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Understanding collective self-organization in active matter, such as bird �ocks and �sh schools, remains a

grand challenge in physics. Interactions that induce alignment are essential for �ocking; however,

alignment alone is generally insuf�cient to maintain group cohesion in the presence of noise, leading

traditional models to introduce arti�cial boundaries or explicit attractive forces. Here, we propose a model

that achieves cohesive �ocking through purely alignment-based interactions by introducing predictive

alignment, in which agents reorient to maximize alignment with the prevailing orientations of their

anticipated future neighbors. Implemented in a discrete-time Vicsek-type framework, this approach

delivers robust, noise-resistant cohesion without additional parameters. In the stable regime, �ock size

scales linearly with interaction radius, remaining nearly immune to noise or propulsion speed, and the

group coherently follows a leader under noise. These �ndings reveal how predictive strategies enhance

self-organization, paving the way for a new class of active matter models blending physics and cognitive-

like dynamics.
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Introduction

From micrometer-sized bacteria to complex animals, biological organisms sense their environment, process

directional cues, and adapt their motion accordingly  [1][2][3]. Similar feedback mechanisms are also

indispensable in the control of autonomous robotic systems  [4]. Based on visual  [5], acoustic  [6], or

chemical [7] signals, these perception-reaction interactions result in the self-organization of large ensembles

of cognitive individuals into cohesive spatiotemporal patterns, such as bird �ocks  [8], �sh schools  [9], and

human crowds [10]. The study of these collective behaviors falls within the domain of active matter physics [3]

[11][12]. Models of collective behavior in active matter span Reynolds-type ‘boid’ models  [13], Vicsek-type
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‘alignment’ models [14][15][16], Couzin-type ‘zonal’ models [17], ‘vision cone’ models [18][19], motivation-based

models  [20][21][22][23], vision-based models  [5][24][25], energy-ef�ciency models  [26], and other biologically

motivated models [27], as well as models designed for controlling robotic swarms [28].

Vicsek-type models that rely solely on alignment interactions struggle to maintain cohesion without arti�cial

mechanisms such as periodic or re�ecting boundaries, or additional attractive forces  [29][30]. However,

boundary conditions can in�uence bulk behavior, especially in the parameter regime associated with

microphase separation, where density waves tend to align with the symmetries of the periodic simulation

box  [29][30][31]. Similarly, incorporating attractive interactions can induce swirling motion  [32], which was

absent in the original model. Other models achieve cohesion through either direct attractive

interactions [33] or explicit mechanisms, such as active or passive reorientation and movement toward a local

or global center of the group [13][17][18][19]. Notable exceptions include models where cohesion is not explicitly

built into the algorithm, such as the maximum path entropy model  [22][23]  or vision-based models  [5].

However, these approaches do not restrict the agents’ sight range, effectively introducing long-range

interactions. To our knowledge, no prior model achieves cohesive �ocking with purely alignment

interactions over a �nite range.

Here, we introduce predictive alignment in a Vicsek-type framework with a limited interaction radius  . We

interpret the alignment interactions as biologically motivated social behaviors based on individual decision-

making. Speci�cally, we implement them using the sociological rule of “copy the other”  [34], whereby an

individual adopts the prevailing state of its neighbors—a strategy known to enhance individual success

within a group.

Our model reduces to a variation of the Vicsek model for simple agents that cannot anticipate future

positions. However, agents capable of anticipating their future neighbors effectively optimize a trade-off

between alignment and proximity. This yields a cohesive �ocking model based solely on alignment with the

prevailing orientation of neighbors, without the need for additional parameters or boundary constraints. The

system undergoes a dynamical transition to an incoherent state with increasing noise and distance traveled

per timestep over the interaction radius. In the �ocking state, the stationary �ock radius is comparable to the

interaction radius, independent of agent speed, and increases linearly with noise—albeit with a very small

slope. Additionally, the group ef�ciently follows a subgroup of maneuvering leaders. Our results reveal how

predictive strategies enable robust self-organization akin to natural systems.

ζ
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Model

Figure 1. Model.a At each discrete time step, individual agents aim to align as closely as possible with the prevailing

orientation of their neighbors within a circle of radius  . To achieve this, they select one of seven possible

reorientations,  , that maximizes the correlation function in Eq. (3). All agents update

their orientation in parallel. b We implemented four different strategies (IA–IIB) for evaluating the correlation

function. In strategies I, the correlation is computed using the current neighbors ( ), whereas in strategies

II, it is computed using predicted future neighbors [ ], as illustrated by the black circles. In

strategies A, the agent’s own orientation is included inside the bracket of the correlation function ( ),

introducing orientational inertia, which is absent in strategies B ( ).

Biological active agents in nature follow evolutionarily adapted instincts and, in the case of higher animals,

sometimes even learned or cognitively driven strategies to achieve speci�c goals such as collision avoidance

or foraging. Similar mechanisms are also implemented in the development of autonomous robotic systems.

These strategies are shaped by physical, biological, or technical constraints, which limit the range of possible

dynamical and adaptive responses. We consider a system of   Vicsek-type agents self-propelling in discrete

time in two dimensions with a constant velocity    in the direction of their orientation vectors 

,  . At each discrete time step  , the agents reorient by discrete angles 

  rads to achieve maximum alignment with their neighbors, as shown in

Fig.  1a. We used a discrete set of angles mainly for computational ef�ciency—selecting the optimal

reorientation from a small, prede�ned set is signi�cantly faster than solving the corresponding continuous
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optimization problem. The set   is chosen to allow agents to reorient either gradually or sharply, depending

on how far their desired direction deviates from their current heading, to mimic the original Vicsek model.

Nevertheless, as shown in Sec. S8 1, a variant of the model with only three possible reorientation angles yields

qualitatively similar results. The limited reorientation can be interpreted as a realistic constraint, re�ecting

the physical limitations of actual agents, such as friction or biomechanical restrictions that prevent abrupt

turns. We also note that in the IIA and IIB variants of the model, discussed below and in Fig. 1b, the discrete

angle sets effectively de�ne agent’s �eld of view.

The imperfections in reorientation of the agents are re�ected by a noise term   sampled from the interval 

, added to the chosen  . The resulting dynamical equations for  th particle position   and velocity 

 are given by: 

What remains is to choose a strategy to determine the reorientation angle    in Eq.  (2). In the classical

discrete-time Vicsek model,   is chosen to align the  th agent’s velocity with the average velocity   of its

neighbors. To incorporate this effect, we de�ne  , i.e., as the argument that maximizes

the correlation function 

It can be interpreted as the correlation between the agent’s future desired velocity, 

  and the generalized, non-normalized average velocity of its

predicted future neighbors within the interaction radius centered at its predicted future position    (see

Fig. 1b). Since    is not normalized, it quanti�es the degree of alignment between the  th agent’s intended

future heading and the prevailing orientation of its predicted future neighbors. Thus, it serves as a natural

objective function to maximize by agents aiming to ‘copy’ the prevalent orientation of their neighbors. The

Heaviside step function    is modi�ed such that  , ensuring that    properly accounts for all

particles within the interaction radius  . Depending on the cognitive abilities of the agents, the predicted

velocity   and position   used in the non-normalized average velocity in Eq. (3) can be evaluated either at

time  —for agents unable to predict their future state—or at time  —for cognitively more capable

agents. This results in four distinct ways to de�ne the correlation, as illustrated in Fig.  1b. In principle,

perceptual errors in real-world agents would necessitate the inclusion of a noise term within the bracket in

Eq. (3). However, we neglect such perceptual noise in the present study and, using the terminology of Vicsek
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model modi�cations, consider only angular noise while neglecting vectorial noise [35]. If   vanishes for all

possible reorientations, the agent updates its orientation purely by noise, i.e.,   in Eq. (2).

The strategies IA and IB calculate the correlation    with the current neighbors of the agent  ,  .

Strategy IA further takes the agent’s current velocity    inside the sum, and IB uses the interpolated

velocity   instead. In both cases,  , where   is a constant,   the number of

neighbors of agent    at time    and    their average velocity. For IA,    and the agent    is counted in 

 and  , so that   and  . For IB,   and

the agent    is not counted in the de�nition of    and    (   in the sums above). Nevertheless, in both

cases,   and   are independent of   and thus the intended velocity that maximizes    is the one best

aligned with the average velocity  . Notably, considering the agent’s own velocity in    introduces slight

orientational inertia in IA, as agents take their own heading into account. These two strategies correspond to

two variants of the Vicsek model: Vicsek model A, which includes the agent’s own velocity in the average

velocity calculation, and Vicsek model B, which does not (see Sec. S1 1).

The strategies IIA and IIB, use the neighbors corresponding to the intended future position of agent   at time 

,  , and thus require calculating the correlation   using different neighbors for each

value of the realignment angle. From now on, we will call these two strategies predictive and the

corresponding models as predictive models. As above, strategy IIA further takes the agent’s current velocity 

  inside the sum, and IIB the interpolated velocity  . Also in these cases, 

. Nevertheless, the number of neighbors of    ,  , and their average velocity,  , are

now calculated with respect to its intended position    and thus they depend on the

reorientation angle. For IIA the agent   is counted in   and  . For IIB,   and the agent   does not

contribute to the averages. Importantly, in both these strategies, the optimal reorientation angle follows from

a tradeoff balancing the number of nearest neighbors and alignment with the average velocity, resulting in an

attractive alignment interaction. Different from IIB, IIA, in addition, has some positional inertia.

The time step    affects only the relaxation times and does not alter the stationary state. Upon rescaling

particle positions by the interaction radius  , the stationary behavior of this model is controlled by two

parameters: the ratio of the distance traveled per timestep to the interaction radius,  , and the noise-

induced orientation change per time step, quanti�ed by  . In the following, we consider groups of 

 agents initially positioned randomly within a square of side length  , with   and  .

In Sec. S10 1, we show that using a larger   produces qualitatively the same results. A more physically

grounded, continuous-time variant of the model is described in Sec. S2 1.
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Flocking from predictive alignment

Figure 2. Comparison between Vicsek-like and predictive models. The agents started with uniformly distributed

orientations and evolved according to the standard time-discrete Vicsek model, its modi�cations A and B (see Sec.

S1 1), as well as the decision-based models IA–IIB de�ned in the main text. For all models, we set the reduced

speed to  , noise intensity to  , and averaged the shown data over 25 replicas with different

noise realizations. a–c, The Vicsek-type models exhibit a rapid loss of cohesion, indicated by a a sharp decrease in

the average polarization  , b an increase in its �uctuation  , and c a rapid growth of the average

agent-to-center-of-mass distance,  . These effects occur before  , predicted from diffusive

spreading analysis of Vicsek model (vertical dashed lines). d–g, The predictive models IIA and IIB yield nearly

identical stable �ocking behaviors, with d a consistently high average polarization �uctuating weakly around 0.98,

e low polarization variance, and f a closely packed system con�guration, where the average agent-to-center-of-

mass distance �uctuates around 0.366. g The system size self-adjusts as the initially square-shaped �ock

transitions through an elongated intermediate state before settling into a �nal circular con�guration (insets). The

system size relaxation time, de�ned as the point when   drops to half of its initial value, is approximately 

. Analogously de�ned relaxation times for   and   are shorter than   (see Sec. S7 1).

Models with purely alignment interactions, such as the Vicsek model, fail at maintaining group cohesion

even under arbitrarily weak noise due to the diffusive spreading of agents. The time it takes for two particles,

initially at the same position, to ‘diffuse’ further away than one interaction radius can be estimated as 
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 (see Sec. S4 1). It is reasonable to expect that as the number of agents increases, the Vicsek

�ock will break up into subgroups more quickly. For   and   as used in Fig. 2, our estimate

suggests that �ock coherence is lost before  . For Vicsek-like models IA, IB, and for the standard

Vicsek model, this prediction aligns remarkably well with the saturation point where (a) the average

polarization,  , halts its rapid decrease, and (b) the polarization variance,  , halts its rapid

increase. It also marks the end of the initial sharp rise in the average agent-to-center-of-mass distance, 

  (c). Beyond this point, the system size expands ballistically as the single �ock fragments into multiple

sub-�ocks, indicated by the vanishing polarization and peak variance in (a) and (b). (For precise de�nitions of

the order parameters, see Sec.  S3  1.) On the other hand, the predictive models IIA and IIB produce highly

polarized, closely packed, and coherent �ocks, with a self-adjusted  , corresponding to a �ock

radius of approximately  . This implies that the entire stationary �ock �ts within a single interaction

radius, making the model unrealistic from a biological perspective, where the number of perceived neighbors

is limited  [8]. The corresponding order parameters exhibit only minor �uctuations and remain stable over

time—at least over the simulation durations we tested, which span up to ten diffusive spreading times.
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Noise induced dynamical transition

Figure 3. Effects of noise in Vicsek model and the predictive model IIA. Boxplots represent results from 25

independent simulations with different noise realizations, where orange lines indicate the median, boxes span the

interquartile range, whiskers extend to data points within 1.5 times the interquartile range, and outliers are shown

as individual circles. a–c In the Vicsek model, for noise levels  , �ock cohesion is lost, with fragmentation

increasing at higher noise levels, as re�ected by a reduced average polarization  , b an increased average agent-

to-center-of-mass distance  , and c a greater number of clusters. d–f In contrast, the predictive model IIA

maintains stable �ocking in over half of the replicas for  . Here, d polarization gradually decreases from 1,

with agents forming V-shaped �ocks at zero noise and round �ocks at nonzero noise (insets). e The average

agent-to-center-of-mass distance initially decreases but subsequently increases linearly for   and

coherent replicas, following   (inset). f The system predominantly consists of a single cluster

of communicating agents for  , with more than one outlier for   and  . At high

noise levels, system size (b, e) decreases due to the interplay between noise-induced alignment destabilization

and suppression of system growth by the diffusive motion of individual subclusters. The models were simulated

under the same conditions as in Fig. 2 unless otherwise speci�ed in the �gure. The order parameters were

evaluated at time  .
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The predictive strategies IIA and IIB yield nearly identical results, while strategy IA exhibits slightly better

coherence than IB. We attribute this to the slight orientational inertia introduced by the de�nition of the

correlation function in strategies A. In the following, we analyze the behavior of the IIA model under

variations in the two key parameters: noise intensity,  , and scaled velocity,  .

With periodic boundary conditions  [14], the Vicsek model undergoes a discontinuous phase

transition [36] from an ordered to a disordered state. Without periodic boundaries, coherent polarized �ocks

form only at vanishing noise. When initialized with randomly oriented agents uniformly distributed within a

rectangle of side length  , the model exhibits a monotonic decrease in average polarization (Fig. 3a) and a

corresponding increase in the number of communicating clusters (Fig.  3c) as noise intensi�es, consistent

with this expectation. Notably, the average agent-to-center-of-mass distance reaches a maximum at an

intermediate noise level (Fig. 3b). This nonmonotonic behavior arises because, at low noise, the �ock expands

ballistically, whereas at high noise, the motion of individual sub�ocks becomes diffusive on the relevant

timescale. In this regime, sub�ocks undergo an effective random walk, slowing the overall expansion of the

system.

Under the same conditions and for noise intensities  , the predictive model IIA produces coherent

�ocks consisting of a single cluster of communicating particles (Fig.3f) with polarization   (Fig.3d) in

most of the 25 replicas used in our simulations. The inset shows that, in the absence of noise, the coherent

�ocks adopt a V-shaped formation, reminiscent of those observed in migrating birds, where this

arrangement reduces energy expenditure. At nonzero noise levels, the �ocks transition to a rounded shape,

similar to the formations observed in foraging bird �ocks, where cohesion and �exibility are prioritized over

aerodynamic ef�ciency. For videos showing the relaxation of �ock shapes and an analysis of the

corresponding relaxation times, see the SI 1.

For  , the average agent-to-center-of-mass distance decreases with increasing noise. This ‘noise

stabilization effect’ arises from the discrete set of allowed reorientations, which, unlike the classical Vicsek

model with arbitrary reorientation per timestep, prevents the system from fully polarizing at zero noise. A

similar effect has been observed in Ref.  [23]. For  , the average agent-to-center-of-mass

distance in stable replicas increases linearly with noise (inset of Fig.  3e). Beyond  , all order

parameters undergo a transition for the majority of replicas: polarization    vanishes,    grows by two

orders of magnitude within the given simulation time, and the number of clusters approaches the total

number of agents. At higher noise levels, both   and the number of clusters slightly decrease, consistent

with the diffusive motion of subclusters described above.
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In the 25 replicas of the system with different noise realizations obtained from our simulations, a few

exceptions to the described behavior appear as empty circles in Fig. 3, representing individual outliers from

the typical trend, depicted by the orange lines inside the boxes. The higher number of outliers observed for 

  in Fig.  3e, compared to Fig.  3f, arises because each replica contributing to the system size outliers

consisted of two separate sub�ocks, leading to overlapping circles in Fig.  3f. In Sec.  S9  1, we show that the

same phenomenology can also be observed when the system is initially perfectly aligned, demonstrating the

robustness of the described dynamic phases. For further details on how the described dynamical phases

manifest in the behavior of the individual replicas, see Fig. S1 1.

Role of speed and interaction radius

For a given noise intensity, the system forms a stable �ock if the ratio   is small enough so that each agent

has suf�cient time to align with its neighbors before changing them. In the stable regime, the �ock size is

proportional to the interaction radius and independent of the speed, i.e.,  . For details, see Fig. S1 1.

Leadership

In nature, bird �ocks often involve a subgroup of leaders who are best informed about the target position and

who are followed by the rest of the �ock  [17][27]. In Fig.  S9 and Supplementary video 3  1, we show that the

predictive model IIA can form cohesive �ocks also in the scenario when a subgroup of leaders perform an

oscillator deterministic motion, albeit for slightly lower   than without the perturbation by leaders.

Discussion

We have presented a cohesive �ocking model based solely on alignment interactions, achieved by replacing

the Ising-like alignment rule of the Vicsek model with predictive alignment, in which agents adopt the

predicted prevailing orientation of their future neighbors. For agents unable to predict their future positions,

this rule reduces to various modi�cations of the Vicsek model—since the set of neighbors remains the same

for all directions, the magnitude of the mean polarization is independent of the chosen direction. However,

agents that can predict the future positions of their neighbors optimize a tradeoff between aligning with

neighbors’ headings and maintaining proximity, yielding cohesion and order without the need for boundaries

or added forces. This approach fundamentally departs from previous models, which rely on such aids [29], and

is reminiscent of the reinforcement learning algorithm aimed at minimizing neighbors’ losses, as

investigated in Refs.  [37][38]. From a technical perspective, the dynamical equations feature a reorientation

η ≈ 0

/ζv0

∼δCM ζs

/ζv0
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’force’ that does not follow the gradient of a potential, which would typically lead to stable orientations at

local minima. Instead, it is governed by an    function, which reorients agents toward the deepest

minimum of a utility function (negative orientation correlation with neighbors) that is accessible in the next

timestep. This process is constrained by the agent’s �eld of view, reorientation capabilities, and motility.

Our algorithm provides a plausible strategy that intelligent agents with given physical and cognitive abilities

might employ to ef�ciently align with their neighbors. As such, it falls within the class of intrinsically

motivated[20][21][22] and cognitive[18][19] active matter algorithms. The algorithm can also be integrated into

the broader framework of active inference[39], a general theory of decision-making. However, unlike typical

active inference models, our approach does not rely on the assumption that the system state is near the global

optimum of a utility function, allowing forces to be described as gradients of generalized potentials. Instead,

it enables agents to dynamically adapt the most preferred con�guration they perceive.

The model is scalable, and the resulting �ock shapes resemble those observed in nature. However, the

stationary states predicted by the model are so dense that the average number of neighbors perceived by each

agent is signi�cantly higher than the realistic values natural agents are able to process—typically around

seven  [8]. Moreover, birds have been shown to align with their nearest topological, rather than metric,

neighbors [8]. In addition to these issues, future revisions of the model should be accompanied by an analysis

of the properties commonly studied in natural �ocks or swarms, such as the shapes of correlation functions

and their �nite-size scaling  [40], to allow for a quantitative comparison between natural systems and the

model.

Future extensions of the model could investigate modi�cations to agents’ cognitive abilities—such as

enhanced predictive capabilities, perceptual limitations  [8], or delays in decision-making processes  [41].

Another avenue is to consider agents governed by different physical principles, for example, incorporating

inertia or more general non-Markovian effects. Finally, it would be valuable to explore potential applications

of models like the one presented here in areas such as swarm robotics [42], where agents are not constrained

by biological limitations. Notably, the current approach resembles swarm control algorithms based on

individual robot decisions made without explicit information sharing among agents [43].

Supplementary Material
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Footnotes

1 See Supplemental Material for de�nitions of modi�ed variants of the Vicsek model, a discussion of the

time- continuous limit of the predictive alignment model, def- initions of order parameters, a discussion of

diffusive spreading in the Vicsek model, analyses of replica- resolved behavior and the roles of speed and

interaction radius in the predictive alignment model IIA, discussions of �ock shapes and leadership, a

minimalist variant of the model, an analysis of the independence of results from initial conditions, a proof of

scalability, and descriptions of supplementary videos.
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