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Based on our analysis of the GPS and other physical effects, we con�rm the well-known view that the

Lorentz transformations (LT) fail in interpreting light propagation along a closed moving contour. We

show in detail that, with the LT based on light speed invariance, in the standard linear Sagnac effect, a

photon cannot cover the whole closed contour in the measured interval  . Thus, the LTs imply a

breach in spacetime continuity related to the "time gap" due to relative simultaneity. Our results

invalidate Mansouri and Sexl’s conventionalism of the speed of light and the contended equivalence

between relative and absolute simultaneity[1].
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1. Introduction

With Einstein’s theory of special relativity (SR) of 1905, light is assumed to propagate in empty space at

the same one-way speed   relative to any inertial observer in motion. Light speed invariance is re�ected

by the Lorentz transformations (LT) associated with standard SR. In treating light speed, Einstein

adopted a procedure for synchronizing two clocks, A and B, spatially separated by the distance  ,

assuming that the one-way light speed coincides with the average round-trip light speed  ,

where    is the time interval in the light round-trip from a clock to the other and back. With Einstein

synchronization, clock B is set at    when reached by light from A. However, after more than a
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century of evolution, the interpretation of the foundations of the theory has changed, and presently we

�nd in mainstream physics journals that light speed is considered to be conventional[2], since the

observable constant speed   in the second postulate of SR is no longer the one-way light speed, but "the

round-trip speed of light (i.e., the average speed of light during the round-trip from A to B and then back to A)".

In fact, Einstein's synchronization procedure was soon criticized by epistemologists[3][4][5][6]: since the

one-way speed from A to B can be different from the return speed from B to A, the one-way speed is left

undetermined and arbitrary (conventional). In agreement with the requirement of Einstein

synchronization, in 1977, Mansouri and Sexl[1]  introduced their generalized coordinate transformations

where the one-way speed depends explicitly on the arbitrary synchronization parameter  : 

The transformations (1) from frame S to S  in relative motion with velocity  , are the LT with  , and

the ST with   are the Lorentz transformations based on absolute simultaneity. The time transform of

the LT and ST differs by the value of  only. If the speed of light is   on frame S, it is   on S . Light

speed invariance,  , holds for the LT only. The ST have been used by many physicists, although

under different names (e.g., Tangherlini transforms[7], Selleri transforms[8][9][10][11], ALT[12][13][14], LTA[15]

[16][17][18][19][20][21][22][23][24][25][26][27][28], etc.).

Supporters of standard special relativity agree that the STs interpret all the relativistic effects of the

theory and that the ST can be used, in lieu of the LT, to describe the Sagnac effect and "solve" the Selleri[8]

[9][10] and other paradoxes[1][29][2][30][31][32][33][34]. Their main argument for claiming that the LTs are still

valid, even if the paradoxes of the LT need to be "solved" with the ST, is that the LT and ST differ by the

arbitrary synchronization parameter   only[1], and thus are physically equivalent and interchangeable.

The purpose of our Letter is to show that the LT and ST are in general not physically equivalent and

actually represent two different physical realities. To corroborate our claim, we present �rst the

interpretation of synchronization achieved with the global positioning system (GPS), which indicates

agreement with the ST but not with the LT. Then, we make some general theoretical considerations

regarding the symmetry of the LT and ST and, �nally, consider in detail the special case of light
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propagation along a linearized moving closed contour. For the latter case, we corroborate the result that

the use of the LT in interpreting the GPS and the circular and linear Sagnac effects implies a violation of

spacetime discontinuity, while continuity is preserved with the ST. Furthermore, we mention other

examples, discussed in depth in the literature, where the two transformations foresee different

observable results.

2. Interpreting the GPS equation for clock synchronization

In the rotating frame of the Earth, the clock synchronization equation, which has been con�rmed by

experiment and which represents light travel time determined using two GPS clocks, can be used to

derive light speed in any direction. Thus, with results valid to the �rst order in  , a light signal travels a

coordinate distance   in the time  given by Ashby[35]

 where the last term, valid for light propagation along the circumference of radius   of the Earth’s

circular section perpendicular to the rotation axis, is derived considering that the in�nitesimal area    is

the quantity   and  . Therefore, for two clocks, A and B, synchronized by the GPS and

located along the circumference of radius  , the time interval    taken by the

light ray sent from A to reach B, corresponds to the local light speed   in the rotating frame of the Earth

given by, 

We consider now the inertial frame S  with its   axis tangent to the circumference and moving at the

tangential speed   relative to the Earth-centered inertial (ECI) frame S. Let us suppose that there is

a pole, or stick, of length   at rest on and comoving with frame S . For the two clocks A and B at the

extremities of the arc   and with AB =  , the arc length  can be thought of as

being instantaneously comoving with  . As seen from the ECI frame S, a light ray traverses the

moving   from A to B in the interval  . The time transformations of the LT and

ST between the inertial frames S  and S are respectively, 
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 where, for the LT,   in (4).

To the �rst order in  , the veri�ed GPS synchrony is precise enough to foresee the local speed 

 of (3), in agreement with the predictions (4) of the ST, but not the LT, suggesting that the LTs

are invalid[36].

Objection of the conventionalists to the conclusion that the LTs are disproved by the GPS

synchronization

The claims of conventionalists[1][29][2][30][31][32][33][34] are: any internal synchronization procedure (such

as clock transport) is equivalent to Einstein’s; synchronization is arbitrary; the one-way light speed is

conventional and the LT and ST are equivalent. Thus, on account of the arbitrariness of synchronization

and the equivalence of the LT and ST, the LT are not disproved by the GPS "external" synchronization.

Our reply to the conventionalists’ objections:

a. Not every internal synchronization is equivalent to Einstein’s. We highlight the recent procedure by

Spavieri[27], consisting of a rod of length AB =    stationary on an inertial frame and rotating

uniformly about its symmetry axis   parallel to the   axis. When the rod is not rotating, on the two

cross sections of the rod, we can identify two points, point A* at A and point B* at B, that are in

phase being aligned on the A*B* line parallel to the   axis. When the rod is in uniform rotational

motion and in the absence of torsional stresses, the points A* and B* are still in phase. Then, the rod

built-in synchrony implies that the rotating points A* and B* will cross simultaneously any axis

perpendicular to the AB direction, and the simultaneity of the two events can be exploited to

internally synchronize two clocks, one at A and the other at B. Since this rod synchronization

procedure represents an internal synchronization not necessarily equivalent to Einstein’s, we infer

that, in principle, the LT and ST are not equivalent and thus the one-way light speed is measurable.

Moreover, con�rming that synchronization is not arbitrary, there are other ways that can lead to the

measurements of the one-way light speed, shown in Refs.[21][23][24]. The conclusion that the LT and

ST are not equivalent is corroborated also by the other arguments presented below in sections 3-5.

b. If the LT and ST were equivalent, we should expect that both can provide an equivalently consistent

interpretation of the GPS and the effects of the Sagnac type. However, one of the inconsistencies of

the LT consists in the well-known fact that Einstein synchronization fails when applied to a moving

closed contour[8][9][10][11][15][16][17][18][19][20][21][22][23][24][25][26][27][28][29][30][31][32][33][34][35][36][37]
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[38][39][40][41][42][43]. If the local light speed is   along the circular contour of the Sagnac effect (or the

GPS), with Einstein synchronization and by integrating the �rst of the equations (4), the distance AB

=    will be traversed by a countermoving light signal, performing a round trip starting from A

and returning to A B, in the interval  . Nevertheless, the correct value is 

, as observed in the Sagnac effect and as a result of the GPS evidence. Hence,

Klauber[42][43], is right when pointing out that with Einstein synchronization the clock A is out of

synchrony with itself.

Moreover, that the GPS and Sagnac results favor the ST over the LT is not due to the fact that rotating

frames are not inertial, as in the case of the GPS and the circular Sagnac effect (a point highlighted also

by Engelhardt[28]). Indeed, the mentioned dif�culties of the LT emerge even when dealing with inertial

systems, as in the case of the linear Sagnac[39][40]) effect. To prove our view and for the convenience of

the reader, we discuss in detail in section 4 the linear Sagnac effect, showing that the well-known result

that Einstein synchronization fails in describing light propagation along closed contours is linked to the

violation of spacetime discontinuity of the LT when light speed invariance along the closed contour is

imposed. Finally, that the LT and ST are not equivalent and predict different results can be shown

explicitly with the reciprocal linear Sagnac effect[25][26], and other cases discussed below.

3. The symmetry of transformations

The role of symmetry represents an important theoretical argument endorsing the view that, in general,

relative simultaneity (and the LT) is not compatible or exchangeable with absolute simultaneity (and the

ST). In the literature, we have found no discussions about this fundamental aspect from physicists

adhering to the conventionalist view. Regarding the LT, we know that the Thomas-Wigner rotation is

present whenever a pair of Lorentz transformations involving non-collinear velocities is composed. In

the context of atomic physics, and exploiting the symmetry of the transformations along the electron

orbit, Jackson’s[37]  applies these successive Lorentz transformations in his derivation of the Thomas

precession, showing that it is foreseen by the LT. Yet, in Ref.[25], Spavieri and Haug take into account the

different symmetries of relative and absolute simultaneity and, following Jackson's derivation using the

ST, show that, due to the different symmetry, the LT and ST provide different results. This outcome

con�rms the notion that the LT and ST are in general not physically equivalent because, fundamentally,

c
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the LT form a symmetry group, a Lie group of symmetries of the spacetime of SR, while the ST do not

form a group (Selleri explicitly states “the inertial transformations [ST] do not form a group.”[9]).

Our claim is that the contended equivalence between relative (LT) and absolute simultaneity (ST) has no

general validity and is limited to the special case of the arbitrary synchronization involving two spatially

separated clocks and making use of the Einstein synchronization procedure. However, as well known and

pointed out above, Einstein synchronization fails[38][8][9][10][11][12][13][14][15][16][17][18][19][20][21][22][23][24][25]

[26][27][28][29][30][31][32][33][34][35][36][37][38][39][40][41][42][43]  for light propagation along a moving closed

contour (such as the Sagnac effects) where a single clock may be used to measure the round-trip time

interval. Hence, contrary to the conventionalist claim, the LT and ST are not interchangeable in general

and thus, if and whenever the ST are successfully used to solve paradoxes of standard SR[29][2][34], it is a

conceptual error to claim that also the LT are validated on account of their equivalence with the ST[11][19]

[20][21][22][23][24][25][26].

4. The linear Sagnac effect: Spacetime continuity requires adopting

conservation of simultaneity with the corresponding local speed 

 along the moving optical �ber

In its linear form, the Sagnac effect of Fig. 1 has been veri�ed by Wang et al.[39][40], in 2003. We consider

here the special case of a single counter-propagating photon that leaves the clock C* and returns to it

after the round-trip proper time interval  . We focus on the special case when the device C* moves from

the lower to the upper section in the interval  , as discussed in detail in Refs.[19][20][22]. To simplify the

calculations, it is convenient to assume that the interval  , taken by C* to move around the pulley of

radius  , while moving from the lower to the upper �ber section, is negligible and much less than  .

However, with a complete linearization of the problem, it is simpler to deal with two clocks in uniform

motion, where the �rst clock C* is placed on the lower �ber section comoving with the inertial frame S ,

and the second clock C*   is placed on the upper section comoving with the inertial frame S . C*   is

synchronized with C* when the two clocks coincide at the pulley A.

The round-trip   measured by C* and C*   comoving with the �ber is evaluated below, but is generally

easily evaluated in the lab rest frame of the pulleys, and the standard result is[19][20][22],

c = c(v)
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where   is an invariant quantity independent of the initial position C* along the contour.

We can see from the relation (5) that there are two different lengths representing the possible distance

traversed by the photon. The �rst expression for    in (5) stands for the interpretation from the clock

comoving with the �ber of length   where    is the average speed of light along the moving

contour, considering the distance   covered by the photon as invariant when measured along the �ber.

The second expression stands for the interpretation from the lab rest frame of the pulleys where the light

speed is  . As seen from the lab frame, or any other single inertial frame, at the speed    the distance

traversed by the photon is   because, in the interval  , the clock C* has traveled the

distance  , which is not covered by the photon.

Obviously, as claimed by Sagnac[38], Selleri[8][9][10], Gift[11], Spavieri et al.[19][20][21][22][23][24][25][26]  and

many other physicists, the average speed   seen from C* comoving with the �ber is inconsistent

with an invariant local light speed   along the whole �ber of length  . As shown in detail below, at the

local speed   along the �ber and in the interval  , the photon can cover the distance   only,

which is less than    and thus misses to cover the remaining section    in the observable

interval  . If instead the photon covers the whole length   of the �ber at the local speed  , as required

by the LT, for the clock C* comoving with the �ber the resulting interval would be  , contrary to

observation.

Proceeding with our derivation, we denote by    the "ground" local light speed on S . Then, 

  represents the "ground" local light speed along the �ber ground section that is at rest on S   on the

lower section, as measured by clocks at rest on S . Similarly, we denote by   the ground local light

speed on S . A priori,   and   do not necessarily coincide, depending on the theory and corresponding

synchronization.

As a way to check the consistency and completeness of the theory, with the LT or the ST, we need to

verify:

a. the ground local speed on both the lower and upper sections, and:

b. the ground total length covered by the photon in the proper interval  .

In general, it is impossible to determine a) and b) with a description from a single inertial frame of

reference, but in our case, it is possible using two inertial reference frames. Hence, for our purpose, it is
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convenient to consider the following situation where C* moves from the lower to the upper section while

the photon performs a round trip in the interval  . We begin by considering the consistency of the LT.

Description from S   using the LT. With C* initially on the frame S   of the lower section (Fig. 1-a), the

initial position of C* relative to A can be chosen in such a way   that the counter-

propagating photon leaving C* reaches B when, simultaneously, A reaches C*, as indicated in Fig. 1-b.

Assuming   as seen from C* on the clock frame S , the time interval taken by the photon to

reach B is, 

which is the same time interval    taken by A to reach C*. Since    and    are "ground"

kinematical quantities measured on S , the �ber ground length covered at speed    by the

photon in the out trip   from C* to B is 

For the return trip on the upper section, the situation is shown in Fig. 1-b, where the second clock C*  is

comoving on the �ber upper section with the frame S , traveling with velocity   relative to the arm AB.

Clock C*  is set at   at point A when coinciding with C*. Obviously, the time intervals measured

by C*  after   are the same intervals that C* would measure after having moved to the upper section.

T
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Figure 1. a) In the linear Sagnac effect, the optical �ber slides on the two pulleys A and B at speed 

 relative to the rest frame S of the pulleys. Clock C* is at rest on the inertial frame S  from where

the pulley frame AB is seen in motion with velocity  , while the photon leaving C* is counter-

moving at speed   along the �ber. b) Clock C*  is at rest on the inertial frame S , being S  and S  in

motion with opposite velocities   relative to the frame AB of the contour, while coinciding at A at 

. As observed from C* on frame S , the photon emitted from C* on the �ber lower section

reaches B when A reaches C* and covers at speed   the distance   in the interval  . After the

photon at B has moved on the upper section, according to the LT and due to relative simultaneity, as

seen from frame S , the photon is already at K  at   and covers the shorter distance 

 in the return trip. The "missing" section   has not been covered

for  .

With the corresponding LT[19][20], and some of its relations with the AB frame S given in the Appendix of

the present paper), the relative velocity between S   and S   turns out to be given by 

. From the equation  , the return trip time interval seen from S

 is, 

v ′′

v
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where the proper interval   is equally foreseen by the time transforms (1) of the LTA and LT.

The interval (7) has been evaluated from the single frame S  assuming with the LT that the one-way light

speed along the upper �ber section is still the invariant  . To verify the conditions a) and b) along the

upper �ber section, we need to consider that the one-way ground light speed might not   along the upper

section, and we must evaluate   and   from the rest frame S  of clock C* . Hence, we have to

consider the following:

Description with the LT involving the frame S . The return trip    is given by (7), but

according to the LT, the return light speed is the invariant   on S  and we have  , the interval 

 being measured at  . Then, for the observer on S , 

 where in (8) the term   represents the "time gap" from S  to S  due to relative simultaneity

foreseen by the time transform of the LT. The total ground path covered at speed   by the photon, with 

 on S  and   on S , is exactly, 

Hence, at the invariant local speed    on both lower and upper sections, the photon does not cover the

whole �ber length   in the round-trip interval  . In fact, according to standard SR and due to the effect

of relative simultaneity, the section BK  has been covered in the past, at  . Then, by assuming

light speed invariance with the LT, result (9) implies that the section BK  has not been covered in the

measured interval    (for  ). Thus, according to the LT, the spatial distance covered is  ,

less than the total ground �ber length  . Since in the proper interval   and at speed   , the

photon covers the sections   only, the "missing" path BK  has not been covered,

and the use of the LT entails a breach of spacetime continuity.

Imposing spacetime continuity in deriving 

In the return trip from B to C* on the upper section, clock C*   measures the observable interval 

 from the instant  , when it coincides with A, to the moment when the photon reaches

it. Although   and   are undetermined, light propagation along the closed contour imposes a constraint:
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spacetime continuity requires the total ground length of the �ber to be  . Since the distance 

 has been covered in the out trip, the remaining distance, 

must be covered at speed   in the return trip. With the help of (7) and (12), we �nd, 

Result (10) corresponds to the synchronization parameter    in the approach of Mansouri and

Sexl[1] for the transformations from S  to S  in terms of the synchronization parameter  , implying that

the resulting synchrony, re�ecting the interpretation of the linear Sagnac effect consistent with

spacetime continuity, is that of the ST with absolute simultaneity. With    given by (10) on S , and 

  on S, the total ground length covered is 

, as expected. If the one-way speed is

assumed to be   in the lab frame S of the pulleys (instead of in S ), along the moving sections of the �ber

we �nd   .

5. Other considerations showing the nonequivalence between the ST

and the LT.

The reciprocal linear Sagnac effect. The analysis by Spavieri and Haug[25][26], of the reciprocal linear

Sagnac effect, indicates that the LT and ST foresee different values for the round-trip observable    . As

mentioned above, if   is the initial distance of the clock C* from the pulley A,   is independent of   in

the standard linear Sagnac effect (5). However, for the reciprocal effect, these authors �nd that    is  -

dependent for the LT, while   is invariant and   -independent for the ST. Then, the two transformations

are not equivalent and represent different physical realities in this case, invalidating the argument of

general equivalence claimed by conventionalists.

Violation of spacetime continuity. Note that the spacetime discontinuity of the LT has been pointed out

more than 50 years ago by Landau and Lifshitz[44] by stating:

". . .However, synchronization of clocks along a closed contour turns out to be impossible in general. In fact,

starting out along the contour and returning to the initial point, we would obtain for a value different from

2γL

= LL′′ γ−1

= 2γL − = (1 + )L′ L′′ γ2 v2

c2

c′

Tret

c′

= = = (10)
L′

c′

Lγwγ
−1

c′

γL(1 − v/c)2

c

= (c + w) = .γ2
w

c

1 − w/c

ε = 0

′′ ′ ε

c′ ′

= cc′′

c + = L + L = L + γ(1 + / )L = 2γLTout c′Tret γ−1 γwγ
−1 γ−1 v2 c2

c ′′

c(v) = (c + v)γ2

T

X T X

X

T X

dxo
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zero . . ." .

The statement by Landau and Lifshitz is an indication of the failure of Einstein synchronization along

closed moving contours[44][8][9][10][11][12][13][15][16][17][18][19][20][21][22][23][24][25][26][27][28][29][30][31][32][33]

[34][35][36][37][38][39][40][41][42][43]. Thus, as shown in the case of the linear effect of Fig. 1, the requirement

of spacetime continuity for the photon covering the whole �ber length    in the interval  , supports

conservation of simultaneity (ST) and invalidates relative simultaneity (LT).

6. Conclusions

In short, considering the various inconsistencies of the LT in relation to the Sagnac effects and the other

several arguments presented above, there is suf�cient evidence showing that the LT and ST are not

physically equivalent. The major and straightforward difference between the LT and the ST is that they

make different light speed predictions in the frame S’ of the measuring clock in the cases of the GPS (and

the circular Sagnac effect) and the linear Sagnac effect.

Appendix

Relations used in the derivation of the results of section 4: 

Notes

PACS: 03.30.+p, 42.25.Bs, 45.50.-j
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x′

w

= ( − w ) = ( − ) (11)γw x′′ t′ t′ γw t′′ wx′′

c2

= 2v/ (1 + / ) =v2 c2 γ−2
w (1 + / )w2 c2 1/2
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