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Detecting sensitive data such as Personally Identi�able Information (PII) and Protected Health

Information (PHI) is critical for data security platforms.[1] This study evaluates regex-based pattern

matching algorithms and exact-match search techniques to optimize detection speed, accuracy, and

scalability. Our benchmarking results indicate that Google RE2 provides the best balance of speed

(10-15 ms/MB), memory e�ciency (8-16 MB), and accuracy (99.5%) among regex engines,

outperforming PCRE while maintaining broader hardware compatibility than Hyperscan. For exact

matching, Aho-Corasick demonstrated superior performance (8 ms/MB) and scalability for large

datasets. Performance analysis revealed that regex processing time scales linearly with dataset size

and pattern complexity. A hybrid AI + Regex approach achieved the highest F1 score (91. 6%) by

improving recall and minimizing false positives. Device benchmarking con�rmed that our solution

maintains e�cient CPU and memory usage on both high-performance and mid-range systems.

Despite its e�ectiveness, challenges remain, such as limited multilingual support and the need for

regular pattern updates.[2] Future work should focus on expanding language coverage, integrating

data security and privacy management (DSPM) with data loss prevention (DLP) tools, and enhancing

regulatory compliance for broader global adoption.

1. Introduction

E�cient data management is essential for organizations to ensure that sensitive information such as

Personally Identi�able Information (PII), Protected Health Information (PHI) and �nancial records
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are systematically identi�ed and protected. E�ective classi�cation aids in compliance with regulations

such as the General Data Protection Regulation (GDPR) and the Health Insurance Portability and

Accountability Act (HIPAA), while mitigating security risks through real-time threat

detection[3]  Automated tools improve operational e�ciency by streamlining access and eliminating

redundancies. Customized classi�cation systems ful�ll global compliance requirements, while

centralized control mechanisms enhance governance through uni�ed policy enforcement.[4] Strategic

data classi�cation is crucial to achieve security, compliance, and operational e�ectiveness in the

digital environment of today.

Identifying PII and PHI across various data formats presents considerable challenges, particularly

with unstructured data sets. Di�erences in encoding and �le formats (e.g., PDFs, Word documents,

databases, CSV, and other text �les) and data storage systems complicate the consistent extraction of

sensitive information[5]. Moreover, international regulations such as GDPR, HIPAA, and the California

Consumer Privacy Act (CCPA) impose varied compliance mandates, adding further complexity to

detection e�orts. Customizing detection mechanisms to align with region-speci�c regulations while

ensuring accuracy across di�erent content types is formidable. The necessity for real-time detection

and the reduction of false positives ampli�es this challenge, necessitating advanced algorithms and

comprehensive data management strategies.

Current detection techniques primarily rely on traditional pattern matching or AI-driven

methodologies, with minimal integration of the two signi�cantly hindering their e�ectiveness[6][7].

Reliance on regex-based pattern matching often results in slow performance and poor scalability,

especially since many systems fail to adopt advanced technologies like Google’s RE2 library’s set

mechanism for regex processing. Additionally, most implementations neglect optimized algorithms,

which can perform high-speed keyword detection in parallel with regex scans. These oversights make

their systems ine�cient, mainly when processing extensive Scale data. The lack of a streamlined,

single-pass regex detection pipeline further contributes to delays and limits the ability to detect

sensitive information at scale. Furthermore, Regex-based pattern matching provides a structured

framework for detecting sensitive information like PII, excelling at clearly de�ned patterns but

lacking the �exibility to handle contextual complexities and data variations. On the other hand, AI

models such as Named Entity Recognition (NER) excel at identifying ambiguous entities like names

and addresses, which are di�cult to capture with regex alone. However, they can produce false

positives without guiding patterns. Integrating regex with AI NER creates a powerful, context-
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sensitive detection system that combines the precision of rule-based methods with the adaptability of

AI-driven insights. This hybrid approach minimizes false positives, enhances scalability, and

e�ciently handles diverse data formats, making it ideal for modern data classi�cation challenges.

We present exact match and close match con�dence scores. The Context-Aware Hybrid Pattern

Detection Algorithm (CHPDA) introduces a scoring mechanism that combines exact and approximate

match reliability. This method guarantees precise identi�cation of sensitive data while signi�cantly

lowering the occurrence of false alarms. Additionally, the algorithm enhances detection accuracy by

incorporating keyword matching, particularly in real-time applications. Advanced data classi�cation

algorithm with optimized one-pass processing CHPDA supports multi-pattern searching in linear

time. This single-pass optimization e�ciently processes large data sets while maintaining high

accuracy, integrating AI-based Named Entity Recognition (NER). The algorithm includes AI-powered

NER to detect complex patterns such as names and addresses. This hybrid system combines regular

expression-based accuracy with AI context understanding, addressing gaps in traditional detection

methods and ensuring scalability. Match keywords with "Should" and "Must" criteria. CHPDA

introduces a �exible keyword-matching framework that includes mandatory (“must”) and optional

(“should”) criteria. This nuanced approach o�ers granular control over detection parameters,

increasing performance and adaptability. The DFA-based structure of CHPDA ensures predictable and

consistent performance in real-time scenarios such as intrusion detection and data loss prevention.

Its memory-e�cient design supports large patterns, making it ideal for large-scale deployments.

Preprocessing and reuse of CHPDA create a reusable pattern automaton during preprocessing that

enables consistent performance across dynamic and diverse data streams. This capability ensures

scalability and adaptability in evolving business environments.

This study reviews existing data classi�cation methods, highlighting the limitations of stand-alone

regular expressions or AI-based approaches and the need for a hybrid model. Our proposed context-

aware hybrid pattern detection algorithm (CHPDA) integrates regular expression pattern matching

with AI-powered named entity recognition (NER). It introduces exact match con�dence score,

proximity match, and nuanced keyword criteria for better detection. The results demonstrate

improved accuracy, precision, and processing speed compared to traditional methods, proven by real-

world applications. The �ndings highlight the power of combining regular expression and arti�cial

intelligence with future work to improve scalability and adaptability for di�erent data environments.
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2. Related work

Detecting sensitive information such as Personally Identi�able Information (PII) and Protected

Health Information (PHI) has been widely studied in the domains of data security, natural language

processing (NLP), and pattern-matching techniques. Existing approaches primarily fall into three

categories: regex-based detection, AI-driven Named Entity Recognition (NER), and hybrid methods

combining both.

2.1. Regex-Based Detection

Regular expressions (regex) have long been used for pattern-based text matching, forming the

backbone of many data loss prevention (DLP) systems[8]. Popular regex engines such as PCRE, Google

RE2, and Hyperscan have been benchmarked for e�ciency in large-scale text scanning[9]. While

regex-based approaches o�er deterministic accuracy and speed, they struggle with pattern

generalization and require frequent updates to accommodate evolving data structures. Furthermore,

regex engines like PCRE su�er from backtracking issues, leading to unpredictable execution times[10].

2.2. AI-Driven Named Entity Recognition

Recent advancements in NLP have enabled deep learning-based NER models to identify sensitive

entities beyond strict pattern matching. Models such as BERT[11]  and spaCy’s NER[12]  have

demonstrated strong recall in detecting complex entities across diverse linguistic contexts. However,

AI-based approaches introduce challenges such as higher computational costs, false positives, and the

need for extensive labeled datasets[13].

2.3. Hybrid AI + Regex Approaches

Several studies have explored hybrid methods that combine regex with machine learning for enhanced

detection accuracy. Souza et al.[14]  proposed an approach where regex serves as a pre-�ltering

mechanism, followed by an AI model to re�ne entity classi�cation. Similarly, Friebely et al.

[15]  demonstrated that integrating regex with deep learning improves precision while maintaining

high recall, making such approaches more suitable for real-time applications.
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2.4. Comparative Benchmarking and E�ciency

Prior research has also focused on benchmarking various detection techniques for performance and

scalability. Hyperscan has been identi�ed as the fastest regex engine but comes with hardware

constraints[16]. Meanwhile, RE2 has been praised for its balance between speed and memory

e�ciency, making it a practical choice for large-scale deployments[17]. AI-based solutions, while

powerful, tend to be resource-intensive and less predictable in execution time[18].

2.5. Contributions of This Work

While previous studies have explored regex, AI-based NER, and hybrid detection models separately,

our work systematically benchmarks these approaches under real-world conditions. We evaluate

regex engines such as RE2, PCRE, and Hyperscan alongside AI-driven detection methods to identify an

optimal balance between accuracy, speed, and scalability. By integrating regex with AI in a hybrid

model, we achieve improved detection accuracy while maintaining computational e�ciency, making

our approach well-suited for large-scale data security applications.

3. Materials and methods

3.1. Proposed system

The proposed system detects and manages sensitive information while minimizing resource

consumption e�ectively. It uses a lightweight agent deployed on client systems, con�gured with a PII

and PHI patterns glossary. The detection work�ow incorporates multiple advanced steps, starting

with regex-based pattern recognition using Google RE2 to identify prede�ned formats and patterns.

The process optimizes contextual keyword matching by leveraging the Aho-Corasick algorithm,

which assigns con�dence scores based on keyword proximity. Then, the system further re�nes the

detected data by �ltering out low-con�dence matches using threshold scores. Advanced Named Entity

Recognition (NER) models powered by machine learning perform secondary scans to identify entities

like names and phone numbers in context to enhance accuracy. Specialized validation algorithms like

Luhn’s verify speci�c data types, like credit card numbers, reducing false positives.See Figure 1. The

system ensures robust compliance with GDPR, HIPAA, and CCPA regulations, delivering reliable and

secure data protection.
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Figure 1. proposed System

3.2. Regex

Google RE2 Pattern Recognition We chose Google RE2 as our primary regular expression detection

library over alternatives such as PCRE, Oniguruma, and Boost. Regex is known for its e�ciency and

security in big data processing; unlike other libraries, RE2 o�ers linear time complexity for regular

expression matching, and its SET mechanism provides an e�ective solution for matching multiple

regex patterns simultaneously in a single scan of the input text. For example, consider the task of

identifying Social Security Numbers (SSNs) in various formats, such as the standard format \b\d{3}-

\d{2}-\d{4},̱ the compact format \b\d{9},̱ and the masked format \bXXX-XX-\d{4},̱ within a large

body of text. Instead of scanning the text separately for each pattern, RE2 compiles these patterns

into a single deterministic �nite automaton (DFA) merging their logic and assigning unique IDs to

each pattern for e�cient matching.

RE2 scans the text character by character during processing, updating the automaton state based on

the encountered input. For instance, given a paragraph like "John’s SSN is 123-45-6789. He also used

the compact format 987654321 on some forms. For security reasons, his company sometimes masks it

as XXX-XX-6789," RE2 matches 123-45-6789 to the standard SSN pattern, 987654321 to the compact

format, and XXX-XX-6789 to the masked format. The SET mechanism evaluates all patterns

simultaneously, producing results in linear time with matched IDs corresponding to their respective

patterns.[19]
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Detailed Explanation:

1. Start State: The automaton begins in the initial state.

2. Transitions:

The �rst branch handles digits (\d) for both the standard SSN format (123-45-6789) and the

compact SSN format (987654321).

The standard format transitions to a state expecting a hyphen (-) after three digits,

followed by two more numbers, another hyphen, and four �nal digits.

In the compact format, it directly reads nine consecutive digits and reaches an accepting

state.

The second branch handles the masked SSN format (XXX-XX-6789). This branch transitions

through X characters for the �rst three positions, followed by a hyphen (-), then two more X

characters, another hyphen, and �nally four digits. See Figure 2.

3. Accepting States:

The automaton has multiple accepting states:

One for the standard SSN format after processing \d{3}-\d{2}-\d{4}.

One for the compact SSN format after processing \d{9}.

One for the masked SSN format after processing XXX-XX-\d{4}.

4. E�ciency: The shared transitions (e.g., digits or hyphens) between di�erent patterns reduce

redundancy, ensuring the automaton processes the text e�ciently in a single pass.

5. Fail States: Suppose an invalid character is encountered (e.g., an extra letter or symbol not part of

the expected pattern). In that case, the automaton transitions to a fail state and stops further

processing for that branch.

Figure 2. Regular Expression Visualization for a Numeric Pattern

This approach avoids the ine�ciency and security risks associated with traditional backtracking regex

engines, which could lead to exponential time complexity for speci�c inputs. Instead, RE2 guarantees
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linear performance and prevents vulnerabilities like denial-of-service (DoS) attacks caused by

maliciously crafted patterns. While the SET mechanism optimizes multi-pattern matching, it has

some limitations, such as increased memory usage for complex patterns and the absence of

backtracking-dependent features like backreferences. Nevertheless, RE2’s speed, security, and

scalability combination makes it an ideal choice for high-performance, multi-pattern matching

scenarios in large-scale applications like log processing or sensitive data detection

3.3. Rescan with AI Model 

After the initial pattern detection phase, the system performs a secondary scan using AI-powered

Named Entity Recognition (NER) models speci�cally designed to address the complexities of detecting

sensitive information that traditional regular expressions (regex) often miss. For example, while

regex may e�ectively identify basic patterns like email addresses or phone numbers, it struggles with

nuanced data such as medical terminologies, legal clauses, �nancial records, or even names and

addresses embedded in complex textual structures.AI models excel at analyzing context and semantics

to identify entities that do not follow straightforward patterns.

For instance, NER models trained on datasets like PubMed and other medical literature detect

Protected Health Information (PHI), such as medication names or patient IDs, even when presented in

varying formats or embedded within medical notes. Financial reports and transaction records datasets

in �nance allow models to identify sensitive �nancial details, such as account numbers and credit card

information, that Experts in the legal domain customize NER models to recognize complex entities

speci�c to contracts, such as clauses, sensitive terms, and involved parties. They train these models on

custom datasets generated through generative AI, which creates diverse and realistic examples that

capture industry-speci�c nuances, edge cases, and rare entity patterns. This active approach ensures

comprehensive detection coverage and minimizes the risk of overlooking Personally Identi�able

Information (PII), PHI, or �nancial records.

The system’s scalability and modular architecture further enhance its utility, enabling the seamless

integration of new industry-speci�c models to address emerging regulatory or compliance

requirements. By leveraging generative AI for data diversity, the system produces robust models that

handle various scenarios, signi�cantly reducing false positives and improving overall detection

accuracy.
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3.4. Exact Match: Optimized with Aho-Corasick algorithm

The Aho-Corasick algorithm e�ciently solves the problem of exact pattern matching in signi�cant

texts, especially when multiple patterns need simultaneous matching. It constructs a deterministic

�nite automaton (DFA) using a Trie (pre�x tree) to represent the set of patterns. The algorithm inserts

each pattern into the Trie and adds failure links to handle mismatches by directing the algorithm to

the longest matching su�x. This approach allows the algorithm to continue the search without

restarting, signi�cantly improving performance.[20] The Aho-Corasick algorithm processes the text in

a single pass, achieving a time complexity of O(N+M), where N is the length of the text, and M is the

total length of all patterns. The algorithm is particularly valuable for virus scanning, real-time

intrusion detection, and analyzing large amounts of text.[21] While it operates e�ciently, it does face

some challenges, including high memory usage because of its Trie structure and the necessity of

rebuilding the automaton when the patterns change. Nevertheless, it excels at managing thousands of

patterns simultaneously without needing to backtrack or restart the search process. This capability

and its consistent performance make it an e�ective tool for multi-pattern matching, especially in

complex and time-sensitive situations.

Example:

To better understand how the Aho-Corasick algorithm works, consider the following patterns and a

sample text:

Patterns:

1. he

2. she

3. his

4. hers

Text: "ushers went to her house, and his brother was there."

Step 1: Build the Trie. We �rst build a Trie for the given patterns.

1. Insert the pattern he into the Trie: Root → h → e (Mark the e node as the end of the pattern he).

2. Insert the pattern she into the Trie: Root → s → h → e (Mark the e node as the end of the pattern

she).

3. Insert the pattern into the Trie: Root → h → i → s (Mark the s node as the end of the pattern his).
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4. Insert the pattern hers into the Trie: Root → h → e → r → s (Mark the s node as the end of the

pattern hers).

The Trie structure looks like Figure 3:

Figure 3. Trie Data Structure

Representation

Step 2: Add Failure Links. Failure links are added to handle mismatches e�ciently. For example, if we

encounter a mismatch at h, the failure link will guide us back to the root. Similarly, failure links are

created for deeper nodes in the Trie to prevent redundant comparisons.

Step 3: Process the Text. Now, we process the text "ushers went to her house, and his brother was

there." character by character:

1. Start at the root.

2. Read the �rst character: u → No match, follow the failure link back to the root.

3. Read s → Move to the s node.

qeios.com doi.org/10.32388/MT33KA 10

https://www.qeios.com/
https://doi.org/10.32388/MT33KA


4. Read h → Move to the h node.

5. Read e → Move to the e node. Match found: "she" (position 1–3).

6. Read r → Follow the failure link to the root and try again. There is no match at the root, so we

follow the failure link to h → e → r → s. Match found: "hers" (position 16–19).

7. Continue processing the text until we reach the end.

Matches found:

she at positions 1–3

he at position 17–18 (in "her")

his at position 27–29

3.5. Testing authentication functions

Various specialized validation functions apply to di�erent data types to accurately detect Personally

Identi�able Information (PII) and Protected Health Information (PHI). For example, Luhn’s algorithm

validates credit card numbers by checking their checksum structure. Similarly, format checks,

reserved area numbers, and geographical data validate Social Security Numbers (SSNs). The SSN must

follow the 9-digit format XXX-XX-XXX. Before 2011, the �rst three digits (area number) were

geographically assigned, and speci�c numbers (such as 000, 666, or 900-999) were invalid.

To validate phone numbers, we ensure they follow country-speci�c formats. (e.g., +1-XXX-XXX-XXX

for U.S. numbers or +44-XXXX-XXXX for U.K. numbers), including checks for valid country codes and

region codes. Mobile numbers are veri�ed against known carriers or ranges to ensure authenticity and

activity.

Email addresses undergo validation for correct formatting using regular expressions (regex) and

domain checks. Medical record numbers (MRNs) follow prede�ned institutional formats for

validation. Health insurance policy numbers adhere to established structures, while driver’s license

numbers comply with speci�c state or country validation rules, often incorporating checksum digits.

Passport numbers require veri�cation for format compliance and adherence to country-speci�c

regulations. Organizations must implement tailored validation techniques to ensure the accuracy of

detected data patterns, reduce false positives, and enhance the reliability of systems handling

sensitive information. They must verify that bank account numbers, including International Bank

Account Numbers (IBANs), adhere to the correct format and checksum.
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Additionally, they need to check postal codes for proper formatting and geographical validity while

validating dates of birth for correct formatting and reasonable age ranges. Tax Identi�cation Numbers

(TINs) should be tested against country-speci�c regulations. By applying these validation functions,

organizations can maintain data integrity and ensure compliance with regulatory standards such as

GDPR and HIPAA.

3.6. Proximity Match Scoring Mechanism

This mechanism quanti�es the relationship between detected patterns (e.g., sensitive data) and

surrounding contextual keywords by assigning a con�dence score. The con�dence score is determined

based on the proximity between the keyword and the pattern, as well as the validation of the pattern

using a veri�cation function. The closer the keyword is to the detected pattern, the higher the

con�dence score. Additionally, if the pattern passes the validation function (e.g., Luhn’s algorithm for

SSNs), a further boost in con�dence is applied. This approach ensures robust context-aware detection

while reducing false positives.

3.6.1. Algorithm

3.6.2. Example

Input:
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String: "John’s card number is 123-45-6789."

Keyword:   = "card number."

Pattern:   = "123-45-6789"

Validation function:   = Luhn’s Algorithm

1. Calculate Distance  :

2. Assign Proximity Score:

3. Validate Pattern:

The pattern   "123-45-6789" passes Luhn’s algorithm.

4. Calculate Total Con�dence:

The total con�dence score for detecting the sensitive data    ("123-45-6789") near the keyword 

 ("card number") is 56. Proximity contributes 26, and validation contributes 30.

This algorithm can be adapted to suit speci�c use cases by using di�erent proximity weighting ( ),

distance thresholds ( ), and validation scores.

3.7. Data �ltering based on threshold scores

Once the system assigns con�dence scores, it applies a data �ltering mechanism based on a user-

de�ned threshold score  . The system retains detected patterns with con�dence scores   that satisfy

the condition:

K

P

V (P )

d

d = 7 (number of characters between "card number" and "123-45-6789").

Let  = 20,α = 2.Dmax

Proximity_Score(d) = max(0,α ⋅ ( − d))Dmax

= max(0, 2 ⋅ (20 − 7)) = 26.

P =

Validation_Score = 30.

= Proximity_Score(d) + Validation_ScoreCtotal

= 26 + 30 = 56.Ctotal

P

K

α

Dmax

T C

C ≥ T
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for further processing, while it discards those with  . This �ltering step ensures that only highly

reliable matches are considered, e�ectively reducing noise and prioritizing actionable information.

Threshold    Adjustment: The threshold    can be dynamically adjusted to balance precision and

recall:

Precision: Increasing    raises the reliability of detections by minimizing false positives, as only

high-con�dence patterns pass the �lter.

Recall: Lowering    increases the system’s ability to detect more potential matches at the cost of

potentially admitting some false positives.

Example: If   and a set of detections has con�dence scores:

Only the values meeting   will pass the threshold:

Filtered Results Representation: The �ltering mechanism can be formally represented as:

This mechanism allows users to �ne-tune the detection pipeline according to their speci�c needs,

ensuring the system remains adaptable to di�erent operational requirements.

4. Experimental setup

Setup details

Software: The developers implemented the AI-based NER model using programming languages and

libraries such as TensorFlow and PyTorch. They utilized Google’s RE2 library for regular expression-

based operations because of its e�ciency in pattern recognition and processing large datasets.

Hardware: The team evaluated client-side processing on ARM-based devices equipped with 2 GB of

RAM and a quad-core processor to ensure system e�ciency in lightweight environments. They also

tested multi-user scenarios using multiple Windows systems with di�erent test accounts.

Performance testing

Measuring speed and accuracy

C < T

T T

T

T

T = 50

{60, 45, 80, 30, 55}

C ≥ 50

{60, 80, 55}

Filtered Results = {C ∣ C ≥ T}
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The system achieved an average processing speed of 100 MB/s across data �les up to 1 TB in various

formats (e.g., PDF, CSV, and JSON �les). Benchmark accuracy tests showed over 95% accuracy in

detecting PII and PHI.

The team has tuned the detection accuracy to maintain a score of 94%, ensuring minimal missed

sensitive data. False positive rate: The false positive rate remained below 3%, indicating the

system’s ability to distinguish sensitive data from irrelevant patterns.

5. Results and Discussion

5.1. Regex Pattern Matching Algorithms Comparison

Based on the results in Table 1, Google RE2 strikes an optimal balance between speed, memory

consumption, and accuracy, making it the ideal choice for our solution. RE2 achieves a detection speed

of 10-15 ms/MB, signi�cantly faster than PCRE’s 50-80 ms/MB, while maintaining lower memory

usage at 8-16 MB compared to PCRE’s 12-24 MB. Additionally, RE2 delivers a high accuracy rate of

99.5% with minimal false positives at 0.5%. Although Hyperscan demonstrates superior performance

with faster detection (2-5 ms/MB) and higher accuracy (99.9%), it comes with substantial hardware

restrictions and higher memory requirements (32-64 MB), making it impractical for broad

deployment in resource-constrained environments See Table  1. Consequently, we prioritized RE2’s

scalability, reliability, and adaptability across diverse platforms, ensuring consistent performance

without needing specialized hardware[22].

Algorithm Speed (ms/MB) Usage (MB) Accuracy (%) False Positives (%)

Google RE2 10-15 8-16 99.5 0.5

PCRE 50-80 12-24 99.8 0.7

Hyperscan 2-5 32-64 99.9 0.3

Table 1. Comparison of Regular Expression Matching Algorithms
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5.2. Exact Match Algorithms Performance

Based on the results in Table 1.4, Aho-Corasick stands out as the optimal choice for our solution due to

its exceptional balance of speed, scalability, and e�ciency. Aho-Corasick achieves a search time of

just 8 ms/MB, signi�cantly outperforming Knuth-Morris-Pratt’s 15 ms/MB and Boyer-Moore’s 12

ms/MB. Additionally, Aho-Corasick excels in handling large datasets, showing excellent scalability for

texts over 100MB, making it ideal for applications requiring high performance on vast datasets. While

Knuth-Morris-Pratt and Boyer-Moore o�er e�cient matching for smaller datasets, their slower

speeds and limited scalability make them less suitable for larger, more complex use cases. Given Aho-

Corasick’s superior performance and e�ciency, it is the preferred choice for tasks involving large-

scale text analysis and real-time pattern matching, ensuring optimal results across various data sizes

and platforms See Table 2.

Algorithm Speed (ms/MB) Scalability (Text Size in MB)

Aho–Corasick 8 Excellent (>100MB)

Boyer-Moore 12 Good (<50MB)

Knuth-Morris-Pratt 15 Moderate (<50MB)

Table 2. Performance and Scalability of String Matching Algorithms

5.3. Performance Analysis

The performance results indicate a consistent rise in folder classi�cation time as dataset size and

regex complexity increase. For example, with the 100-pattern regex set, processing times ranged from

4.85 seconds for a 100MB dataset to 530.87 seconds for 10GB. When the regex complexity increased to

150 or 172 patterns, processing times saw a slight uptick, particularly for larger datasets, as detailed in

See Table  3. This data, further illustrated in Figure  4, underscores the linear scaling of regex

processing times with growing dataset size and pattern complexity.
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Figure 4. Folder Classi�cation Time vs. Data Size for Di�erent Regex Sets

Dataset Size 100 Patterns 150 Patterns 172 Patterns

100MB 4.85 s 5.75 s 6.19 s

500MB 22.23 s 26.80 s 28.65 s

1GB 42.92 s 53.85 s 54.89 s

2GB 80.68 s 97.66 s 112.79 s

5GB 227.23 s 258.82 s 284.69 s

10GB 530.87 s 566.54 s 594.97 s

Table 3. Regex Processing Times for Di�erent Dataset Sizes and Pattern Complexities

5.4. Detection Accuracy

The detection accuracy results highlight the strengths and trade-o�s of di�erent methods. Regex

alone demonstrated high precision for exact matches but struggled with recall, particularly for non-

standard patterns. AI alone achieved better recall, successfully identifying patterns beyond regex

limitations, but at the cost of a higher false favorable rate. In contrast, AI + Regex integration
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provided the best balance between precision and recall, achieving the highest F1 score across all

dataset sizes. These results are summarized in Table 4 and Table 5

Method Precision (%) Recall (%) F1-Score (%)

Regex Alone 92.5 75.3 82.9

AI Alone 84.7 89.2 86.9

AI + Regex 94.8 88.7 91.6

Table 4. Detection Accuracy Metrics for Di�erent Methods

Additionally, the evaluation of detection performance across di�erent �le sizes and pattern

complexities revealed insights into con�dence scores, false positives, and missed matches. As dataset

size increased, the AI + Regex approach maintained a stable con�dence score while minimizing false

positives and missed matches. This trend is further illustrated in Figure 5, which visualizes the

relationship between �le size, total matches, and detection accuracy.

Figure 5. Total Matches and Missed Matches vs. File Size
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File Size (MB) Total Patterns Total Matches Con�dence Score (Avg) False Positives Missed Matches

100 100 102 68% 2 2

500 500 507 72% 7 7

1000 1000 1020 70% 20 20

5100 5050 5100 75% 50 50

Table 5. Detection Performance Across Di�erent File Sizes

5.4.1. Device Benchmarking

The benchmarking results demonstrate the performance di�erences between a high-performance

server and a mid-range device when handling various dataset sizes and regex complexities. The high-

performance server maintains stable CPU usage, ranging from 26% to 30%, across all dataset sizes,

ensuring e�cient processing regardless of data volume. However, memory usage remains relatively

stable for smaller datasets but increases signi�cantly as the regex set complexity grows, particularly

with 150 and 200 regex patterns.

In contrast, the mid-range device exhibits higher CPU usage (30% to 40%), primarily due to its

limited computational resources. As dataset size and regex complexity increase, CPU utilization rises

more steeply compared to the high-performance server. Additionally, memory consumption on the

mid-range device grows at a faster rate, making it more sensitive to the increasing number of regex

patterns. The CPU usage for both devices under di�erent dataset sizes and regex complexities is

summarized in Table 6.

qeios.com doi.org/10.32388/MT33KA 19

https://www.qeios.com/
https://doi.org/10.32388/MT33KA


Dataset Size Regex Set High-Performance Server (CPU %) Mid-Range Device (CPU %)

100MB 100 Patterns 26% 32%

  150 Patterns 28% 35%

  200 Patterns 30% 38%

1GB 100 Patterns 26% 33%

  150 Patterns 28% 36%

  200 Patterns 30% 39%

5GB 100 Patterns 26% 35%

  150 Patterns 28% 37%

  200 Patterns 30% 40%

Table 6. CPU Usage Comparison for High-Performance Server and Mid-Range Device

5.4.2. Memory usage

Memory usage varies depending on the regex set size and device type. The high-performance server

maintains relatively stable memory consumption, with usage ranging from 115 MB to 151 MB, even as

dataset size and regex complexity increase. In contrast, the mid-range device exhibits signi�cantly

higher memory consumption, ranging from 145 MB to 190 MB, indicating greater sensitivity to larger

regex sets and �le sizes. As dataset size increases from 100MB to 5GB, memory usage grows across

both devices, with the most noticeable increase occurring in the 200-pattern regex set. A detailed

breakdown of memory usage for di�erent regex sets and devices is provided in Table 7.
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Regex Set File Size High-Performance Server (MB) Mid-Range Device (MB)

100 Patterns 100MB 122.4 145

  5GB 136 170

150 Patterns 100MB 120 155

  5GB 144 180

200 Patterns 100MB 115 165

  5GB 151 190

Table 7. Memory Usage Comparison for High-Performance Server and Mid-Range Device

6. Conclusion

This study presents an optimized approach for detecting sensitive data using regex-based pattern

matching and AI-powered techniques. Our benchmarking results demonstrate that Google RE2 o�ers

the best trade-o� between speed, accuracy, and memory e�ciency, making it the preferred choice for

scalable and high-performance regex processing. Additionally, Aho-Corasick emerges as the optimal

exact-match algorithm due to its superior speed and scalability across large datasets. By integrating

AI with regex, we signi�cantly enhance recall while maintaining high precision, achieving the best F1-

score (91.6%) across diverse data sizes.

The �ndings have signi�cant implications for data security and insider risk management, particularly

in detecting PII and PHI across enterprise environments. The proposed hybrid approach enables real-

time detection, minimizes false positives, and ensures e�cient resource utilization on both high-

performance servers and mid-range devices. A competitive comparison further highlights our

solution’s advantages in speed, accuracy, and feature set, reinforcing its applicability in real-world

security work�ows.

Despite these advancements, certain limitations remain. Our current implementation requires

ongoing updates to regex patterns and lacks multilingual capabilities, limiting its e�ectiveness in

diverse linguistic contexts. Future research should focus on expanding language support, integrating
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advanced Data Security and Privacy Management (DSPM) tools, and aligning with evolving regulatory

requirements.

In conclusion, this research establishes a scalable, e�cient, and accurate framework for sensitive data

detection. By bridging the gap between traditional regex methods and AI-driven techniques, our work

lays the foundation for more adaptable and intelligent data security solutions in the future.
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