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Economists conventionally attribute inequality in employee compensation to differences in the

marginal productivities of workers. However, it is possible that inequality arises from an entirely

different source – the network structure of the organizations to which the employees belong. We offer

an extremely simple network model that accounts for the degree of inequality observed in modern

economies.
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1. Introduction

Economists have begun to recognize the signi�cance of networks (modeling connectedness,

relationships, information �ows, etc.) for market outcomes[1][2]. Other social scientists, particularly

sociologists, also have long understood the importance of networks. The formal study of network models

can be traced back to Graicunas’[3]  work on the span of control, and subsequent sociological classics

include Wasserman and Faust (1994), Watts and Strogatz[4] and White[5] Most of the economic literature

has focused on how individual rational agents improve their well-being by forming or dissolving links to

other agents. The individual-centric approach yields many fruitful results. One example is the recent

demonstration that “six degrees of separation” is the natural outcome of a network situation in which the

individuals face a tradeoff between the cost of making connections and their desire to increase their

centrality in the network[6].

We examine networks in a different way. Instead of considering how individual members of a network

might act strategically to improve their situations, we focus on how an organization facing market

pressures arranges its structure to accomplish particular tasks. We abstract away from all personal

characteristics of the members of the organization and their motivations and focus only on the
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organization’s effectiveness in carrying out its tasks. The remarkable result is that the network structure

alone produces considerable economic inequality, entirely independent of the characteristics or abilities of

the agents making up the organization.

2. The Basic Model

We begin by modeling the �rm as a directed graph, with numbered vertices representing the employees.

The production process of the �rm consists of two tasks: (1) An associative task, in which each member of

the organization is assigned a number and the �rm’s task is to compute the sum, and (2) an adoption task,

in which all members of the organization have to adopt an innovation that is �rst discovered by one

member. The associative task is akin to the adding-up performed by the stylized networks in[7]. Other

versions of the adoption task have been examined in[8][9].

Our versions of these tasks are set up to be as simple as possible. Obviously, real-world �rms perform

many varied and complex tasks, but our goal is to illustrate the importance of network structure in the

most basic setting. For the associative task, the �rm’s goal is to add the numbers given to the agents and

pass the sum to Vertex #1. Information �ows in the direction of the edges of the directed graph. The

summation is carried out as follows:

For each vertex, �nd the shortest path from that vertex to Vertex #1. These paths may be distinct, or

they may overlap.

When a vertex receives a number from another vertex (by way of a directed edge), it incurs a processing

cost equal to f(Vin), where Vin is the vertex’s in-degree and f is an increasing function.

The total cost incurred by the vertex is then f(Vin) × W, where W is the “workload,” the number of times

the vertex processes an input.

If there were no penalty for a vertex’s having multiple edges feeding into it, the optimal structure for

performing the associative task would simply be a star, with each vertex connected directly to Vertex#1. If

not for the workload factor, the optimal �rm would just be a single string leading to Vertex#1

incorporating all the vertices. Absent the adoption task, the structure described above leads to tree-like

graphs.

The adoption task is even simpler. An innovation is introduced at a particular vertex. The task is to spread

the innovation to each of the �rm’s other vertices. The process of diffusion is akin to the adoption task,
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but in reverse – the innovation is passed from the vertex where it �rst appears through the entire

organization.

The innovation is assumed to �rst be taken up by a single vertex. Then the shortest path from this

vertex to each other vertex is found.

The bene�t a vertex acquires by adopting the innovation is an increasing function of the number of

edges feeding information into the vertex (its in-degree). The more vertices passing on information

about the innovation, the easier it is for the vertex to adopt it. This bene�t is a negative cost.

There is no workload factor for the adoption task. Once a vertex has adopted the innovation, it incurs

no additional cost when other diffusion paths go through it.

Another version of the adoption task might have the bene�ts increasing with the number of diffusion

paths running through the vertex from the initial adopter to the other vertices. This could be thought of as

a strengthening of the bene�t the vertex receives from adoption because of its taking advantage of the

experience of other adopters. The results are qualitatively similar in either version of the model, so we do

not report the results of the second form here.

Note the simpli�cations: There is no discounting associated with the time it takes for the tasks to be

accomplished. The cost incurred by a vertex in adding numbers does not depend on the numbers being

added. The individuals making up the �rm do not behave strategically. All the employees are identical

except for their position in the �rm’s network. We abstract from any changes in the sizes of the �rms.

3. Evolution

Ef�cient �rms minimize the total vertex costs of the associative task plus the bene�ts of the adoption

task. However, �rms in the real world are never perfectly optimized. In addition to computational

complexity (DeCanio 2001) and principal-agent frictions[10], market and regulatory conditions constantly

change. Nevertheless, market competition creates selection pressure. This is similar to selection pressure

in biological evolution. All that is required is “the element of environmental adoption by the economic

system of a posteriori most appropriate action according to the criterion of ‘realized positive pro�ts’” ([11];

see also  [12]). In our model, this takes the form of cost minimization subject to the �rm’s successful

completion of its task(s).

We implement a simple model of “evolution” of lower-cost network structures. The �rm’s total cost is

obtained by adding up all the costs incurred by the individual vertices. Starting with a population of n
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randomly generated connected graphs (connected so that the �rms are capable of actually performing the

tasks), we create a population of 3n �rms: the original n, another n by randomly adding an edge to each

�rm, and a �nal n by randomly subtracting an edge from each �rm. From these 3n �rms (minus those that

are dropped because they cannot complete the tasks), we select the n lowest-cost �rms and repeat the

process. Each repetition is a “generation.” This trimming of the least ef�cient 2/3 of the randomly

modi�ed �rms is suf�cient to result in populations with stable values of the �rms after 500 generations,

at least for �rms the size we modeled. This results in a population of low-cost �rms exhibiting only a few

distinct structures.

This “evolutionary” process normally will not lead to an optimal structure. In fact, it is evident that the

evolutionary process �nds only local cost minima. Different initial populations will evolve to slightly

different evolved populations. In Mathematica[13], the software we used for all calculations, an initial

random “seed” can be set, enabling replication of the results. Varying the seed produces different initial

conditions. We experimented with different initial seeds and found that after 500 generations, the

variation in average �nal total costs is quite small relative to the average initial costs and is very much

smaller than the gains in ef�ciency resulting from the competitive winnowing of inef�cient �rms.

We also implement a version of the model in which the �rms exhibit a �xed underlying structure, and

evolution adds edges that improve performance. A �xed-structure approach is taken by Stark et al.[14], but

in the context of exploring the evolution of cooperation. In the next section, we �rst present the results for

initial populations of unstructured graphs, then show how the results change when an underlying

structure is maintained.

4. Compensation of Employees

It is standard in economics to attribute the compensation of individuals to their marginal productivities.

Our model provides for a variant of this approach if each member of the �rm (i.e., each vertex) is paid an

amount equal to the “work” it performs, where work is measured by the cost incurred by the vertex in

carrying out the tasks. However, suppose some other indication of the individuals’ importance to the �rm

were the basis of compensation. Network theory offers multiple measures of the “importance” or

“centrality” of individual nodes. We consider two possible candidates for centrality-based compensation:

BetweennessCentrality (BC) and PageRankCentrality (PRC). Formal de�nitions of these two quantities are

given in equations (1) and (2):
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where   is the number of shortest paths from s to t and   is the number of shortest paths from s to t

passing through i, and

where a is the adjacency matrix of graph g, aT is its transpose, and d is the diagonal matrix consisting of

1/max(1,  ), where    is the out-degree of the ith vertex. In our model, β is the unit vector

(Mathematica Documentation, Wolfram Research, Inc., 2023).

BetweennessCentrality is “a widely used measure that captures a person’s role in allowing information to

pass from one part of the network to the other”[15]. PageRankCentrality is the recursive measure of a

node’s in�uence pioneered by Sergei Brin and Lawrence Page, the founders of Google. It re�ects the value

of all the nodes that in�uence each particular node. Either of these measures could be the basis for

compensation, particularly if compensation is determined in part by political or bureaucratic power. Other

centrality measures are less suitable for use in our model. The Eigenvector Centrality of a node can be zero

in directed networks, so it could not be the basis for employee compensation in our model; Katz-Bonacich

Centrality has the drawback that any vertex linked to an “important” vertex would also have a high

value[16].

5. Results

Whether compensation is based on individuals’ work as measured by vertex cost or their centralities in

the �rm’s network, our simple network models generate considerable economic inequality. Studies of

within-�rm pay differences show a considerable range, for example, “the median �rm-level total pay Gini

coef�cient is 0.27, on par with the country Gini for Sweden, whereas the 90th percentile is 0.59, similar to

the level for Namibia” ([17]; see also the range of Ginis reported by[18]). Our results fall roughly within this

wide range, as illustrated by Table 1. The Gini index for vertex-cost-based compensation is greater than 0.6

for all parameter combinations shown. Although within-�rm Ginis do not aggregate into country-wide

Ginis because of pay differences across �rms (such differences as are recognized in Wallskog et

al.’s[19] examination of the relationship between within-�rm inequality and productivity, and elsewhere),

we note that this Gini of 0.6 is comparable to the highest level of income inequality found in country-wide

data – the Gini for household income in South Africa is 0.63. As shown in Table 1, the Ginis we calculate for

compensation based on the two centrality measures are considerably lower, with the

BC = /∑
s,t∈v∧s≠i∧t≠i

ni
s,t

ns,t (1)

ns,t nis,t

PRC  = a list of centralities that are solutions to c = α  ⋅ d ⋅ c + βaT (2)

douti douti
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BetweennessCentrality Gini somewhat greater than the Gini for compensation based on

PageRankCentrality. For comparison, the income Ginis of the �ve largest world economies are: the United

States, 0.415; China, 0.382; Japan, 0.329; Germany, 0.317; and India, 0.357[20]. Considering wage income only,

a recent NBER study[21] found that the average earnings Gini for the four Nordic countries is 0.23, while for

the United States this Gini is 0.38 and for the United Kingdom it is 0.37.

Associative Task Cost Function x2 x2 x2 x2

Adoption Task Cost Function − (x2)/50 − (x2)/60 − (x2)/70 − (x2)/80

Average Total Cost 1613 1567 1484 1567

Average Ginis:

    VertexCost 0.6563 0.6030 0.6240 0.6304

    BetweennessCentrality 0.4626 0.4260 0.5337 0.5298

    PageRankCentrality 0.3664 0.3193 0.3535 0.3109

Associative Task Cost Function x2 x3 x4 x5

Adoption Task Cost Function − (x2)/50 − (x3)/50 − (x4)/50 − (x5)/50

Average Total Cost 1613 4539 11272 33473

Average Ginis:

    VertexCost 0.6563 0.6011 0.7053 0.6841

    BetweennessCentrality 0.4626 0.5116 0.4542 0.3718

    PageRankCentrality 0.3664 0.3453 0.3354 0.2779

Table 1. Characteristics of Evolved Unstructured Firms after 500 Generations

Parameters: Vertices = 43, Initial Edges = 129, Population = 100,

PageRankDecay = 0.85, Vertex InDegree = x, Seed = 32.
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Similar patterns are found if a structure is �rst imposed and then maintained for the �rms as they

undergo evolution. This starting point for this type of structure is shown in Figure 1.

Figure 1. Tree structure with 3 levels, 3 inputs to each superior level

As can be seen here, there are a total of 13 vertices in this graph. The vertex to which all the information

�ows is Vertex #1; the “middle management” level is made up of Vertices #2, #3, and #4. The model we use

for the �xed underlying structure version of our model has three levels but 6 “subordinate” vertices

feeding into each superior. This makes a total of 43 vertices (1 + 6 + (6x6)). This number is suf�cient to

display the main results of the evolutionary process and is consistent with the conventional wisdom that a

manager can most ef�ciently supervise 7 ± 2 subordinates[22].
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Associative Task Cost Function x2 x2 x2 x2

Adoption Task Cost Function − (x2)/50 − (x2)/60 − (x2)/70 − (x2)/80

Average Total Cost 4031 4159 4051 4163

Average Ginis:

    VertexCost 0.8205 0.8191 0.8187 0.8261

    BetweennessCentrality 0.6597 0.6241 0.6343 0.6706

    PageRankCentrality 0.4362 0.4361 0.4309 0.4621

Associative Task Cost Function x2 x3 x4 x5

Adoption Task Cost Function − (x2)/50 − (x3)/50 − (x4)/50 − (x5)/50

Average Total Cost 4031 27373 185877 1.30 × 106

Average Ginis:

    VertexCost 0.8205 0.8516 0.8617 0.8653

    BetweennessCentrality 0.6597 0.7094 0,6889 0.6691

    PageRankCentrality 0.4362 0.4548 0.4530 0.4457

Table 2. Characteristics of Evolved Structured Firms after 500 Generations

Parameters: Vertices = 43, Initial Edges =129, Population = 100,

PageRankDecay = 0.85, Vertex InDegree = x, Initial innovation in Vertex #43, Seed = 32.

Structured �rms’ average total cost �gures are higher than those for the unstructured �rms, re�ecting the

additional “overhead” imposed by maintaining an underlying �xed structure. Interestingly, the Gini

coef�cients for each comparable set of cost parameters are also higher for the structured than for the

unstructured �rms. Only the PageRankCentrality Ginis in Table 2 are comparable to the degree of

inequality seen in the real world. This �nding is consistent with the possibility that power and position in

structured organizations are the primary determinants of employee compensation in such �rms.
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We can examine typical evolved �rms in greater detail. Figure 2 shows the structure of one of the evolved

unstructured �rms with a cost structure given by the second numerical column of the �rst half of Table 1.

Figure 2. Typical Evolved Unstructured Firm

First, notice Vertices #1 and #43. Vertex #1 is where the summation from the associative task is received. It

is not particularly prominent visually in the network, but it does have three other vertices feeding into it.

Vertex #43 is where the innovation originates. It feeds its information to one vertex, #6, and no other

vertex is connected to it. (This is not a general feature of all the evolved �rms, however.) More

interestingly, consider the top four vertices as measured by their vertex costs, betweenness centralities,

and PageRank centralities. These are: Vertex Cost: {1, 26, 41, 5 and 24 (tied)}; BetweennessCentrality: {4, 2,

13, 28}; PageRankCentrality: {1, 26, 41, 9}. The two measures showing overlap are Vertex Cost and

PageRankCentrality, but it is not complete. Table 3 shows the average correlations between the three

compensation measures, taken across the population of the 100 evolved �rms after 500 generations. By

way of comparison, the critical value for two-tailed statistical signi�cance at the 1% level for a population

qeios.com doi.org/10.32388/MW5WXQ 9

https://www.qeios.com/
https://doi.org/10.32388/MW5WXQ


of 100 is 0.254[23], although we make no claim of a formal hypothesis test because the evolved graphs do

not constitute a random sample.

Associative Task Cost Function x2 x2 x2 x2

Adoption Task Cost Function − (x2)/50 − (x2)/60 − (x2)/70 − (x2)/80

Correlations:

    (Vertex Cost, PRC) 0.943 0.942 0.975 0.968

    (Vertex Cost, BC) - 0.060 - 0.213 - 0.222 - 0.236

    (BC, PRC) - 0.020 - 0.232 - 0.209 - 0.194

Associative Task Cost Function x2 x3 x4 x5

Adoption Task Cost Function − (x2)/50 − (x3)/50 − (x4)/50 − (x5)/50

Correlations::

    (Vertex Cost, PRC) 0.943 0.826 0.909 0.513

    (Vertex Cost, BC) - 0.060 0.216 - 0.163 0.034

    (BC, PRC) - 0.020 0.372 - 0.132 - 0.186

Table 3. Average correlations between compensation measures, population of 100 unstructured �rms after 500

generations

Parameters: Vertices = 43, Initial Edges = 129, Population = 100,

PageRankDecay = 0.85, Vertex InDegree = x, Seed = 32.

Figure 2 (as well as other evolved �rms not shown here) shows looping structures that can be

characterized as “teams.” In our model, teams emerge naturally from the evolution of the otherwise

unstructured �rms. Figure 3 is analogous to Figure 2, except for an evolved �rm with a �xed underlying

structure. Obviously, because of maintaining the 3-layer structure, the evolved structured �rm has more

edges than the evolved unstructured �rm. The �rm in Figure 3 displays the hierarchy: Vertices #1, #2, #3,

#4, #5, #6, and #7 all have six edges feeding information to them. Vertex #43, the �rst innovator, has only

qeios.com doi.org/10.32388/MW5WXQ 10

https://www.qeios.com/
https://doi.org/10.32388/MW5WXQ


one edge feeding into Vertex #7. Information �ows across the bottom tier – Vertex #27 feeds into Vertex

#29 as well as into its “manager” Vertex #5, for example, and Vertex #24 feeds into Vertex #40, for

example. The top Vertex Costs are #1, #6, and #7 (tied), followed by #2, #3, #4, and #5 (tied). The top four

PageRankCentralities are #1, #5, #6, and #7. It is perhaps no surprise that under these two compensation

schemes, the highest payments go to the top management layers. Also, the self-loop edge from Vertex #18

is an artifact from the original random population. Different random seeds give rise to evolved �rms

without such loops. The survival of this loop is con�rming evidence that the evolutionary process does

not lead to global cost minima.

Figure 3. Typical Evolved Structured Firm

6. Discussion and Conclusion

Clearly, inequality in compensation is intrinsic to the network structure of organizations. The average

Ginis in the initial population of randomly connected �rms are high initially, may decrease and increase

over the course of the evolutionary process, and then settle in at values that remain stable, as shown in

Figure 4. This �gure gives the historical path of the average Ginis for the three kinds of employee
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compensation, for one particular set of parameter values (those given in the second column of the top half

of Table 2).

Figure 4. Inequality (Mean Gini) histories, three compensation schemes, structured �rm

These results indicate that considerable inequality can emerge solely from the network structure of the

�rms, independent of the characteristics of the individual agents making them up. All that is required is

that market conditions exert selection pressure on the �rms. Structured �rms give rise to greater

inequality than unstructured �rms, a �nding consistent with economic intuition. Additionally, selection

pressure for lower total costs leads to “informal ties” across tiers in order to accomplish the adoption task

more ef�ciently.

Of course, network structure is not the only source of economic inequality. Many other factors contribute,

as evidenced by the very large literature on inequality across the social sciences. Classic treatments by

Sen  [24]  (with Annexe by Sen and Foster, 1997) and Atkinson[25][26]  have stood the test of time. The

“econophysics” literature, in which economic analogues of physical concepts such as entropy and

temperature are calculated, also yields substantial inequalities in the economic variables those models
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simulate [27][28][29][30], are a few examples). The Greenberg and Gao[31] survey of this literature notes that

“a large proportion of observed economic inequality is the result of luck and the inherently diffusive

(entropy-increasing) nature of exchange itself, and not the result of interpersonal differences in

industriousness, entrepreneurialism, or intelligence” (p. 18).

In our model, it is also the case that inequality emerges even though the individual agents are identical in

all their capabilities. It is a topic of further research to see how (and whether) this inequality would

increase if the agents’ abilities were drawn from a distribution of skills. Even so, we have shown that under

alternative compensation schemes, considerable inequality arises solely from the network structure of the

�rms and the selection pressure for ef�ciency resulting from competitive market forces. We propose only

to add the ubiquitous presence of organizational networks to the set of causes of this early and perhaps

most salient of economic questions – the sources of inequality.

Notes

JEL Codes: A12, D2, D3, J3
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