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Understanding collective self-organization in active matter, such as bird �ocks and �sh schools,

remains a grand challenge in physics. Alignment interactions are essential for �ocking, yet alone, they

are generally considered insuf�cient to maintain cohesion against noise, forcing traditional models to

rely on arti�cial boundaries or added attractive forces. Here, we report the �rst model to achieve

cohesive �ocking using purely alignment interactions, introducing predictive alignment: agents

orient based on the predicted future headings of their neighbors. Implemented in a discrete-time

Vicsek-type framework, this approach delivers robust, noise-resistant cohesion without additional

parameters. In the stable regime, �ock size scales linearly with interaction radius, remaining nearly

immune to noise or propulsion speed, and the group coherently follows a leader under noise. These

�ndings reveal how predictive strategies enhance self-organization, paving the way for a new class of

active matter models blending physics and cognitive-like dynamics.
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1. Introduction

From micrometer-sized bacteria to complex animals, biological organisms sense their environment,

process directional cues, and adapt their motion accordingly[1][2][3]. Similar feedback mechanisms are

also indispensable in the control of autonomous robotic systems[4]. Based on visual[5], acoustic[6], or

chemical[7]  signals, these perception-reaction interactions result in the self-organization of large

ensembles of cognitive individuals into cohesive spatiotemporal patterns, such as bird �ocks[8], �sh

schools[9], and human crowds[10]. The study of these collective behaviors falls within the domain of
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active matter physics[11][12][3]. Models of collective behavior in active matter span Reynolds-type ‘boid’

models[13], Vicsek-type ‘alignment’ models[14][15], Couzin-type ‘zonal’ models[16], ‘vision cone’ models[17]

[18], motivation-based models[19][20][21][22], vision-based models[5][23][24], energy-ef�ciency models[25],

and other biologically motivated models[26], as well as models designed for controlling robotic

swarms[27].

Vicsek-type models, relying solely on alignment, struggle to maintain cohesion without arti�cial aids like

periodic boundaries or added attractive forces[28]. However, periodic boundaries can in�uence bulk

behavior, particularly in the parameter regime associated with microphase separation, where density

waves align with the symmetries of the periodic simulation box[29]. Similarly, incorporating attractive

interactions can induce swirling motion[30], which was absent in the original model. Other models

achieve cohesion through either direct attractive interactions[31] or explicit mechanisms, such as active

or passive reorientation and movement toward a local or global center of the group[13][16][17][18]. Notable

exceptions include models where cohesion is not explicitly built into the algorithm, such as the

maximum path entropy model[21][22]  or vision-based models[5]. However, these approaches do not

restrict the agents’ sight range, effectively introducing long-range interactions. To our knowledge, no

prior model achieves cohesive �ocking with purely alignment interactions over a �nite range.

Here, we introduce predictive alignment in a Vicsek-type framework with a limited interaction radius  .

We interpret the alignment interactions as biologically motivated social behaviors based on individual

decision-making. Speci�cally, we implement them using the sociological rule ”copy the other”[32], which

is known to enhance the success of an individual in a group.

Our model reduces to a variation of the Vicsek model for simple agents that cannot anticipate future

positions. However, when agents adopt the preferred orientation of their predicted future neighbors, they

effectively optimize a tradeoff between alignment and proximity. To our knowledge, this results in the

�rst cohesive �ocking model that relies solely on alignment and does not have additional parameters or

boundaries. The system undergoes a dynamical transition to an incoherent state with increasing noise

and distance traveled per timestep over the interaction radius. In the �ocking state, the stationary �ock

size is independent of agent speed, scales proportionally to the interaction radius, and linearly increases

with noise—though with a very small slope. Additionally, the group ef�ciently follows a subgroup of

maneuvering leaders. Our results reveal how predictive strategies enable robust self-organization akin to

natural systems.
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2. Results

2.1. Model

Figure 1. Model. a At each discrete time step, individual agents aim to align as closely as possible with the

orientation of their neighbors within a circle of radius  . To achieve this, they select one of seven possible

reorientations,  , that maximizes the correlation function in Eq. (3). All agents

update their orientation in parallel. b We implemented four different strategies (IA–IIB) for evaluating the

correlation function. In strategies I, the correlation is computed using the current neighbors ( ),

whereas in strategies II, it is computed using predicted future neighbors [ ], as

illustrated by the black circles. In strategies A, the agent’s own orientation is included inside the bracket of the

correlation function ( ), introducing orientational inertia, which is absent in strategies B (

).

Biological active agents in nature follow evolutionarily adapted instincts and, in the case of higher

animals, sometimes even learned or cognitively driven strategies to achieve speci�c goals such as

collision avoidance or foraging. Similar mechanisms are also implemented in the development of

autonomous robotic systems. These strategies are shaped by physical, biological, or technical constraints,

which limit the range of possible dynamical and adaptive responses. We consider a system of   Vicsek-

type agents self-propelling in discrete time in two dimensions with a constant velocity   in the direction

of their orientation vectors  ,  . At each discrete time step  , the agents reorient
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by discrete angles    rads to achieve maximum alignment with their

neighbors, as shown in Fig.  1a. The agents thus have the ability to reorient more gradually or sharply

depending on how far their desired orientation is from their current heading, which brings the model

close to the original Vicsek model. Nevertheless, we show in the Supplementary information that a

variant of the model with just three possible reorientation angles gives qualitatively the same results. The

imperfections in reorientation and cognitive capabilities of the agents are re�ected by a noise term 

 sampled from the interval  , added to chosen  . The resulting dynamical equations for the

agents are given by:

What remains is to choose a strategy to determine the reorientation angle   in Eq. (2). In the classical

discrete-time Vicsek model,    is chosen to align the  th agent’s velocity with the average velocity 

  of its neighbors. To incorporate this effect, we de�ne 

, i.e., as the argument that maximizes the correlation function

which can be interpreted as the correlation between the agent’s future desired velocity 

  and the non-normalized average velocity of its neighbors

within the interaction radius. Since   is not normalized, it measures the degree of alignment of the  th

agent with the prevailing orientation of its perceived neighbors. Thus, it serves as a natural objective

function to maximize by agents aiming to ‘copy’ the prevalent orientation of their neighbors. The

Heaviside step function    is modi�ed such that  , ensuring that    properly accounts for all

particles within the interaction radius  . The particle’s  -th own velocity and position are included in the

sum as   and  , respectively. This formula for   allows us to either take   and   at time   or their

intended values at time  , which amounts to four of the many possibilities to de�ne the correlation,

depicted in Fig. 1b. If   vanishes for all possible reorientations, the agent updates its orientation purely

by noise, i.e.,   in Eq. (2).

The strategies IA and IB calculate the correlation   with the current neighbors of the agent  ,  .

Strategy IA further takes the agent’s current velocity   inside the sum, and IB uses the interpolated

velocity    instead. In both cases,  , where    is a constant,    the
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number of neighbors of agent   at time   and   their average velocity. For IA,   and the agent   is

counted in    and  , so that    and  . For IB, 

  and the agent    is not counted in the de�nition of    and    (   in the sums above).

Nevertheless, in both cases,    and    are independent of    and thus the intended velocity that

maximizes   is the one best aligned with the average velocity  . Notably, considering the agent’s own

velocity in   introduces slight orientational inertia in IA, as agents take their own heading into account.

These two strategies correspond to two variants of the Vicsek model: Vicsek model A, which includes the

agent’s own velocity in the average velocity calculation, and Vicsek model B, which does not (see

Methods).

The strategies IIA and IIB, use the neighbors corresponding to the intended future position of agent   at

time  ,  , and thus require calculating the correlation   using different neighbors

for each value of the realignment angle. From now on, we will call these two strategies predictive and the

corresponding models as predictive models. As above, strategy IIA further takes the agent’s current

velocity    inside the sum, and IIB the interpolated velocity  . Also in these cases, 

. Nevertheless, the number of neighbors of   ,  , and their average velocity,  ,

are now calculated with respect to its intended position   and thus they depend on

the reorientation angle. For IIA the agent   is counted in   and  . For IIB,   and the agent 

  does not contribute to the averages. Importantly, in both these strategies, the optimal reorientation

angle follows from a tradeoff balancing the number of nearest neighbors and alignment with the average

velocity, resulting in an attractive alignment interaction. Different from IIB, IIA, in addition, has some

positional inertia.

The time step   affects only the relaxation times and does not alter the stationary state. Upon rescaling

particle positions by the interaction radius  , the stationary behavior of this model is controlled by two

parameters: the ratio of the distance traveled per timestep to the interaction radius,  , and the

noise-induced orientation change per time step, quanti�ed by  . In the following, we consider groups of 

  agents initially positioned randomly within a square of side length  , with    and 

. In the Supplementary Information, we show that using a larger   produces qualitatively

the same results. A more physically grounded, continuous-time variant of the model is described in the

Methods section.
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2.2. Flocking from predictive alignment

Figure 2. Comparison between Vicsek-like and predictive models. The agents started with uniformly

distributed orientations and evolved according to the standard time-discrete Vicsek model, its modi�cations

A and B (see Methods), as well as the decision-based models IA–IIB de�ned in the main text. For all models,

we set the reduced speed to  , noise intensity to  , and averaged the shown data over 25

replicas with different noise realizations. a–c, The Vicsek-type models exhibit a rapid loss of cohesion,

indicated by a a sharp decrease in the average polarization  , b an increase in its �uctuation  ,

and c a rapid growth of the average agent-to-center-of-mass distance,  . These effects occur before 

, predicted from diffusive spreading analysis of Vicsek model (vertical dashed lines). d–g, The

predictive models IIA and IIB yield nearly identical stable �ocking behaviors, with d a consistently high

average polarization �uctuating weakly around 0.98, e low polarization variance, and f a closely packed

system con�guration, where the average agent-to-center-of-mass distance �uctuates around 0.366. g The

system size self-adjusts as the initially square-shaped �ock transitions through an elongated intermediate

state before settling into a �nal circular con�guration (insets). The system size relaxation time, de�ned as the

point when   drops to half of its initial value, is approximately  . Analogously de�ned relaxation

times for   and   are shorter than   (see the Supplementary Information).

Models with purely alignment interactions, such as the Vicsek model, fail at maintaining group cohesion

even under arbitrarily weak noise due to the diffusive spreading of agents. The time it takes for two

particles, initially at the same position, to ‘diffuse’ further away than one interaction radius can be
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estimated as    (see Methods). It is reasonable to expect that as the number of agents

increases, the Vicsek �ock will break up into subgroups more quickly. For   and   as

used in Fig.  2, our estimate suggests that �ock coherence is lost before  . For Vicsek-like

models IA, IB, and for the standard Vicsek model, this prediction aligns remarkably well with the

saturation point where (a) the average polarization,  , halts its rapid decrease, and (b) the polarization

variance,  , halts its rapid increase. It also marks the end of the initial sharp rise in the average

agent-to-center-of-mass distance,   (c). Beyond this point, the system size expands ballistically as the

single �ock fragments into multiple sub-�ocks, indicated by the vanishing polarization and peak

variance in (a) and (b). (For precise de�nitions of the order parameters, see Methods.) On the other hand,

the predictive models IIA and IIB form highly polarized, closely packed, coherent �ocks with self-

adjusted   corresponding to �ock radius of roughly   (see Methods). Their order parameters

�uctuate only slightly and remain stable over time, at least for simulation durations on the order of ten

diffusive spreading times we tested.
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2.3. Noise induced dynamical transition

Figure 3. Effects of noise in Vicsek model and the predictive model IIA. Boxplots represent results from 25

independent simulations with different noise realizations, where orange lines indicate the median, boxes

span the interquartile range, whiskers extend to data points within 1.5 times the interquartile range, and

outliers are shown as individual circles. a–c In the Vicsek model, for noise levels  , �ock cohesion is

lost, with fragmentation increasing at higher noise levels, as re�ected by a reduced average polarization  ,

b an increased average agent-to-center-of-mass distance  , and c a greater number of clusters. d–f In

contrast, the predictive model IIA maintains stable �ocking in over half of the replicas for  . Here, d

polarization gradually decreases from 1, with agents forming V-shaped �ocks at zero noise and round �ocks

at nonzero noise (insets). e The average agent-to-center-of-mass distance initially decreases but subsequently

increases linearly for   and coherent replicas, following   (inset). f The

system predominantly consists of a single cluster of communicating agents for  , with more than

one outlier for   and  . At high noise levels, system size (b, e) decreases due to the

interplay between noise-induced alignment destabilization and suppression of system growth by the

diffusive motion of individual subclusters. The models were simulated under the same conditions as in Fig. 2

unless otherwise speci�ed in the �gure. The order parameters were evaluated at time  .
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The predictive strategies IIA and IIB yield nearly identical results, while strategy IA exhibits slightly

better coherence than IB. We attribute this to the slight orientational inertia introduced by the de�nition

of the correlation function in strategies A. In the following, we analyze the behavior of the IIA model

under variations in the two key parameters: noise intensity,  , and scaled velocity,  .

With periodic boundary conditions[14], the Vicsek model undergoes a discontinuous phase

transition[33]  from an ordered to a disordered state. Without periodic boundaries, coherent polarized

�ocks form only at vanishing noise. When initialized with randomly oriented agents uniformly

distributed within a rectangle of side length  , the model exhibits a monotonic decrease in average

polarization (Fig. 3a) and a corresponding increase in the number of communicating clusters (Fig. 3c) as

noise intensi�es, consistent with this expectation. Notably, the average agent-to-center-of-mass distance

reaches a maximum at an intermediate noise level (Fig. 3b). This nonmonotonic behavior arises because,

at low noise, the �ock expands ballistically, whereas at high noise, the motion of individual sub�ocks

becomes diffusive on the relevant timescale. In this regime, sub�ocks undergo an effective random walk,

slowing the overall expansion of the system.

Under the same conditions and for noise intensities  , the predictive model IIA produces

coherent �ocks consisting of a single cluster of communicating particles (Fig.  3f) with polarization 

 (Fig. 3d) in most of the 25 replicas used in our simulations. The inset shows that, in the absence

of noise, the coherent �ocks adopt a V-shaped formation, reminiscent of those observed in migrating

birds, where this arrangement reduces energy expenditure. At nonzero noise levels, the �ocks transition

to a rounded shape, similar to the formations observed in foraging bird �ocks, where cohesion and

�exibility are prioritized over aerodynamic ef�ciency. For videos showing the relaxation of �ock shapes

and an analysis of the corresponding relaxation times, see the Supplementary Information.

For  , the average agent-to-center-of-mass distance decreases with increasing noise. This ‘noise

stabilization effect’ arises from the discrete set of allowed reorientations, which, unlike the classical

Vicsek model with arbitrary reorientation per timestep, prevents the system from fully polarizing at zero

noise. A similar effect has been observed in Ref. [22]. For  , the average agent-to-center-

of-mass distance in stable replicas increases linearly with noise (inset of Fig. 3e). Beyond  , all

order parameters undergo a transition for the majority of replicas: polarization   vanishes,   grows

by two orders of magnitude within the given simulation time, and the number of clusters approaches the

total number of agents. At higher noise levels, both    and the number of clusters slightly decrease,

consistent with the diffusive motion of subclusters described above.
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In the 25 replicas of the system with different noise realizations obtained from our simulations, a few

exceptions to the described behavior appear as empty circles in Fig.3, representing individual outliers

from the typical trend, depicted by the orange lines inside the boxes. The higher number of outliers

observed for    in Fig.3e, compared to Fig.3f, arises because each replica contributing to the system

size outliers consisted of two separate sub�ocks, leading to overlapping circles in Fig.3f. In the

Supplementary Information, we show that the same phenomenology (except for the weak noise

instability) can also be observed when the system is initially perfectly aligned, demonstrating the

robustness of the described dynamic phases.

To provide further insight into the behavior of individual replicas, Fig.  4a shows the logarithm of the

average agent-to-center-of-mass distance. Dark red-colored replicas indicate a small stationary system

size and thus stability, whereas blue and faint red mark unstable replicas. The reduced number of blue

points beyond    illustrates the aforementioned noise-induced stabilization effect. The �gure

also shows that for  , the number of unstable replicas sharply increases. For 

, unstable replicas are no longer mere outliers, and for  , the system becomes

unstable in the majority of replicas. Interestingly, the very onset of the transition at 

  corresponds to the parameter regime when the maximum ‘intentional’ reorientation of the

agents,   rad, matches the maximum reorientation due to noise,  .
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2.4. Role of speed and interaction radius

Figure 4. Effects of noise, speed, and interaction radius in the predictive model IIA. (a) The logarithm of the

average agent-to-center-of-mass distance,  , for individual replicas as a function of noise

intensity,  . (b) Change in   between the �nal simulation time,  , and an earlier time, 

, as a function of   and the fraction of the interaction radius traveled per time step,  . (c)

The average agent-to-center-of-mass distance as a function of the reduced speed,  , in the regime where

the model forms stable �ocks (taking out outliers). The insets in (c) and (d) show   and the average

polarization,  , as functions of   outside the stable regime. The models were simulated under the same

conditions as in Fig. 2, with   and  , unless otherwise speci�ed in the �gure. The order

parameters were evaluated at time  .

In Fig.  4b-d, we analyze the distance traveled per timestep over the interaction radius,  , on the

system dynamics. The system forms a stable �ock if the fraction is small enough so that each agent has

enough time to align with its neighbors before it changes them. The threshold value of    increases

with noise intensity from roughly 0.008 at    to almost 0.024 at    (Fig.  4b), highlighting
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once more the stabilizing effect of the noise discussed above. In the stable regime, the average agent-to-

center-of-mass distance reduced by  (Fig. 4c) and the average polarization (Fig. 4d) are independent of 

. Hence, the system size is proportional to the interaction radius. Beyond the stable regime, 

 drops and   increases with both   and the simulation time.

2.5. Leadership

Figure 5. Leadership in the predictive model IIA In this numerical experiment, the agents were initially

perfectly aligned. After an equilibration period of 200 timesteps, a subgroup of 20 leaders was selected to

change orientation deterministically according to the oscillatory protocol shown in a, with  .

The leaders reoriented with an angular velocity of   rad/timestep for 800 timesteps, interspersed

with relaxation periods of 800 timesteps. b Under this protocol, for   and noise intensity 

, the �ock disperses, as indicated by the increase in the average agent-to-center-of-mass distance, 

. In contrast, stable �ocking is maintained in the absence of leaders. However, when the reduced speed is

decreased to  , the agents successfully follow the leaders, forming a characteristic pattern where

maxima in system size lag behind the leaders’ turning events. This behavior is highlighted in the inset, which

magni�es a single oscillation of   at the time marked by the vertical dashed line (pink dash-dotted line).

As a visual reference, the inset also includes the corresponding angular variation of the leaders from a (black

dashed line).

In nature, bird �ocks often involve a subgroup of leaders who are best informed about the target position

and who are followed by the rest of the �ock[16][26]. Figure 5 shows that the predictive model IIA can form
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cohesive �ocks also in the scenario when a subgroup of leaders perform an oscillator deterministic

motion, albeit for slightly lower   than without the perturbation by leaders. For a video showing the

stationary �ock following the leaders, see the Supplementary Information.

3. Discussion

We have presented the �rst cohesive �ocking model based solely on alignment interactions, achieved by

replacing the Vicsek model’s Ising-like alignment with predictive alignment. Agents that can predict the

future positions of their neighbors optimize a tradeoff between aligning with neighbors’ headings and

maintaining proximity, yielding cohesion and order without the need for boundaries or added forces.

This fundamentally departs from prior models, which rely on such aids[28]. From a technical perspective,

the dynamical equations feature a reorientation ’force’ that does not follow the gradient of a potential,

which would typically lead to stable orientations at local minima. Instead, it is governed by an 

  function, which reorients agents toward the deepest minimum of a utility function (negative

orientation correlation with neighbors) that is accessible in the next timestep. This process is constrained

by the agent’s �eld of view, reorientation capabilities, and motility. The model is scalable, and the

resulting �ock shapes resemble those observed in nature. However, further investigation is needed to

assess how closely the resulting �ocks resemble those observed in nature, in terms of internal dynamics,

correlations, and �nite-size scaling[34].

Our algorithm provides a plausible strategy that intelligent agents with given physical and cognitive

abilities might employ to ef�ciently align with their neighbors. As such, it falls within the class of

intrinsically motivated[19][20][21] and cognitive[17][18] active matter algorithms. The algorithm can also be

integrated into the broader framework of active inference[35], a general theory of decision-making.

However, unlike typical active inference models, our approach does not rely on the assumption that the

system state is near the global optimum of a utility function, allowing forces to be described as gradients

of generalized potentials. Instead, it enables agents to dynamically adapt the most preferable

con�guration they perceive.

Future extensions of the model could explore modi�cations to agents’ cognitive abilities such as

predictive capabilities, perception[8], or delays in decision-making processes[36]. Another possibility is to

study agents with different physics, e.g., where inertia or more general non-Markovian effects play a role.

/ζv0

arg max
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To conclude, our �ndings open the door to new directions in active matter research by introducing a

biologically plausible, prediction-based alignment mechanism that naturally leads to cohesive �ocking

states. By bridging the gap between simple alignment rules and decision-making strategies inspired by

cognitive processes, this work provides a foundation for exploring collective behavior in intelligent

systems and offers a new framework for modeling real-world �ocking dynamics. Additionally, this model

could be applicable to other collective behaviors, such as the swarming of insects, the movement of

robotic swarms, or even the coordination in human crowds.

4. Methods

4.1. Variants of the Vicsek model

In the original discrete-time variant of the Vicsek model[14], agent positions are updated according to

Eq.  (1), while their velocities    are determined by the average velocity of their neighbors at time  , 

, where    is then randomly rotated by an angle  , as described in

Eq. (2). Here,   (with  ) are Heaviside theta functions modi�ed at the origin such that agent  ’s

own velocity is included ( ) or excluded ( ) in the averaging, yielding variants of the

model with slight orientational ”inertia” or no inertia, respectively.

We compare the ‘predictive’ models de�ned in the main text with the original Vicsek model using  .

However, this comparison is not entirely fair, as the predictive models do not allow for arbitrary

reorientation within a single time step. To ensure a fair comparison, we also compare the predictive

models with variants of the Vicsek model using   or  , where agents reorient by the angle in the set 

 that makes their velocity closest to   before undergoing random reorientation due to noise. We call

these variants of the Vicsek model as Vicsek model A and B, respectively. They are identical to the models

corresponding to strategies IA and IB de�ned in the main text.

4.2. Time-continuous model

Physically, the algorithmic discrete-time model in Eqs. (1) and (2) is reasonable when agents travel only a

fraction of the interaction radius per time step, i.e.,  , ensuring that they do not switch

neighbors at each step. This condition is ful�lled in all our numerical experiments. In this parameter

regime, one can readily take the continuous-time limit   in Eq. (1) to obtain

v
t+1
i t

= (| − | − ζ)Vi ∑N
j=1Hx r

t
i r

t
j v

t
j Vi ξti

Hx x = A,B i

(0) = 1HA (0) = 0HB

HA

HA HB

Ωθ Vi

Δt ≪ ζv0

Δt → 0

(t) = (t).ẋi vi (4)
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Introducing a reorientation angular velocity,  , and rotational diffusion,  , the continuous-time

variant of Eq. (2) can be formulated as

where  ,  , are normalized, unbiased, and mutually independent Gaussian white noises.

4.3. Order parameters

We characterize the studied systems using the average polarization  , polarization variance 

, the average agent-to-center-of-mass distance [37],  , which serves as a proxy for system

size, and the number of clusters of communicating particles. These variables are calculated as

with the �ock center of mass position vector  . The number of clusters is calculated

by iteratively identifying all particles that can be connected through a path where each step links

particles separated by a distance smaller than the interaction radius  .

For a homogeneous circular �ock with radius  ,  . This result can be

used to estimate the �ock radius from the easily calculable  .

4.4. Diffusive spreading in Vicsek model

To estimate the speed of the inevitable noise-induced spreading of agents in the Vicsek model, we

consider two particles interacting via a perfect, in�nite-range alignment interaction. At each time step,

they align their velocities, and each adds a noise term drawn from the uniform distribution   to

their orientation. Consequently, after each time step, the velocities of the two particles are given by 

  for  . Per time step, the distance between the two particles increases by 

. Since these individual distance increments are independent by construction, the

probability density of the distance between the two particles after a large number of time steps   can be

well approximated by a Gaussian distribution with zero mean and variance

ω0 Dr

(t) = Δ (t) + (t),θ̇ i ω0 θi 2Dr
− −−√ ξi (5)

(t)ξi i = 1, … ,N

⟨Φ⟩

⟨ ⟩ − ⟨ΦΦ2 ⟩2 δCM

⟨Φ⟩

⟨ ⟩ − ⟨ΦΦ2 ⟩2

δCM

= |⟨v⟩| = | |, (6)
1

v0

1

Nv0
∑
i=1

N

vi

= ( − ⟨v⟩ , (7)
1

Nv2
0

∑
i=1

N

vi )2

= , (8)| (t) − ⟨x(t)⟩
1

N
∑
i=1

N

xi |2

− −−−−−−−−−−−−−−−−−

⎷




⟨x(t)⟩ = (t)1
N
∑N

i=1 xi

ζ

R = dϕ rdrr = RδCM
1

πR2
∫ 2π

0
∫ R

0
2
3

δCM

η ∈ [−π,π]

= (cos , sin )vi v0 θi θi i = 1, 2

Δd = | − |v1 v2

t
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where the average is taken over the noise. This result provides an estimate for the expected distance

between the two particles after    time steps as  . Similarly, the time at which the distance

between the two particles exceeds the interaction radius   — marking the loss of coherence in the system

— can be estimated as  .
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