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Image manipulation can lead to misinterpretation of visual content, posing significant risks to

information security. Image Manipulation Localization (IML) has thus received increasing attention.

However, existing IML methods rely heavily on task-specific designs, making them perform well only

on one target image type but are mostly random guessing on other image types, and even joint

training on multiple image types causes significant performance degradation. This hinders the

deployment for real applications as it notably increases maintenance costs and the misclassification of

image types leads to serious error accumulation. To this end, we propose Omni-IML, the first

generalist model to unify diverse IML tasks. Specifically, Omni-IML achieves generalism by adopting

the Modal Gate Encoder and the Dynamic Weight Decoder to adaptively determine the optimal

encoding modality and the optimal decoder filters for each sample. We additionally propose an

Anomaly Enhancement module that enhances the features of tampered regions with box supervision

and helps the generalist model to extract common features across different IML tasks. We validate our

approach on IML tasks across three major scenarios: natural images, document images, and face

images. Without bells and whistles, our Omni-IML achieves state-of-the-art performance on all three

tasks with a single unified model, providing valuable strategies and insights for real-world application

and future research in generalist image forensics. Our code will be publicly available.

Corresponding authors: Yiwu Zhong, yzhong52@wisc.edu; Lianwen Jin, eelwjin@scut.edu.cn

1. Introduction

The rapid advancement of image processing software and deep generative models has considerably

enriched human capability to create innovative visual content. Users can effortlessly manipulate the

visual appearance and create new images that do not exist[1]. Inevitably, such forged images can lead to
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fraud and the spread of rumors, posing significant risks to politics, economics, and personal privacy[2].

Consequently, Image Manipulation Localization (IML) has become an emerging issue in social media

security[3].

Despite the progress made in recent years, existing IML models are designed for individual image types

(e.g. natural style images, document images, face images). Although these specialized models can handle

multiple tampering methods on the images of a single target type, they always fall short on other types

of forged images. The lack of generality notably increases the maintenance costs of IML, since an

additional image type classifier and multiple IML models must be maintained for different image types.

In addition, the error accumulation caused by image type misclassification is still severe, as the existing

IML models perform poorly on the image types they are not designed for. This significantly hinders the

real-world application of IML. It is crucial to develop a generalist IML model that can simultaneously

perform well on all image types.

Jointly training an IML model on diverse image types can slightly alleviate the random guessing issue on

different image types. However, in most cases, the joint training will lead to an obvious performance

degradation on all image types, making the predictions unreliable. For example, HiFi-Net[4] suffers from

joint training and thus uses two different sets of model parameters for natural images and face images

separately. There are two main reasons why existing IML methods suffer so much from joint training:

First, existing IML methods rely heavily on specific architecture designs, input modalities, and training

strategies to detect specific tampering clues on specific image types. These designs work well for the

target image type, but usually not so well for other image types. For example, edge anomaly

enhancement modules[5] and object attention modules[6] have made significant progress in identifying

forged natural objects. However, they can hardly work well on document and face images where edge

artifacts are not obvious. Early frequency-vision[2]  fusion achieves satisfactory performance on

document images but has obvious performance degradation on natural and face images that cover much

more noise and diversity. The high-resolution representation learning design with shallow layers[4]

[7]  performs well in capturing the texture anomalies left by deepfake models but falls short on natural

and document images where the tampered regions are small and the texture anomalies are not obvious.

Second, existing IML methods lack the design to alleviate the confusion in unified IML modeling. The

IML task is already challenging since various tampering methods have already produced different

unobvious tampering cues on each single image type, learning a general representation for tampering
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cues on different image types could be even more challenging. Without a suitable design, models will be

easily confused when learning to distinguish so many tampering features from authentic ones.

To address the above issues, we propose Omni-IML, the first generalist model that can simultaneously

perform well on all three major IML tasks with a single model, as shown in Fig 1. Specifically, a Modal

Gate Encoder is proposed to automatically select the optimal encoding modality for each input sample,

based on the characteristics of the input image. Additionally, a Dynamic Weight Decoder is proposed to

adaptively select the optimal decoder filters for each sample, assisting the generalist model to better cope

with the highly diverse tampering features from different tampering methods on multiple image types.

These sample-adaptive designs effectively help the model achieve generalism through flexibly adapting

itself to each sample. Further, an Anomaly Enhancement module is introduced between the encoder and

decoder. It enhances the features of tampered regions with a novel box supervision design and

suppresses the noise introduced by the joint learning on different tampering methods and image types.

Figure 1. The proposed Omni-IML is the first generalist model for image manipulation localization. It that

can simultaneously achieve high performance forgery localization on natural images, document images and

face images with a single model, without task-specific or benchmark-specific fine-tuning.
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We validate the effectiveness of our Omni-IML on three representative IML tasks, including natural IML,

document IML, and face IML. Without bells and whistles, experimental results showcase that our single

model achieves state-of-the-art performance simultaneously on all three tasks, significantly surpassing

previous specialized methods on individual tasks. These strong results verify the design of our generalist

model in the field of image forensics.

By unifying the IML on natural images, document images and face images with a single model, our

Omni-IML successfully eliminates the trouble of judging image type at first and maintaining different

models for diverse image types. The issues of severe error accumulation and high maintenance costs are

thus well solved, significantly promoting the real-world applications of IML. The development of Omni-

IML is also in line with the current main trend towards Artificial General Intelligence (AGI).

In summary, our main contributions are as follows:

We propose Omni-IML, the first generalist model for image manipulation localization, which serves

as a pioneering effort in this field.

Our technical innovations lie in the novel and effective modules: (1) Modal Gate Encoder to effectively

select sample-specific encoding modality, facilitating better modality collaboration. (2) Anomaly

Enhancement, which enhances the common features of the forged regions through task collaboration.

(3) Dynamic Weight Decoder, which adaptively selects the sample-specific decoder filters and reduces

conflicts in the unified training.

Extensive experiments demonstrate that our generalist model can simultaneously achieve state-of-

the-art results with a single model on natural image IML, document IML and face IML.

2. Related works

2.1. Specialized Image Manipulation Localization

Natural Image Manipulation Localization aims to identify the tampered regions in daily-life style

images. Mantra-Net[8] proposes to perform natural IML with noise filters SRM and Bayar Conv. MVSS-

Net[5]  introduces ESB module to enhance boundary inconsistency. ObjectFormer[6]  proposes an object

encoder to learn object-level attention for better feature extraction and proposes BSCIM module to

enhance the edge inconsistency. TruFor[9]  benefits from the noise filters Noiseprint++.

UnionFormer[10]  introduces a new backbone to enhance edge artifacts, and proposes to model the
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inconsistency between tampered objects and authentic objects. These model designs have achieved

significant progress in natural images, but their performance in document and face forensics scenarios is

unsatisfactory due to the the absence of natural object, edge artifacts and noise artifacts in these

scenarios.

Document Image Manipulation Localization aims to localize the forged regions in document images.

Early works[11][12]  achieve document forensics through template-matching based methods. These

methods work well on clean documents but do not excel on complex documents such as photographed

documents, and even cannot work on natural or face images. Document Tampering Detector[2] improves

document IML through early fusion of vision and frequency features. However, the model will be

seriously distorted in many cases of natural and face images where the frequency features are too noisy.

TIFDM[13]  proposes high-level spatial attention to suppress the false alarms in documents, but it is

limited on complex natural images.

Face Image Manipulation Localization aims to localize fake human faces. The advancement of deepfake

techniques makes it easy to generate a face that does not exist[14][15]. To ensure the security of face

images and improve the interpretability of deepfake detection, some recent works have explored face

image forgery localization, characterized by a shallow network design for texture artifacts detection.

HiFiNet[4]  utilizes metric learning for better texture anomaly capturing. DA-HFNet[16]  proposes Dual

Attention Feature Fusion to better capture the AIGC artifacts. These methods show generalization on face

IML but are sub-optimal on natural and document images, where the tampered regions are small in size

and the visual anomalies are less obvious.

2.2. Generalist Model

Recently, generalist model has attracted increasing attention since it is more convenient for academic

and application[17]. Despite the progress in unified object detection and segmentation[18], most of the

previous generalist models do not cover all image forensic tasks. EVP[19] unifies natural image forensics

with other low-level tasks such as shadow detection, but it can only perform IML on natural images and

its performance is not satisfactory enough. Therefore, EVP cannot be considered as a generalist model for

IML. For image forgery localization, none of the existing work realizes a unified model that can be

simultaneously generalized to natural images, document images and face images. It is still unexplored

towards a generalist IML model that can generalize on various tampering methods across different

image types.
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Figure 2. The overall framework of the proposed Omni-IML.

Figure 3. The proposed Modal Gate.

3. Methodology

As shown in Figure 2, the overall architecture of the proposed Omni-IML is roughly based on encoder-

decoder architecture. The Modal Gate Encoder of the Omni-IML consists of four modules: (1) Visual

Perception Head (VPH) to extract visual features from the original images; (2) Frequency Perception Head

(FPH) to convert the Discrete Cosine Transform (DCT) coefficients of the images to frequency domain

features; (3) a Modal Gate to automatically determine the optimal modality for the following encoding
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process; (4) a backbone model to extract multi-scale high-level features from the output of the Modal

Gate. The Dynamic Weight Decoder of the Omni-IML adaptively selects the sample-specific optimal

decoder filters and outputs the final mask prediction. We also design an Anomaly Enhancement module

between the encoder and decoder, to enhance the common features of tampered regions from various

image types.

3.1. Modal Gate Encoder

Key Idea.

The frequency feature is a double-edged sword for the IML generalist. The frequency feature can help to

detect visually consistent tampering in some cases, but it can also degrade the model performance when

the image is complex and noisy, or the frequency information is not prominent in the original image. As a

result, neither pure vision modeling nor vision+frequency modeling can consistently provide the optimal

solution. In order to achieve general IML through a flexible encoding modality, we propose the Modal

Gate, which automatically determines the optimal encoding modality (frequency+vision or pure vision)

for each input sample. The key idea of our Modal Gate Encoder is to automatically identify the optimal

modality by analyzing whether the frequency features contain too much noise, and which coarse

prediction seems more confident, reliable, and accurate.

Image Encoding.

As shown in Figure  2, the Omni-IML considers both vision domain modeling and frequency domain

modeling. Given an input image    and its Y-channel quantization table  , we

extract vision features   using Visual Perception Head (VPH),  . We obtain frequency

features    from the DCT coefficients and quantization tables (QT) of the images using Frequency

Perception Head (FPH),  . We use the same VPH and FPH architectures as

those proposed in Document Tampering Detector[2]. The    is fused with    by a channel-spatial

attention module    to get the fused features  ,  . Two coarse binary

mask predictions    and    are further obtained from    and    with two auxiliary heads 

  respectively,  ,  , each of the auxiliary

heads consists of two conv-layers.

X ∈ R
H×W×3 QT ∈ R

8×8

Frgb = V PH(X)Frgb

Ffreq

= FPH(DCT (X),QT )Ffreq

Ffreq Frgb

Attn Ffused = Attn( , )Ffused Frgb Ffreq

Prgb Pfused Frgb Ffused

AuxHead = AuxHea ( )Prgb d1 Frgb = AuxHea ( )Pfused d2 Ffused
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Modal Gate.

As shown in Figure 3, the input of the proposed Modal Gate has four parts:  ,  ,   and  ;

We repeat  ,   and concatenate them with  ,   to get  , which is then fed into a binary

classifier for optimal modality prediction.  ,  , where    is the

sigmoid function and    is the rounding up function. The classifier   consists of several conv-

layers, a global average pooling layer and a linear layer, and is used to determine whether to use the fused

feature    or the pure vision feature as the encoder input  , by observing the noise level and

anomaly significance level of  ,   and their corresponding coarse predictions   and  .

Loss Function.

The Modal Gate Encoder is optimized with  , the sum of two segmentation losses and one

classification loss.   denotes the cross-entropy loss function,   is the ground-truth mask indicating

tampered region and    is the classification label indicating the optimal modality.    is

obtained by choosing the most accurate coarse prediction.    denotes the Insert over Union

between inputs   and  .

The Modal Gate Encoder maximizes the advantages of frequency domain modeling especially when the

visual anomalies are limited (e.g. document images), and avoids its drawbacks when the image is too

complex and noisy (e.g. natural images). Our Modal Gate Encoder extracts the best features from different

image types and thus considerably benefits the generalist IML model.

Frgb Ffused Prgb Pfused

Prgb Pfused Frgb Ffused Fcat

= CLS( )Pcls Fcat = Round(σ( ))Pmodal Pcls σ

Round CLS

Ffused Frgb

Ffused Frgb Prgb Pfused

LMG

CE Lm

∈ {0, 1}Lc Lc

IoU(x,y)

x y

= CE( , ) + CE( , ) + CE( , )LMG Prgb Lm Pfused Lm Pcls Lc

= {Lc
1

0

IoU( , ) > IoU( , ) + 0.1)Prgb Lm Pfused Lm

otherwise
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Figure 4. The proposed Anomaly Enhancement module.

3.2. Anomaly Enhancement

Key Idea.

Sophisticated tampering leaves very obscure anomaly clues. The encoder’s output feature from such

challenging sample can be very noisy. Different image types produce different features and thus joint

training brings much more noise to the features and confuses IML model. To tackle this, we propose to

enhance the features of forged regions and suppress the noise through including an extra box

supervision during training. Since the detection framework has a clear different characteristic from the

original segmentation one, training the model under both frameworks further highlights anomaly

features by reducing the learning bias: If a feature region reports positive under both the detection and

segmentation frameworks, it can mostly be the actual tampered region. However, if a feature region

reports positive under only one framework, it is likely to be a false-positive noise and will be punished

under the other framework. As a result, the contrast between the features of forged regions and authentic

regions can be strengthened, noise can be suppressed and the common tampering features can be

learned. However, directly training the model with the two frameworks may also cause task competition

for model parameters[20]  and weaken model performance, while directly scaling up the model

parameters could alleviate the competition but will increase computation burden. To address this issue,

we propose a novel effective collaboration module Anomaly Enhancement (AE).

qeios.com doi.org/10.32388/MNREU8 9

https://www.qeios.com/
https://doi.org/10.32388/MNREU8


Method.

As shown in Figure  4, for the input features    and  , we first extract task-agnostic features    and 

 with query-based attention, the learnable attention queries contain prior knowledge to decouple and

to minimize negative impact from the segmentation supervision. After that,   and   are processed by

the detection modules, including two Feature Pyramid Networks (FPNs)[21]  and the Faster R-

CNN’s[22] RPN and RoI-Heads. The detection modules (black arrows in Figure 4) are only present during

training. Including the two cascaded FPNs reduces parameter competition from the detection framework

and discarding them during inference ensures the computation efficiency, successfully addressing the

dilemma. After training, the   and   contain positive features enhanced by the detection supervision,

we add them to the original features   and   and fuse them with conv-layer to get   and  .

Loss Function.

As shown in Figure 4, the AE module is optimized by bounding box losses as Faster R-CNN[22] from the

RPN and RoI-Head.  . The ground-truth boxes are the

bounding boxes of the mask labels’ connected regions.

The AE module is tested in an end2end manner as shown in Figure 4. The proposed AE effectively

achieves task collaboration while keeping the inference cost almost unchanged. With the proposed AE

module, the tampered regions in features   and   can be enhanced and the false-positive noise can be

reduced. Consequently, our AE module helps to extract better common features and thus benefits the

generalist model.

F2 F3 Fa

Fb

Fa Fb

Fa Fb

F2 F3 F2′ F3′

= + + +LAE LRPN
cls

LRPN
regression LRoIHead

cls
LRoIHead
regression

F2 F3
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Figure 5. The proposed Dynamic Weight Decoder.

3.3. Dynamic Weight Decoder

Key Idea.

Different types of tampered image result in a wide range of manipulation clues. For example, forged

objects in natural style images may have abnormal contrast or edge artifacts[6], tampered text in

document images might be visually consistent but has discontinuous BAG in frequency domain[2], fake

faces may have unnatural texture[4]. These wide variations of tampering clues further cause a large

variation of the encoded features of tampered regions. Merely using a fixed set of filters for the decoder

causes it being confused by the diverse encoder features, especially in the unified training process. To

address this challenge, we propose to adaptively select the optimal decoder filters for each input image

based on the characteristics of the image and the initial predicted tampered region. To achieve this, we

propose the DWD, as shown in Figure 5.

Method.

In the proposed Dynamic Weight Decoder, the low-level input features are fused with high-level input

features by Pyramid Pooling Module[23] and Feature Pyramid Network[21] to obtain multi scale features 

. A global feature vector    is obtained by average pooling  . A coarse mask prediction , , ,F1 F2 F3 F4 Vg F4
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  is obtained from the lowest-level feature    by a conv-layer,  . A light-weight

network    is used to extract features    from the coarse prediction  ,  . The

extracted feature is concatenated to the multi-scale features and it helps the model to pay attention to the

suspicious regions and analyze the forgery type,  . The concatenated

features are channel dimension reduced and processed by a series of Dynamic Weight Filters (DWF) with

different dilation rates,  , 

,   denotes the proposed DWF with dilation rate 

. The final prediction    is obtained by 

, where   denotes   conv-layer. The DWD

is surprised by minimizing the cross-entropy loss between  ,   and the ground-truth mask  . 

Dynamic Weight Filters.

As shown in the top-right of Figure 5, to obtain the dynamic filters, we first average pool the input feature

to obtain a current global representation    (orange box in Figure 5), then interact    with the global

image vector    (blue box in Figure 5) with a fully connected layer and identify the optimal dynamic

filters    by weighted summation of four common convolutional filters.  , 

,    is the sigmoid function,    is the linear layer,    is the  th filter in the DWF.

Finally, we depth-wise convolve the input feature with    and then perform point-wise convolution

with   conv-layer to obtain the output.

The proposed DWD achieves sample-specific filters selection by analyzing the characteristics of the

input image, the input features and the forgery types in the initially predicted tampered region. The

selected optimal filters effectively help the generalist model to simultaneously distinguish tampered

regions in different image types.

Pco F1 = Conv( )Pco F1

CNN Fco Pco = CNN( )Fco Pco

= Concat( , , , , )Fcat F1 F2 F3 F4 Fco

= Concat(Avg( ), , )Fdec1 Fcat Fdw Fcat

= Concat([DW ( , )fornin(2, 3, 6)])Fdw Fn Fcat Vg DWFn

n PDWD

= Conv(DW (DW (Conv( ), ), ))PDWD D2 D2 Fdec1 Vg Vg Conv 1 × 1

PDWD Pco Lm

= CE( , ) + CE( , )LDWD PDWD Lm Pco Lm

Vc Vc

Vg

Dopt = σ(FC( , ))Ai Vc Vg

= ∗ WiDopt ∑
4
i=1 Ai σ FC Wi i

Dopt

1 × 1
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Method Omni

CASIAv1 Coverage CocoGlide NIST16 IMD20 Avg. (w.o. IMD) Avg. (w/ IMD)

IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 mIoU mF1 mIoU mF1

ManTraNet No .086 .130 .181 .271 .310 .408 .040 .062 .098 .146 .154 .218 .143 .203

RRU-Net No .330 .380 .165 .260 .223 .304 .080 .129 .169 .256 .200 .268 .193 .266

MVSS-Net No .403 .455 .389 .454 .278 .360 .243 .294 .243 .294 .328 .391 .311 .371

PSCC-Net No .410 .463 .340 .446 .333 .422 .067 .110 .115 .192 .288 .360 .253 .327

CAT-Netv2 No .684 .738 .238 .292 .290 .366 .238 .302 - - .363 .425 - -

IF-OSN No .465 .509 .181 .268 .259 .364 .247 .326 .259 .364 .288 .367 .282 .366

EVP No .438 .502 .078 .114 .232 .346 .188 .239 .177 .268 .234 .300 .223 .294

TruFor No .630 .692 .446 .522 .294 .362 .279 .348 - - .412 .481 - -

APSC-Net No .810 .848 .498 .568 .392 .455 .525 .590 .679 .760 .556 .615 .581 .644

Ours Yes .798 .834 .524 .576 .448 .505 .556 .630 .662 .740 .582 .636 .598 .657

Table 1. Comparison study on natural image manipulation localization. The training data of ’CAT-Netv2’ and

’TruFor’ includes the entire IMD20 dataset, thus their performance on IMD20 is not evaluated.
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Method Omni

SACP DocTamper-TestingSet DocTamper-FCD DocTamper-SCD

IoU F1 IoU P R F1 IoU P R F1 IoU P R F1

DFCN[24] No .466 .607 - - - - - - - - - - - -

MVSS-Net[5] No .401 .534 - - - - - - - - - - - -

SE-Net[25] No .459 .587 - - - - - - - - - - - -

RRU-Net[26] No .517 .651 - - - - - - - - - - - -

CFL-Net[27] No .433 .571 - - - - - - - - - - - -

TIFDM[13] No .576 .703 - - - - - - - - - - - -

ManTraNet[8] No - - .180 .123 .204 .153 .170 .175 .261 .209 .160 .124 .218 .157

MVSS-Net[5] No - - .430 .494 .383 .431 .410 .480 .381 .424 .400 .478 .366 .414

PSCC-Net[7] No - - .170 .309 .506 .384 .160 .440 .580 .420 .190 .286 .540 .374

BEiT-Uper[28] No - - .590 .564 .451 .501 .350 .550 .436 .487 .340 .408 .395 .402

Swin-Uper[29] No - - .700 .671 .608 .638 .410 .642 .475 .546 .510 .541 .612 .574

CAT-Netv2[30] No - - .710 .768 .680 .721 .600 .795 .695 .741 .540 .674 .665 .670

DTD[2] No - - .828 .814 .771 .792 .749 .849 .786 .816 .691 .745 .762 .754

Omni-IML (Ours) Yes .714 .820 .842 .837 .802 .819 .750 .901 .760 .824 .685 .760 .786 .773
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Method

Official model trained on specific tasks Re-trained on all tasks with the same settings

Natural SACP DocTamper Face Natural Document Face Avg.

mIoU mF1 mIoU mF1 mIoU mF1 mIoU mF1 mIoU mF1 mIoU mF1 mIoU mF1 mIoU mF1

EVP .223 .294 .030 .053 .016 .035 .305 .453 .455 .501 .411 .447 .814 .886 .560 .611

HiFi-

Net
.023 .032 .106 .116 .078 .109 .784 .815 .447 .492 .427 .461 .815 .892 .563 .615

DTD .037 .059 .140 .224 .756 .787 .003 .005 .314 .372 .468 .501 .820 .901 .534 .591

TIFDM - - .576 .703 - - - - .473 .515 .432 .473 .820 .900 .575 .629

APSC-

Net
.581 .644 .088 .133 .139 .184 .151 .197 .587 .653 .616 .657 .818 .900 .674 .737

Ours - - - - - - - - .598 .657 .748 .809 .822 .902 .723 .789

Table 3. Comparison study on models trained on all tasks.

Figure 6. Visualization for the ablation of the AE module.
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Figure 7. Qualitative results for visual comparison.

4. Experiments

4.1. Experiment Setup

Training Data.

The training data includes three parts:

1. Natural style image. We utilize the tampCOCO[30], CASIAv2[31], MIML[10], and COCO[32] datasets as

the training set of the natural image part, following the standard practice in the IML field[9][10].

2. Document image. SACP[33] and DocTamper[2] are high-quality, large-scale document IML datasets

with varied tampering methods. We include the training sets of SACP and DocTamper as the

document image part.

3. Face image. We use the training set of the FaceShifter subset from HiFi-IFDL[4]  and 24k random

images from CelebaHQ[34] as the face image part.

Test Data.

The test data of Omni-IML includes three parts:

1. Natural style image. We adopt the widely used benchmarks CASIAv1[31], Coverage[35],

NIST16[36]  and IMD20[37]  for evaluation. These benchmarks include diverse tampered objects of
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various styles and diverse handcrafted forgeries of various types (e.g. copy-move, splicing, removal).

We also include the CocoGlide dataset[9] which contains forgeries produced by diffusion model.

2. Document image. We use the test set of SACP[33], which contains handcrafted forgeries of various

types (e.g., copy-move, splicing, removal, printing, AIGC-based editing) and heavy post-processing.

We also include the three test sets from the DocTamper benchmark[2], which contains high-quality

forgeries and can evaluate IML models in both in-domain and out-of-domain scenarios.

3. Face image. The FaceShifter test set[4]  is adopted as the face image part. These fake faces are

produced by the representative DeepFake model FaceShifter[15].

Implementation Details.

The backbone model of our Omni-IML is ConvNeXt-Base[38]  initialized with its official ADE20k[39] pre-

trained weights, following previous works[9][10]. The Omni-IML is trained with the cross-entropy loss for

370k iterations, using the AdamW optimizer[40], with a batch size of 16 and an input size of  .

The initial learning rate is set to 1e-4 and decays to 1e-6 in a linear schedule. A fixed threshold of 0.5 is

used to binarize model predictions during inference.

Evaluation Metrics.

For the DocTamper benchmark, we use the official scripts to evaluate model performance. For other

benchmarks, we calculate fore-ground IoU and pixel-level Precision (P), Recall (R), and F1-score (F) for

each sample and then compute the average score following the previous work[10] for fair comparison.

4.2. Comparison Study

The proposed generalist model Omni-IML is evaluated on all of the natural IML, document IML, and face

IML benchmarks using a single set of model parameters, without any task-specific or benchmark-

specific fine-tuning. The comparison with the state-of-the-art methods of natural image forensics is

shown in Table 1, the methods compared include Mantra-Net[8], RRU-Net[26], MVSS-Net[5], PSCC-Net[7],

CAT-Netv2[30], IF-OSN[41], EVP[19], TruFor[9], APSC-Net[10]. The comparison with the state-of-the-art

methods for document IML and face IML tasks are shown in Table 2 and Table 4, respectively. Evidently,

our generalist Omni-IML can simultaneously outperform existing specialized methods on each

individual task, demonstrating the strong generalization ability. This is because our Omni-IML can

adaptively select the optimal input modality and decoder parameters for each sample, effectively

512 × 512
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producing the best features for IML on different image types. In addition, the Anomaly Enhancement

module drives the model to learn common features for the forgeries from different image types, and

reveals the inconsistencies between forged and authentic regions with the extra box supervision.

Consequently, it suppresses feature noise and reduces model confusion in joint training.

It’s worth noting that in Table 4, the HiFi-Net provides two separate official models for IML on natural

images and face images respectively. This is because the HiFi-Net suffers greatly from join training, and

it is necessary to train it separately for each task. Furthermore, HiFi-Net and TruFor only perform well

with their specialist face IML models, while our Omni-IML excels with a generalist model, demonstrating

the effectiveness of our methods.

To further explore the generalist capability of previous IML methods, we re-train the state-of-the-art

models with their official model code, the same training data and pipeline as ours, the results are shown

in Table  3. In Table  3, the left part is the performance of their official model trained on specific tasks.

Evidently, all the models perform well on only one task. The right part of Table 3 is the performance of

the re-trained models. The average performance of the re-trained models improves as joint training

alleviates the random guessing issue on other image types. Including the MIML dataset for training also

counteracts the significant performance degradation brought by joint training on diverse image types.

Despite this, they still perform significantly worse than our Omni-IML (e.g. 5-20 points mIoU lower than

ours). This is because existing IML methods rely heavily on designs and strategies targeted at one image

type, and such designs and strategies usually do not work so well on other image types (e.g. noise filters,

edge enhancement and object-level attention are beneficial for natural images but not for document

images). Moreover, the tampering features among diverse image types differ a lot from each other,

making it challenging for models to simultaneously learn them well. As a result, training IML models

jointly on image types for which they are not designed causes considerable confusion and significantly

limits their performance. Our Omni-IML does not rely on modules or strategies that designed for only

one image type. In contrast, the adaptive selection of optimal encoding modality and decoder parameters

helps our model to effectively handle diverse tampering clues and extract the best features from various

image types. Additionally, the anomaly enhancement also benefits all domains by enhancing the features

of tampered regions and driving the model to learn common features from diverse image types.

Consequently, our Omni-IML demonstrates strong generalization across different image types and has

minimal performance degradation during joint training.
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Method Omni IoU P R F1

TruFor (Official model) [9] No .631 .984 .638 .774

TruFor (Face re-trained) [9] No .814 .990 . 819 .896

HiFi-Net (Natural model) [4] No .255 .439 .379 .407

HiFi-Net (Face model) [4] No .784 .866 .800 .815

Omni-IML (Ours) Yes .822 .993 .826 .902

Table 4. Comparison study on face forgery localization. ’Face re-trained’ denotes the model re-trained on the

FaceShifter data using official code. ’Natural model’ and ’Face model’ denote the official models trained on

natural images and face images respectively.

Ablation

Natural Document Face Average

mIoU mF1 mIoU mF1 mIoU mF1 mIoU mF1

Baseline .451 .544 .509 .580 .809 .888 .589 .670

w.o. MG .500 .552 .609 .672 .810 .890 .639 .704

w.o. MG* .568 .632 .625 .673 .811 .889 .668 .731

w.o. DWD .477 .567 .515 .580 .815 .894 .602 .680

w.o. DW .562 .625 .692 .765 .820 .901 .691 .763

w.o. AE .547 .601 .662 .726 .819 .900 .676 .742

Ours .598 .657 .748 .809 .822 .902 .723 .789

Table 5. Ablation study on the proposed modules.
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Backbone

Natural Document Face Average

mIoU mF1 mIoU mF1 mIoU mF1 mIoU mF1

ConvNeXt Small .588 .648 .736 .793 .821 .901 .715 .781

ConvNeXt Base .598 .657 .748 .809 .822 .902 .723 .789

ConvNeXt Large .605 .665 .770 .829 .836 .910 .737 .801

Table 6. Ablation study on the backbone model size.

Ablation Study on the Proposed Modules.

The ablation results are shown in Table 5. ’w.o. MG’ denotes the model without the Modal Gate, it has 8.4

points lower mIoU than Omni-IML. This is because the frequency features in some samples are unstable,

and without the Modal Gate to filter them out, these features introduce too much noise to the encoder

and thus cause performance degradation. ’w.o. MG*’ represents the model without Modal Gate and using

the pure vision modality, it has 5.5 points lower mIoU than Omni-IML. This is because frequency domain

modeling can also be helpful in some cases, especially when the tampered region is visually consistent

(e.g. on document images). ’w.o. DWD’ represents the model without the Dynamic Weight Decoder, it has

12.1 points lower mIoU than Omni-IML. This is because the diversity of tampering features is too high for

the encoder to learn them well, thus confusing the model, confirming the necessity of the proposed DWD

for the generalist model. ’w.o. DW’ is the model with the DWD structure but the filter weights in the

decoder keep all the same for each input, it has 3.2 points lower mIoU than Omni-IML, this verifies that

the adaptive selection of optimal decoder weights for each sample can reduce confusion in joint training.

’w.o. AE’ is the model without the proposed Anomaly Enhancement (AE) module, it has 4.7 points lower

mIoU than Omni-IML. This is because the proposed AE module can enhance the forged regions in the

features, and can drive the model to learn common features. Without the AE module, the encoder’s output

features will have much more noise and confuse the decoder, as visualized in Figure  6, The model

without any of the proposed modules serves as the ’Baseline’ model, its mIoU is 13.4 points lower than

Omni-IML. These results have proved the effectiveness of our methods.
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Ablation Study on the Model Size.

We conduct an ablation study on the model size. As shown in Table 6, the model performance improves

slightly with a larger size. These results indicate the scaling law behind our Omni-IML and there is a

great potential for further improvement.

5. Conclusion

In this paper, we propose Omni-IML, the first generalist model designed for image manipulation

localization to address the drawbacks of specialist models. Specifically, multiple novel and effective

modules are proposed to achieve generalism through sample-specific adaptation, including a Modal Gate

Encoder that automatically determines the optimal encoding modality for each input image, and a

Dynamic Weight Decoder that adaptively selects the optimal decoder parameters for each input sample.

In addition, an Anomaly Enhancement module is proposed to reduce confusion by enhancing the

features of tampered regions and driving the model to learn common features from diverse image types.

To verify the generalist capability, extensive experiments are conducted on three major IML tasks,

covering natural IML, document IML, and face IML. The experimental results demonstrate that our

single model simultaneously achieves state-of-the-art performance on all tasks. Comprehensive ablation

studies and visual analyses are also presented to provide in-depth insights. We believe that our work can

inspire future research and promote the real-world applications of unified image forensics models.
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