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In the paper author considers a new method for constructing quasi-equilibrium thermodynamics of a system of

gravitationally interacting particles with the modified (by including a cosmological term) Newton potential. Since the

dynamics of each pair of particles changes fundamentally with increasing distance between them, The work uses a

technique previously used for similar behavior of vortex structures by L. Onsager . In this case, the concept of negative

temperature in the system associated with the definition of the kinetic temperature of A.A. Vlasov. We constructed the

approximating expressions for the configuration integral and the full statistical sum of the canonical ensemble in the

case of negative temperatures. A methodology for studying quasi-equilibrium manifolds in the system under study is

proposed.

1. Introduction

The emergence of large-scale structures of small dimensions in cosmological models from the point of view of the

multiparticle dynamics of gravitationally interacting “elementary” substructure (representing stars, star clusters,

galaxies, etc.) Currently, most scientific publications describe it based on models, representing the development methods

proposed by Ya.B. Zeldovich[1][2]  (the “pancake” theory or “walls”). This approach has its distinctive feature initially a

simple mathematical apparatus based on taking into account the preferred directions of weakening that arose in the

process evolution in an astrophysical system density fluctuations. The results based on this assumption modeling

evolutionary dynamics for an ensemble of substructures allow, in principle, to obtain an externally reliable picture of the

structure of the observed parts of the Universe; however, this requires the introduction of far from ordinary assumptions

that allow the mentioned picture to look consistent. Without the mentioned assumptions, the existing observed definite

ordering of the biscaled structure cosmological structures (and, accordingly, the bimodal Hubble flow) has a number of

aspects that are difficult explain from a physical point of view at relatively recent stages of genesis these structures.

The existence of a specific spectrum of stochastic disturbances and the introduced a priori ordered distribution in the space

of hydrodynamic parameters of the medium to describe the formation of macrostructures is a highly unlikely combination

of independent physical conditions. It is reasonable to raise the question of the causal determinacy of the widespread,

large-scale distribution of this set of conditions; after all, in essence, self-construction of low-dimensional cosmological
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structures by damping disturbances in selected directions (due to the presence of unexplained reasons), at certain scales

can be characterized as an extremely strange and artificial looking scenario. As an alternative to the probabilistic nature of

the local genesis of macro-objects, distributed by default — without a clear explanation of the reasons — to the entire

observable part of the Universe, it is advisable to consider the mechanism of the completely causal formation of

cosmological structures based on the analysis of the properties of the equation Vlasov-Poisson for gravity taking into

account Einstein’s anti–attractive term.

In this article we formulate approaches to constructing the quasi-equilibrium thermodynamics of a multiparticle system

of gravitating particles in cosmological background with account of cosmological  –term repulsive effect.

2.  Quasi-equilibrium statistical mechanics of a system of particles taking into

account antigravity

We will consider equilibrium and near-equilibrium states of a cosmological system of gravitating particles (which we will

understand as star clusters, galaxies, galaxy clusters, …) in a bounded region of space  ; we will assume by default

that its sphere  ,  . We will be interested in the dynamics of a system of   

 particles (with equal masses  ) with the Hamiltonian function

where    is the potential of the external gravitational field at point  ,    is the contribution to the potential

energy of the  -th particle due to the influence of boundary conditions,   is a modified Newton potential [3]

[4], corresponding to a combination of gravity and antigravity between particles (the latter force arises taking into account

the influence of the cosmological term),    ,  ,  . Let us clarify the situation for the

case of  –particle interaction of particles mass    (   for the non-relativistic Milne- McCrea

cosmological model ) and  . Unlike Newton’s potential  , which is continuously increasing on interval 

  ( ), generalized potential potential Newton    has maximum 

 at  .

The objective of this work is to construct statistical mechanics of a system of massive particles interacting with each other

in accordance with potential (2). The situation there is significantly complicated by the fact in the case of the presence of

classical gravitational attraction (standard Newtonian potential) between particles, the descriptions of systems using the

formalism of microcanonical ( ) and canonical ( ) ensembles may be nonequivalent[5]. This is due to the fact that

the virial theorem in a self-gravitating system of particles leads to the conclusion that the total energy of this system will

be negative ( , where    we denoted the kinetic energy of particles); therefore, choosing as an example an

isothermal sphere (of radius  ) containing an ideal gas (with zero potential energy), we have 

 ( ). Then the specific heat

capacity    at  , which contradicts positivity of the specific heat capacity in the 
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 formalism (in this case, for   there is no equilibrium state of the particle system, which leads to the

so-called “gravothermal catastrophe”). For cosmological scales the problem statement is different, but the question of the

consequences of special regions of thermodynamic potentials is very relevant.

Thus, it seems It is appropriate to consider separately the cases  ,  , as well as their connection with the kinetic

description of the system based on a self-consistent field. A separate, extremely important aspect here is the possibility of

identifying singularities and special points of a different type (leading to to a formal violation of standard thermodynamics

due to the specific form of the interparticle interaction potential), and possible consequences in the form of a change in the

local equation of state of matter with a change in the form (in phase space) of matter moving in dipole gravitational

structures (flattening of clusters and formation of quasi-two-dimensional structures from them, such as void walls).

Based on the above physical premises, we will consider   for particles with the Hamiltonian of gravitational interaction 

. For simplicity, we will exclude the effect of the external gravitational field on the particles of the system, and

temporarily ignore the influence of boundary conditions (they will be taken into account by a posteriori introduction

dimensions of the system). The method of constructing thermodynamic potentials proposed in the work[6] (based on the

introduction of Mayer functions[7] for pairs of interacting particles, small in norm), in the case under study is not directly

applicable: the potential modulus  , therefore replacing the exponent with a truncated expansion of

the potential in the neighborhood zero for the integrand    is invalid (such a replacement is

acceptable for a series with a high rate of convergence, and for large values   must be considered as an asymptotic series).

Therefore, apply the methods analysis of a weakly non-ideal gas without significant adjustments to the system under

consideration particles is impossible.

Let us start with the “heuristic” approach (phenomenological establishment of the EOS) to the construction of the

corresponding statistical mechanics. Using the virial theorem Clausius[8]

( ), can be obtained from the definition of the second virial term

And fact of that for   pairs ( selected from systems of   particles ) number those whose centers lie down V in

the interval   there are  , immediately obtain the equation of state of the “medium” of

gravitating (mega)particles (URS) in the system:

Obviously, the integral on the right-hand side has rather unusual properties: 1) it changes sign at the inflection point of the

potential  , since at distances   the repulsion in the pair of selected particles will prevail; 2) the values of the integral 

  as a function of the upper limit grow without limit as  ; in this paper we are interested in large scales,

therefore, we restrict ourselves to the standard regularization of the singularity by softening the potential as  : 
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,   is an empirical term, forming the final scattering radius[6][5]. In the region to the right

of the inflection point of the  –particle potential, the equation of state of matter takes on an indefinite form, depending on

the dimensions of the region  . In this case, the same divergence will be characteristic of the configuration integral and of

all thermodynamic potentials. the Ursell -Mayer formalism is possible in this case as well, if we assume that the

temperature of the particles in the system is, for example, indefinite : the system, depending on the distance between

particles is in formal contact with two thermostats ( ) — with    for “small” distances, and with 

  for “large” ones distances; accordingly, the canonical ensemble corresponding to the biscale system under

study is the union of two subensembles   ( with extensive parameters  ,  ,  ).

Let’s imagine integral    in additive form :    ( intervals integrations answer

growing And descending branches  –partial potential). Thus, with a change in the sign of the temperature, there is an

actual replacement of the region of small distances (where the linearization of cluster factors–exponentials is standardly

performed) to the region of “ pseudo-infinite ” distances. Then we can simplify the EOS by obtaining a phenomenological

representation in the standard form of expansion in powers of density:

The approach used is based on a significant idealization of the situation, since it implies the presence of only two

thermostats in the problem (this actually means the need isolation of two subsystems with different temperatures from

each other, which imposes significant restrictions on the physical conditions in the cosmological system). However, the

equation of state constructed is very important in itself, since it sheds light from an unusual angle on the basic

thermodynamic properties of matter in a system of dimensions corresponding to cosmological distances; in particular, we

note that the term with the second virial coefficient consists of an increasing (with increasing distance between the

interacting particles), but limited above (due to the finite upper limit) of the term  , and decreasing as    from a

large but also finite value as    (which is analogous to “small distances” in the statistical justification of standard

thermodynamics of positive temperatures).

A completely expected consequence of applying the equation of state (6) to cosmological systems is the existence of a point

( ) at which this EOS takes on its form for an ideal gas (since  , and it is quite unstable. This can

be explained using the example of a one-dimensional model containing two mass formations (with masses  ), and an

intermediate region between them — an “interaction channel” with a linear size  , containing a “strongly

non-ideal” gas. In the simplest case   ( ) the regions of high and low pressure near the critical point should

lead to the formation of an interaction oppositely directed shock waves (superposition of two discontinuities in the

medium pressure) in the vicinity of this point. In the interaction channel, the region of superposition of pressure

differences (under conditions of the Rankine–Hugoniot type ) forms an almost flat structure (in which local

inhomogeneities should be significantly smoothed out eigenvalues of the velocities of particles whose vectors are parallel

to the channel axis, that is, a one-dimensional coherence of fluctuation damping arises, close to the scenario of Ya.B.

Zeldovich[1]). Apparently, this mechanism can be applied to the description of the formation of voids between large

clusters of baryonic or “dark” matter.

1/r → η(r, ) ≡ 1/r0 ( + )r2 r2
0

1/2
r0

2

Ξ3

T( ), T( )T1 T2 T = > 0T1

T = < 0T2

A(T( ), , )⋃i=1,2 Ti Ni Vi ,Ni Vi = N∑i Ni = V∑i Vi

J J (R) = + ≡ [ ] + [ ]J1 J2 ∫ −0rc
ε

T1 ∫ R

+0rc
T2

2

P = (N/V )T (1 + (T)(N/V )), (T) = − J (R), T ∈ { , },B2 B2
2π

3T
T1 T2 (6)

J (ϵ,R) ≡ J (ϵ, ) + J ( ,R) = K(r; )dr + K(r; )dr.rc rc ∫
−0rc

ϵ

T1 ∫
R

+0rc

T2

J1 r → ∞

r = rc

r = rc = 0(d /dr)|Φ(GN)
r=rc

M1,2

d > ( , )rc M1 M2

d ≳ 2rc ∼M1 M2

qeios.com doi.org/10.32388/MHLLI7 4

https://www.qeios.com/
https://doi.org/10.32388/MHLLI7


However, it should be understood that the above-described method for obtaining the EOS is a heuristic example to

demonstrate a very non-obvious properties of the thermodynamics of the medium on large astrophysical scales with

explicit consideration of the property of mass repulsion when exceeding critical distance between them, due to the

inclusion of the cosmological Einstein’s term, and the corresponding modification of the law of gravity.

3. Mathematical aspects of the application of the canonical ensemble formalism

in the system gravitationally interacting particles

In the previous paragraph, based on the virial theorem, an equation of state of matter in a system of gravitationally

interacting particles was constructed . However, As already mentioned, for a real description of the statistical mechanics of

multiparticle systems containing megaparticles , it is necessary to use more rigorous and physically correct mathematical

apparatus. We have one at our disposal, and it is based on the formalism of the statistical sum, however the concept of

negative absolute temperatures to compensate for growing interparticle potentials requires certain (very non-obvious)

modifications; in this case, the expediency of using negative temperatures of the cosmological environment becomes

obvious. In this case, of course, there arises the question of the possibility of applying the concept of an “equilibrium

system” in the usual sense to such an environment. Further, we assume that, if necessary, one can consider the

mathematical apparatus of kinetics as a justification for the properties of a gravitationally interacting system (in

accordance with the modified presence antigravity (Newton’s law) of particles.

The statistical integral of the canonical ensemble for an  -particle system of (mega)particles has the form (for the

Hamiltonian we use expression (1) without an external field and taking into account boundary effects):

where    is a normalization factor. After formal integration over momenta, the last expression can be represented in the

form

This formula implicitly assumes a rapid decrease in kinetic energy with increasing momentum modulus: this is true for

ordinary statistical systems. But is this really so? for cosmological systems? Verified observational data cast doubt on this

(the dual structure of the Hubble parameter, which includes, along with the Friedmann expansion, dependence on

antigravity forces). This issue will be discussed in detail later, but for now we point out that  –fold integration over the

computational domain (a sphere of radius  ) for a potential growing in modulus (   for large interparticle

distances) leads to a divergence of the configuration integral if the temperature parameter  . Therefore, it

follows consider splitting this integral into two with   and  :  . In

the region of small distances (in the case when the dominant interaction potential in the interparticle potential is is the

classical Newtonian attraction, with a singularity at zero), we can introduce  –partial functions of non-ideality of the

medium  . Then we can write
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and since in this region of interparticle distances the exponential function under the integral can be is expanded in a Taylor

series, then

It is easy to obtain approximate values of the first configuration integrals:  ,

By inductions we get  .

Let us now consider the term  . Let us explain where the idea of possible negative temperature in the second

subensemble comes from . To do this, it is necessary to turn to the kinetic description of a cosmological multi-particle

system in a state of nonequilibrium. The Vlasov-Poisson system of equations for describing cosmological dynamics in a

system of   particles of equal masses   (star clusters, galaxies, …) can be represented in the following form; in this case

we we assume that the system is considered in the domain    space, and the size of the region can be tended to

“physical infinity” (the volume    is finite, but large enough to not take into account the reverse influence of the

boundaries on the system):

where   is the distribution function ( gravitationally interacting) particles,   — normalization factor for particle

density,   — fixed moment of time. Under the condition of quasi-stationarity of processes we have  . According

to A.A. Vlasov, the main requirement that distinguishes temperature solutions (particle distributions) is statistical

independence of the distribution of particle momenta from their distribution by coordinates  [9]. The condition for

maximum statistical independence is the following multiplicative representation stationary distribution function: 

. Substituting this expression into the Vlasov-Poisson equation (12) gives

Since the components of the momentum are independent of each other, it is possible to separate the variables in the last

equation:

where    is the separation parameter (“kinetic temperature”, since it determines the magnitude of the dispersion of the

pulse spread). Since in our case    when  , then the repulsion ( ) corresponds to the value of 

. Therefore, the kinetic temperature can be negative for large interparticle distances.
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Therefore, for an equilibrium canonical ensemble, the possibility of introducing the concept of a generalized temperature

seems physically justified, for which the configuration integral — as well as the total statistical sum — are representable

as improper convergent integrals under the conditions of the anti- Gibbs structure of the energy spectrum of particles of

the subensemble . Obviously,  ; the factor   (for the subensemble in contact with

the thermostat at temperature  ), can be roughly represented as

where    — additional error function. In this case, the above formula takes into account that for the integration

range, the dominant in the integrand is is the factor   (the absence of a significant dependence of the integral

value on the factor    can easily can be established by analyzing the properties of Riemann sums in the exact

configuration integral). The additional error function admits an asymptotic representation in Laplace form (

) [10], so that the considered part of the configuration integral takes the form

For an  -particle system, we have approximately  . It is interesting that there is no direct

dependence on the volume of the system. for high-order configuration integrals — this is due to the fact that for   the

region of significant influence of the Newtonian potential is concentrated in the ball  , and for at large values of

distances between particles the influence of the potential only decreases (at    is actually negligible for individual

particles), while for    the force interaction between these same particles increases significantly; thus the factors in

the form of volume when considering clusters of particles are replaced by “pseudo-volumes”, whose values are

nonlinearly compressed with increasing distance between the repulsive particles. Note that in principle it is advisable

when detailing the consideration of the canonical ensemble to introduce an interaction zone  , where the

repulsive potential should be effectively taken into account (that is, to move from one term of the Taylor series to the

asymptotic series).

Now let us turn again to the full statistical integral. Since it is now clear to us that the temperature of the particles in the

system is indefinite , we should correctly perform the integration over the momenta taking into account the presence of

two sub-ensembles ( ):

(mega)particles interacting via modified Newton gravitational potential in the cosmological system, using the formalism

of the canonical ensemble. For this purpose, we introduced the concept of generalized temperature, associated with the

behavior of the modified gravitational potential, taking into account influence of the cosmological lambda term.
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4.  Thermodynamic potentials in a system of (mega)particles and possible

generalizations of the formalism

Once the partition function is known, we can derive the thermodynamic equations of state for the system. The Helmholtz

free energy carries all the useful information about the system that the partition function carries, and these are connected

by the relation    ( ). For subsystems of particles with dominant attraction, after

applying Stirling’s formula we have

and for a subsystem of particles with repulsion dominance:

Accordingly, the entropies of the subsystems of the cosmological system of (mega)particles can also be obtained using the

statistical integral in accordance with With by the relation    ( s taking into account

fact  ,  ):

Since in the expression  , which is included in the configuration part of the statistical sum,   (and the

variable   is also included limits of integral functions  ), the explicit expression for   is rather cumbersome,

but can be obtained using elementary operations.

Now let’s consider the pressure in both subensembles ( for  ). In standard thermodynamics ideal gas pressure is

determined in accordance with the relation  ; however, for a system with interaction between particles it

turns out that in fact in expression (19) for free energy the terms containing the value   implicitly, but depend significantly

on the variable   (namely, the second virial coefficient itself is a nonlinear function of volume). Then formally from the

( , , ) = − ln ( , )Fj Nj Tj Vj Tj Z
(j)
N

Tj Vj j = 1, 2

( , , ) = − ln( ) ≈F1 N1 T1 V1 T1

(2πm )T1
3 /2N1

!ω3N1N1

V
N1

1 (1 + ( + ))A1 Ar0
AΛ

−1N1 (19)

≈ − (2 ln( + + 1) + 2 ln( ) − 6 ln(ω) + 3 ln( )
1

2
T1 N1 A1Ar0

A1AΛ N1 V1 N1 N1 T1

+3 ln(m) + 3 ln(2) + 3 ln(π) − 2( ln ( ) − ) − 2 ln( + + 1))N1 N1 N1 N1 N1 N1 A1Ar0
A1AΛ

( , , ) = − ln( erfi( / )×F2 N2 T2 V2 T2

(2πm| |)T2
3 /2N2

2 !ω3N2N2

pmax 2m| |T2

− −−−−−
√ (20)

× (erfi(R/ ) − erfi( / ))) ≈V2B
−1N2 2m| |T2

− −−−−−
√ rc 2m| |T2

− −−−−−
√

≈ − (3 ln( ) − 6 ln(ω) + 3 ln(m) + 3 ln(2) + 3 ln(π) + 2 ln(B( ,R;α))+
1

2
T2 N2 T2 N2 N2 N2 N2 N2 rc

+2 ln( ) − 2 ln(B( ,R;α)) − 2 ( ln ( ) − ) − 2 ln(erfi(R/ ) − erfi( / ))) .V2 rc N2 N2 N2 2mT2
− −−−−√ rc 2mT2

− −−−−√

S = T + ln(∂(ln )/∂T)Z
(…)
N

N ,V
Z

(…)
N

∼A1 T −1 η( ) ≡ ( )( + )T1 A1 T1 Ar0
AΛ

= − (6η ln(ω) − 3η ln(m) − 3η ln(2) − 3η ln(π) − 2η ln(η + )−S1
1

2(η + )T1

N1 N1 N1 N1 N1 T1 (21)

−η ln( ) − 2η ln( ) + 6 ln(ω) − 3 ln(m) − 3 ln(2) − 3 ln(π)−N1 T1 N1 V1 T1N1 T1N1 T1N1 T1N1

−2 ln(η + ) − ln( ) − 2 ln( ) − η + 2ηln(η + )−T1N1 T1 T1N1 T1 T1N1 V1 N1 T1

−2ηln( ) + 2ηln( !) − 3 + 2 ln(η + ) − 2 ln( ) + 2 ln( !) − 2ηT1 N1 N1T1 T1 T1 T1 T1 T1 N1

B( ,R;α)rc α = α( )T2

T2 erfi( r)α−−√ S2

r ≷ rc

P = −(∂F/∂V )N ,T

η

V
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relations derived above we have for the equation of state    (after comparing the

additional terms that appear in expression for  ):

For “distant” interacting particles, as noted earlier, the second virial factor in the equation of state is provided by the

easily detectable formulas for the statistical sum of the dependence on the geometric dimensions of the second subsystem

and the temperature in the vicinity of its formal boundaries. Thus,

We have considered the question of the canonical ensemble in the paradigm of quasi-equilibrium thermodynamics with

negative temperatures. Interesting questions arise: 1) there are are there sets of values of thermodynamic potentials, as a

result of the continuous change of which we will return to the starting point on the variety of potentials used? 2) Is there a

priority direction of change of thermodynamic potentials for a cosmological system that uses the division into near and far

interactions? The optimal formalism for answering these questions is the geometrization of the thermodynamic system

and the introduction of a metric by constructing a fundamental tensor and obtaining the corresponding Christoffel

coefficients. If the thermodynamic manifold is defined for us by means of the relation  , then, for example, can

be taken for the components of the metric tensor  ,  , etc. In this case, the dynamic

Euler-Lagrange equation arises, for which it is necessary to introduce a “geodetic parameter”    in the biparametric

entropy manifold , the meaning of which can be given a dynamic, time-related meaning. Therefore, Euler’s equations will

describe geodesic lines on a manifold, including closed (Carnot type cycles, since we have two heat reservoirs in the

system).

In fact, using the thermodynamic description of cosmological systems, it is possible to carry out a very detailed description

of processes in large-scale astrophysics, especially in areas where kinetic and hydrodynamic modeling is quite difficult.

5. Conclusion

The paper examines the mathematical formalism of constructing the thermodynamics of cosmological systems taking into

account the possibility of introducing negative absolute (non-equilibrium) temperature. Since the dynamics of each pair of

particles changes fundamentally as the distance between them increases, The work uses a technique previously used for

similar behavior of vortex structures by L.  Onsager . In this case, the concept of negative temperature in the system

associated with the definition of the kinetic temperature of A.A. Vlasov. Constructed Approximation expressions for the

configuration integral and the full statistical sum of the canonical ensemble in the case of negative temperatures. A

methodology for studying quasi-equilibrium manifolds in the system under study is proposed.

= ( / ) (1 − φ( , , ))P1 N1 V1 T1 Ar0
AΛ T1

S1

= (1 − )P1
N1

V1

T1

( + )(3γ )/(2 )Ar0
AΛ m2 rc

+ ( + )(3γ )/(2 )T1 Ar0
AΛ m2 rc

(22)

≈ ( / ) [1 + (−3 ( exp (− ) − R exp (− ) + …)×P2 N2 V2 T2 T2 rc
m Λ /c2 r2

c T2

6

m Λ /c2 R2 T2

6
(23)

× .(m Λ − 3 exp (− ) + 3R exp (− ) + …)c2 rcT2

m Λ /c2 r2
c T2

6
T2

m Λ /c2 R2 T2

6

−1
⎤

⎦

S = S(T , V )

≡ ( S/∂ )g11 ∂2 T 2 ≡ ( S/∂T∂V )g12 ∂2

τ

qeios.com doi.org/10.32388/MHLLI7 9

https://www.qeios.com/
https://doi.org/10.32388/MHLLI7


References

1. a, bZeldovich Ya. B., Gravitational instability: An approximate theory for large density perturbations, A&A, 5, pp. 84–89, 1970.

2. ^Zel’dovich Ya.B. and Novikov I.D., Structure and Evolution of the Universe, Relativistic Astrophysics, University of Chicago Pre

ss, Chicago, 1983.

3. ^Gurzadyan V.G.,The cosmological constant in the McCrea–Milne cosmological scheme, Observatory. V. 105, p. 42, 1985.

4. ^Gurzadyan V.G., On the common nature of dark matter and dark energy, Eur. Phys. J. Plus, V. 134, p. 14, 2019.

5. a, bGross D.H.E., Negative heat–capacity at phase–separations in microcanonical thermostatistics of macroscopic systems wit

h either short or long-range interactions, Physica A, V. 365, pp. 138141, 2006.

6. a, bAhmad F., Saslaw W.C. and Bhat N.I., Statistical mechanics of the cosmological many-body problem, Astroph. J., V. 571, N 

2, pp. 576–584, 2002.

7. ^Reichl L.E., A Modern Course in Statistical Physics, New York–Chichester–Weinheim: John Wiley & Sons, Inc., 1998.

8. ^Wilson A.H., Thermodynamics and Statistical Mechanics, Cambridge: Cambridge University Press, 1957.

9. ^Vlasov A.A., Nonlocal Statistical Mechanics. M.: Nauka, 1978.

10. ^Abramowitz M., Stegun I.A., Handbook of Mathematical Functions, With Formulas, Graphs, and Mathematical Tables, New

York: Dover Publications, 1974.

Declarations

Funding: No specific funding was received for this work.

Potential competing interests: No potential competing interests to declare.

qeios.com doi.org/10.32388/MHLLI7 10

https://www.qeios.com/
https://doi.org/10.32388/MHLLI7

