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Background: Economic inequality is often attributed to differences in individual productivity, but

organizational network structures themselves may generate substantial inequality. We explore

this possibility by modeling firms as networks whose topology influences task performance and

compensation distribution.

Methods: We construct a conceptual model in which firms, represented as directed graphs,

perform two basic tasks—an associative summation task and an innovation adoption task. Each

vertex (employee) incurs or benefits from costs and information flows determined by its in-

degree and position. Firms evolve over generations through selection for lower total costs,

leading to stable network structures. Compensation schemes are based on vertex costs (work

performed) and two measures of network centrality: Betweenness Centrality and PageRank

Centrality.

Results: Simulations of evolved networks (43 vertices, 500 generations) yield substantial

inequality even among identical agents. For unstructured firms, Gini coefficients for

compensation based on vertex costs exceed 0.60, while those based on centrality measures range

from 0.28–0.53. Structured firms exhibit even greater inequality, with Gini coefficients for vertex-

cost-based pay reaching 0.87. Structured organizations, though less efficient, consistently

generate greater inequality.

Conclusions: Considerable inequality in compensation can emerge solely from the network

architecture of firms, independent of worker heterogeneity. Hierarchical or structured

organizations amplify inequality relative to unstructured ones. Network topology should

therefore be recognized as a fundamental contributor to economic inequality alongside

productivity and skill differences.
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1. Introduction

Economists have begun to recognize the significance of networks (modeling connectedness,

relationships, information flows, etc.) for market outcomes[1][2]. Other social scientists, particularly

sociologists, have also long understood the importance of networks. The formal study of network

models can be traced back to Graicunas’[3] work on the span of control, and subsequent sociological

classics include Wasserman and Faust[4], Watts and Strogatz[5], and White[6]. Most of the economic

literature has focused on how individual rational agents improve their well-being by forming or

dissolving links to other agents. The individual-centric approach yields many fruitful results. One

example is the recent demonstration that “six degrees of separation” is the natural outcome of a

network situation in which the individuals face a tradeoff between the cost of making connections

and their desire to increase their centrality in the network.

We examine networks in a different way. Instead of considering how individual members of a

network might act strategically to improve their situations, we focus on how an organization facing

market pressures arranges its structure to accomplish particular tasks. We abstract away from all

personal characteristics of the members of the organization and their motivations and focus only on

the organization’s effectiveness in carrying out its tasks. The remarkable result is that the network

structure alone produces considerable economic inequality, entirely independent of the

characteristics or abilities of the agents making up the organization.

2. The Basic Model

We begin by modeling the firm as a directed graph, with numbered vertices representing the

employees. The production process of the firm consists of two tasks: (1) an associative task, in which
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each member of the organization is assigned a number and the firm’s task is to compute the sum,

and (2) an adoption task, in which all members of the organization have to adopt an innovation that

is first discovered by one member. The associative task is akin to the adding-up performed by the

stylized networks in[7]. Other versions of the adoption task have been examined in[8][9].

Our versions of these tasks are set up to be as simple as possible. Obviously, real-world firms

perform many varied and complex tasks, but our goal is to illustrate the importance of network

structure in the most basic setting. For the associative task, the firm’s goal is to add the numbers

given to the agents and pass the sum to Vertex #1. Information flows in the direction of the edges of

the directed graph. The summation is carried out as follows:

For each vertex, find the shortest path from that vertex to Vertex #1. These paths may be distinct,

or they may overlap.

When a vertex receives a number from another vertex (by way of a directed edge), it incurs a

processing cost equal to f(Vin), where Vin is the vertex’s in-degree and f is an increasing function.

The total cost incurred by the vertex is then f(Vin) × W, where W is the “workload,” the number of

times the vertex processes an input.

If there were no penalty for a vertex’s having multiple edges feeding into it, the optimal structure for

performing the associative task would simply be a star, with each vertex connected directly to Vertex

#1. If not for the workload factor, the optimal firm would just be a single string leading to Vertex #1

incorporating all the vertices. Absent the adoption task, the structure described above leads to tree-

like graphs.

The adoption task is even simpler. An innovation is introduced at a particular vertex. The task is to

spread the innovation to each of the firm’s other vertices. The process of diffusion is akin to the

adoption task, but in reverse—the innovation is passed from the vertex where it first appears

through the entire organization.

The innovation is assumed to first be taken up by a single vertex. Then the shortest path from

this vertex to each other vertex is found.

The benefit a vertex acquires by adopting the innovation is an increasing function of the number

of edges feeding information into the vertex (its in-degree). The more vertices passing on

information about the innovation, the easier it is for the vertex to adopt it. This benefit is a

negative cost.

There is no workload factor for the adoption task. Once a vertex has adopted the innovation, it

incurs no additional cost when other diffusion paths go through it.

Another version of the adoption task might have the benefits increasing with the number of

diffusion paths running through the vertex from the initial adopter to the other vertices. This could

be thought of as a strengthening of the benefit the vertex receives from adoption because of its

taking advantage of the experience of other adopters. The results are qualitatively similar in either

version of the model, so we do not report the results of the second form here.

Note the simplifications: There is no discounting associated with the time it takes for the tasks to be

accomplished. The cost incurred by a vertex in adding numbers does not depend on the numbers

being added. The individuals making up the firm do not behave strategically. All the employees are

identical except for their position in the firm’s network. We abstract from any changes in the sizes of

the firms. Also, our model is “conceptual” rather than “descriptive” in the sense of DeCanio[10]. The

particular functional forms, parameters, and dynamics we employ are not meant to be

representative of any particular empirical setting; the goal rather is to show how the network

structure of firms coupled with selection pressure to minimize costs can produce unequal

compensation of employees generically.

3. Evolution

Efficient firms minimize the total vertex costs of the associative task plus the benefits of the

adoption task. However, firms in the real world are never perfectly optimized. In addition to

computational complexity[11]  and principal-agent frictions[12], market and regulatory conditions

constantly change. Nevertheless, market competition creates selection pressure. This is similar to

selection pressure in biological evolution. All that is required is “the element of environmental

adoption by the economic system of a posteriori most appropriate action according to the criterion

of ‘realized positive profits’” ([13]; see also  [14]). In our model, this takes the form of cost

minimization subject to the firm’s successful completion of its task(s).
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We implement a simple model of “evolution” of lower-cost network structures. The firm’s total cost

is obtained by adding up all the costs incurred by the individual vertices. Starting with a population

of n randomly generated connected graphs using Mathematica’s RandomGraph

function[15] and connected so that the firms are capable of actually performing the tasks, we create a

population of 3n firms: the original n, another n by randomly adding an edge to each firm, and a

final n by randomly subtracting an edge from each firm. From these 3n firms (minus those that are

dropped because they cannot complete the tasks), we select the n lowest-cost firms and repeat the

process. Each repetition is a “generation.” This trimming of the least efficient 2/3 of the randomly

modified firms is sufficient to result in populations with stable values for the firms after 500

generations, at least for firms of the size we modeled. This results in a population of low-cost firms

exhibiting only a few distinct structures.

This “evolutionary” process normally will not lead to an optimal structure. In fact, it is evident that

the evolutionary process finds only local cost minima. Different initial populations will evolve to

slightly different evolved populations. In Mathematica[15], the software we used for all calculations,

an initial random “seed” can be set, enabling replication of the results. Varying the seed produces

different initial conditions. We experimented with different initial seeds and found that after 500

generations, the variation in average final total costs is quite small relative to the average initial

costs and is very much smaller than the gains in efficiency resulting from the competitive

winnowing of inefficient firms.

We also implement a version of the model in which the firms exhibit a fixed underlying structure,

and evolution adds edges that improve performance. A fixed-structure approach is taken by Stark et

al.[16], but in the context of exploring the evolution of cooperation. In the next section, we first

present the results for initial populations of unstructured graphs, then show how the results change

when an underlying structure is maintained.

4. Compensation of Employees

It is standard in economics to attribute the compensation of individuals to their marginal

productivities. Our model provides for a variant of this approach if each member of the firm (i.e.,

each vertex) is paid an amount equal to the “work” it performs, where work is measured by the cost

incurred by the vertex in carrying out the tasks. However, suppose some other indication of the

individuals’ importance to the firm were the basis of compensation. Network theory offers multiple

measures of the “importance” or “centrality” of individual nodes. We consider two possible

candidates for centrality-based compensation: BetweennessCentrality (BC) and PageRankCentrality

(PRC). Formal definitions of these two quantities are given in equations (1) and (2):

where   is the number of shortest paths from s to t and   is the number of shortest paths from s

to t passing through i, and

where a is the adjacency matrix of graph g, aT is its transpose, and d is the diagonal matrix

consisting of 1/max(1,  ), where   is the out-degree of the ith vertex. In our model, β is the unit

vector[15].

BetweennessCentrality is “a widely used measure that captures a person’s role in allowing

information to pass from one part of the network to the other”[17]. PageRankCentrality is the

recursive measure of a node’s influence pioneered by Sergei Brin and Lawrence Page, the founders of

Google. It reflects the value of all the nodes that influence each particular node. Either of these

measures could be the basis for compensation, particularly if compensation is determined in part by

political or bureaucratic power.

5. Results

Whether compensation is based on individuals’ work as measured by vertex cost or their centralities

in the firm’s network, our simple network models generate considerable economic inequality.

Studies of within-firm pay differences show a considerable range; for example, “the median firm-

level total pay Gini coefficient is 0.27, on par with the country Gini for Sweden, whereas the 90th

percentile is 0.59, similar to the level for Namibia” ([18]; see also the range of Ginis reported by[19]).

BC = /∑
s,t∈v∧s≠i∧t≠i

nis,t ns,t (1)

ns,t nis,t

PRC  = a list of centralities that are solutions to c = α  ⋅ d ⋅ c + βaT (2)

douti douti
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Our results fall roughly within this wide range, as illustrated by Table 1. The Gini index for vertex-

cost-based compensation is greater than 0.6 for all parameter combinations shown. Although

within-firm Ginis do not aggregate into country-wide Ginis because of pay differences across firms

(such differences as are recognized in Wallskog et al.’s[20] examination of the relationship between

within-firm inequality and productivity, and elsewhere), we note that this Gini of 0.6 is comparable

to the highest level of income inequality found in country-wide data—the Gini for household income

in South Africa is 0.63. As shown in Table 1, the Ginis we calculate for compensation based on the

two centrality measures are considerably lower, with the BetweennessCentrality Gini somewhat

greater than the Gini for compensation based on PageRankCentrality. For comparison, the income

Ginis of the five largest world economies are the United States, 0.415; China, 0.382; Japan, 0.329;

Germany, 0.317; and India, 0.357[21]. Considering wage income only, a recent NBER study[22]  found

that the average earnings Gini for the four Nordic countries is 0.23, while for the United States this

Gini is 0.38 and for the United Kingdom it is 0.37.

Associative Task Cost Function x2 x2 x2 x2

Adoption Task Cost Function − (x2)/50 − (x2)/60 − (x2)/70 − (x2)/80

Average Total Cost 1613 1567 1484 1567

Average Ginis:

    VertexCost 0.6563 0.6030 0.6240 0.6304

    BetweennessCentrality 0.4626 0.4260 0.5337 0.5298

    PageRankCentrality 0.3664 0.3193 0.3535 0.3109

Associative Task Cost Function x2 x3 x4 x5

Adoption Task Cost Function − (x2)/50 − (x3)/50 − (x4)/50 − (x5)/50

Average Total Cost 1613 4539 11272 33473

Average Ginis:

    VertexCost 0.6563 0.6011 0.7053 0.6841

    BetweennessCentrality 0.4626 0.5116 0.4542 0.3718

    PageRankCentrality 0.3664 0.3453 0.3354 0.2779

Table 1. Characteristics of Evolved Unstructured Firms after 500 Generations

Parameters: Vertices = 43, Initial Edges = 129, Population = 100,

PageRankDecay = 0.85, Vertex InDegree = x, Seed = 32.

Similar patterns are found if a structure is first imposed and then maintained for the firms as they

undergo evolution. The starting point for this type of structure is shown in Figure 1.
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Figure 1. Tree structure with 3 levels, 3 inputs to each superior level

As can be seen here, there are a total of 13 vertices in this graph. The vertex to which all the

information flows is Vertex #1; the “middle management” level is made up of Vertices #2, #3, and #4.

The model we use for the fixed underlying structure version of our model has three levels but six

“subordinate” vertices feeding into each superior. This makes a total of 43 vertices (1 + 6 + (6x6)).

This number is sufficient to display the main results of the evolutionary process and is consistent

with the conventional wisdom that a manager can most efficiently supervise 7 ± 2 subordinates[23].

Associative Task Cost Function x2 x2 x2 x2

Adoption Task Cost Function − (x2)/50 − (x2)/60 − (x2)/70 − (x2)/80

Average Total Cost 4031 4159 4051 4163

Average Ginis:

    VertexCost 0.8205 0.8191 0.8187 0.8261

    BetweennessCentrality 0.6597 0.6241 0.6343 0.6706

    PageRankCentrality 0.4362 0.4361 0.4309 0.4621

Associative Task Cost Function x2 x3 x4 x5

Adoption Task Cost Function − (x2)/50 − (x3)/50 − (x4)/50 − (x5)/50

Average Total Cost 4031 27373 185877 1.30 × 106

Average Ginis:

    VertexCost 0.8205 0.8516 0.8617 0.8653

    BetweennessCentrality 0.6597 0.7094 0.6889 0.6691

    PageRankCentrality 0.4362 0.4548 0.4530 0.4457

Table 2. Characteristics of Evolved Structured Firms after 500 Generations

Parameters: Vertices = 43, Initial Edges =129, Population = 100,

PageRankDecay = 0.85, Vertex InDegree = x, Initial innovation in Vertex #43, Seed = 32.

Structured firms’ average total cost figures are higher than those for the unstructured firms,

reflecting the additional “overhead” imposed by maintaining an underlying fixed structure.

Interestingly, the Gini coefficients for each comparable set of cost parameters are also higher for the

structured than for the unstructured firms. Only the PageRank Centrality Ginis in Table 2 are

comparable to the degree of inequality seen in the real world. This finding is consistent with the

possibility that power and position in structured organizations are the primary determinants of

employee compensation in such firms.
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We can examine typical evolved firms in greater detail. Figure 2 shows the structure of one of the

evolved unstructured firms with a cost structure given by the second numerical column of the first

half of Table 1.

Figure 2. Typical Evolved Unstructured Firm

First, notice Vertices #1 and #43. Vertex #1 is where the summation from the associative task is

received. It is not particularly prominent visually in the network, but it does have three other

vertices feeding into it. Vertex #43 is where the innovation originates. It feeds its information to one

vertex, #6, and no other vertex is connected to it. (This is not a general feature of all the evolved

firms, however.) More interestingly, consider the top four vertices as measured by their vertex costs,

betweenness centralities, and PageRank centralities. These are: Vertex Cost: {1, 26, 41, 5 and 24

(tied)}; Betweenness Centrality: {4, 2, 13, 28}; PageRank Centrality: {1, 26, 41, 9}. The two measures

showing overlap are Vertex Cost and PageRank Centrality, but the overlap is not complete. Table 3

shows the average correlations between the three compensation measures, taken across the

population of the 100 evolved firms after 500 generations. By way of comparison, the critical value

for two-tailed statistical significance at the 1% level for a population of 100 is 0.254[24], although we

make no claim of a formal hypothesis test because the evolved graphs do not constitute a random

sample.
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Associative Task Cost Function x2 x2 x2 x2

Adoption Task Cost Function − (x2)/50 − (x2)/60 − (x2)/70 − (x2)/80

Correlations:

    (Vertex Cost, PRC) 0.943 0.942 0.975 0.968

    (Vertex Cost, BC) - 0.060 - 0.213 - 0.222 - 0.236

    (BC, PRC) - 0.020 - 0.232 - 0.209 - 0.194

Associative Task Cost Function x2 x3 x4 x5

Adoption Task Cost Function − (x2)/50 − (x3)/50 − (x4)/50 − (x5)/50

Correlations:

    (Vertex Cost, PRC) 0.943 0.826 0.909 0.513

    (Vertex Cost, BC) - 0.060 0.216 - 0.163 0.034

    (BC, PRC) - 0.020 0.372 - 0.132 - 0.186

Table 3. Average correlations between compensation measures, population of 100 unstructured firms

after 500 generations

Parameters: Vertices = 43, Initial Edges = 129, Population = 100,

PageRank Decay = 0.85, Vertex In-Degree = x, Seed = 32.

Figure 2 (as well as other evolved firms not shown here) shows looping structures that can be

characterized as “teams.” In our model, teams emerge naturally from the evolution of the otherwise

unstructured firms. Figure 3 is analogous to Figure 2, except for an evolved firm with a fixed

underlying structure. Obviously, because of maintaining the 3-layer structure, the evolved structured

firm has more edges than the evolved unstructured firm. The firm in Figure 3 displays the hierarchy:

Vertices #1, #2, #3, #4, #5, #6, and #7 all have six edges feeding information to them. Vertex #43, the

first innovator, has only one edge feeding into Vertex #7. Information flows across the bottom tier—

Vertex #27 feeds into Vertex #29 as well as into its “manager” Vertex #5, for example, and Vertex #24

feeds into Vertex #40, for example. The top Vertex Costs are #1, #6, and #7 (tied), followed by #2, #3,

#4, and #5 (tied). The top four PageRank Centralities are #1, #5, #6, and #7. It is perhaps no surprise

that under these two compensation schemes, the highest payments go to the top management

layers. Also, the self-loop edge from Vertex #18 is an artifact from the original random population.

Different random seeds give rise to evolved firms without such loops. The survival of this loop is

confirming evidence that the evolutionary process does not lead to global cost minima.
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Figure 3. Typical Evolved Structured Firm

6. Discussion and Conclusion

Clearly, inequality in compensation is intrinsic to the network structure of organizations. The

average Ginis in the initial population of randomly connected firms are high initially, may decrease

and increase over the course of the evolutionary process, and then settle in at values that remain

stable, as shown in Figure 4. This figure gives the historical path of the average Ginis for the three

kinds of employee compensation, for one particular set of parameter values (those given in the

second column of the top half of Table 2).
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Figure 4. Inequality Histories, 3 Compensation Schemes, Structured Firm

These results indicate that considerable inequality can emerge solely from the network structure of

the firms, independent of the characteristics of the individual agents making them up. All that is

required is that market conditions exert selection pressure on the firms. Structured firms give rise to

greater inequality than unstructured firms, a finding consistent with economic intuition.

Additionally, selection pressure for lower total costs leads to “informal ties” across tiers in order to

accomplish the adoption task more efficiently.

Of course, network structure is not the only source of economic inequality. Many other factors

contribute, as evidenced by the very large literature on inequality across the social sciences. Classic

treatments by Sen[25][26]  and Atkinson[27][28]  have stood the test of time. The “econophysics”

literature, in which economic analogues of physical concepts such as entropy and temperature are

calculated, also yields substantial inequalities in the economic variables those models simulate [29]

[30][31][32], to give a few examples. The Greenberg and Gao[33] survey of this literature notes that “a

large proportion of observed economic inequality is the result of luck and the inherently diffusive

(entropy-increasing) nature of exchange itself, and not the result of interpersonal differences in

industriousness, entrepreneurialism, or intelligence” (p. 18). Inequalities can also emerge from

agent-based models such as those pioneered by Schelling[34] and Epstein and Axtell[35].

In our model, it is also the case that inequality emerges even though the individual agents are

identical in all their capabilities. It is a topic of further research to see how (and whether) this

inequality would increase if the agents’ abilities were drawn from a distribution of skills. Even so, we

have shown that under alternative compensation schemes, considerable inequality arises solely

from the network structure of the firms and the selection pressure for efficiency resulting from

competitive market forces. We propose only to add the ubiquitous presence of organizational

networks to the set of causes of this early and perhaps most salient of economic questions—the

sources of inequality.
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