.

The left map (Map I) shows the relative risk ratio, and the right map (Map II) shows the corresponding

posterior probability for a nominal level of 95%. Black denotes states with a strictly negative credible

interval, white denotes states with a positive credible interval, and grey denotes states with a non-

signi�cant probability of the relative risk ratio.
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Figure 6. Residual spatially weighted effects at state levels for malaria only versus no infection.

The left map (Map III) shows the relative risk ratio, and the right map (Map IV) shows the corresponding

posterior probability for a nominal level of 95%. Black denotes states with a strictly negative credible

interval, white denotes states with a positive credible interval, and grey denotes states with a non-

signi�cant probability of the relative risk ratio.

Figure 7. Residual spatial weighted effects at state levels for comorbidity of anaemia and malaria versus no

infection.

The left map (Map III) shows the relative risk ratio, and the right map (Map IV) shows the corresponding

posterior probability for a nominal level of 95%. Black denotes states with a strictly negative credible
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interval, white denotes states with a positive credible interval, and grey denotes states with a non-

signi�cant probability of the relative risk ratio.

5. Discussion and Conclusion

In this study, the multinomial logit model was extended to a Bayesian spatially weighted model to

analyze areas of high and low risk of comorbidity of anaemia and malaria after adjusting for different risk

factors. A cross-sectional nationally representative survey, precisely the 2021 Nigeria Malaria Indicator

Survey data, was used to measure residual spatial patterns across the 36 states of the federation,

including the FCT. The average monthly cluster temperature of the year 2020 for each state of the

federation, as realized in the survey, was used in this study as a weighting factor. The results of our study

showed that the location of children can have an impact on their health and that this can be linked to

socio-economic, climatic, and environmental factors. Transforming binary data into multi-categorical

data is appropriate for the analysis of two diseases with overlapping characteristics. This approach

captures the complex relationships between the diseases and better understands their patterns. The

overall comorbidity prevalence of anaemia and malaria was found to be 12%. The residual risk estimates

for the comorbidity of both diseases, as shown by the spatial map, range from -0.967 to 0.853. The place

of residence was found to be a signi�cant factor in determining the risk of childhood diseases. A child

who resides in a rural area has a greater likelihood of contracting anaemia, malaria, and even both

infections compared with children in urban areas. Our �ndings also showed that a child’s gender is not a

signi�cant risk factor for childhood diseases. Owning a mosquito-treated net is a signi�cant risk factor

for anaemia, malaria, and both diseases. This means that owning a mosquito net reduces the risk of a

child contracting diseases. The educational level of a mother is also associated with the likelihood of her

child testing positive for childhood diseases. As regards the comorbidity of childhood diseases, only

tertiary education is signi�cant. This means that a child from a mother who acquired tertiary education

is less likely to contract diseases compared with their counterpart from uneducated mothers. This is also

the same for the risk of contracting anaemia only and malaria only. Having secondary education was a

signi�cant factor and reduced the likelihood of a child contracting either anaemia or malaria compared to

a child from a mother who does not possess any academic quali�cation. The �ndings also revealed that

the wealth index, which is a determinant of socio-economic status, is also a determinant of childhood

illness. In comparison with children from the poorest mothers, the risk of a child having the comorbidity

of anaemia and malaria is lower among mothers in the middle, rich, and richest wealth index. Also, our
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�ndings show that while children from the North East and South East parts of the country have a higher

chance of contracting both anaemia and malaria compared with their counterparts from the North

Central, those from other geo-political zones are less likely to contract childhood disease comorbidity.

Considering the �ndings from the study, the area of residence of a child, possessing tertiary education by

a child’s mother, and belonging to at least the middle wealth index are signi�cant risk factors for disease

comorbidity among under-�ve children in Nigeria. The relationship between a child’s age and the risk of

contracting diseases was found to be non-linear. The risk of a child having anaemia reduces as the child

increases in age. In terms of malaria, the risk of infection increases up until the age of 10 months, after

which it remains high but relatively stable. The non-linear effects of a child’s age and the risk of

comorbidity of anaemia and malaria follow the same pattern as that of malaria only, with both peaking

around 10 months of age. The effects of the mother's age on the risk of a child being tested positive for

diseases follow a sinusoidal pattern, increasing and decreasing over time. This suggests that

environmental and seasonal factors may play a role in the risk of infection, with certain ages being more

vulnerable than others. This pattern is similar for both single and multiple diseases. The results of the

spatial analysis suggest that while there is variation in the risk of comorbidity of anaemia and malaria

among children across the 37 states of the federation, Bayelsa, Akwa Ibom, Lagos, and Kwara states are at

high risk of the disease comorbidity, Borno, Ogun, and Kaduna states are at very low risk, while the rest of

the states have a risk that can be said to be indifferent. States with low average temperatures have a

higher risk of comorbidity of anaemia and malaria among under-�ve children in Nigeria compared to

states with high average temperatures. The average temperature used as weighting factors, however, has

a strong relationship with the spatial pattern of disease comorbidity across the 36 states of the federation,

including the Federal Capital Territory. The study recommends that, to better account for spatial

variation in risk and identify states that are more susceptible to disease comorbidity among children

under �ve years of age, future studies should incorporate weighted spatial random effects into the

modelling approach. This will help to more accurately estimate the risks of disease and target

interventions to the areas of greatest need. Also, future studies should consider other weighting factors,

such as average levels of carbon monoxide, average amount of rainfall, and other climatic factors. These

factors may help to further improve the accuracy of estimates of risk, thereby making the model more

robust. Based on the �ndings of this study, the identi�ed areas with a high risk of childhood comorbidity

of anaemia and malaria illness should be prioritized for interventions.
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