

Additive and Multiplicative Operations on Set of Polygonal Numbers

Dr. THIRUCHINAPALLI SRINIVAS*

Associate Professor in Mathematics, Priyadarshini College of Engineering & Technology, kanuparthipadu, SPSR NELLORE, Andhra Pradesh, India.

*. Corresponding author: Dr. Thiruchinapalli Srinivas, E-mail Id: sri.du.1980@gmail.com

Abstract:

In this paper, the focus on generating k-gonal numbers P (k, n) = $\begin{cases} \frac{n}{2} [(k-3)(n-1) + (n+1)] \text{ for } k > 2, n \ge 0 \\ \frac{n}{2} [(k-3)(n+1) + (n-1)] \text{ for } k > 2, n < 0 \end{cases}$

Also introduce to define additive (+) and multiplicative (*) operations on Sets of k-gonal numbers. In particular, concerning addition (+), p(k,m) + p(k,n) = p(k,m+n) - (k-2)mn forsome integer k > 2. Also, concerning multiplication (*), $p(k,m) * p(k,n) = p(k,mn) + \frac{(k-4)(k-2)mn}{4}(m-1)(n-1)$ forsome integer k > 2. Also, summation of any two different k-gonal is $p(k_1,n) + p(k_2,n) = n(n+1) + \frac{n(n-1)}{2}[(k_1 + k_2) - 6]$ for $k_1, k_2 > 2$. Also, I applied above properties on some Sets of Polygonal numbers, which are generated by replacing integer k with 3,4,5,6,7 and 8. Also, introduced to study of Repeated steps of Residues of the above Sets of Polygonal numbers generated by k with 3,4,5,6,7 and 8.

Keywords: Polygonal number, Triangular numbers, Residues, Non-Residues, k-gonal number.

Introduction:

Now we can go to generate sets of numbers of square, pentagonal, Hexagonal, Heptagonal, and octagonal with using of Triangular number p(3, n - 1). Also, by applying recursive results of Triangular numbers, generated k-gonal numbers are $\frac{n}{2}[(k-3)(n-1) + (n+1)]$ for k > 2.

We obtain following Polygonal numbers by replacing k as 3, 4 ,5 ,6 ,7 ,8.

For some positive integer n, the Triangular number is $\frac{n(n+1)}{2}$ (*if* k = 3); the square number is $n^2(if k = 4)$; the Pentagonal number is $\frac{n(3n-1)}{2}$ (*if* k = 5); the Hexagonal number is n(2n-1) (*if* k = 6); the Heptagonal number is $\frac{n(5n-3)}{2}$ (*if* k = 7); and the octagonal number is n(3n-2) (*if* k = 8). Also, The formation of triangular numbers is 1,1+2,1+2+3,... etc. The formation of square numbers is

 $1,1+3,1+3+5,\ldots$ etc. It implies, successive addition of Arithmetic Progression the formation of Pentagonal numbers $1,1+4,1+4+7,\ldots$ etc. it follows that k-gonal numbers have having common difference k-2.

Main work:

In this paper, the total work is classified into Three parts:

Part A: Focused on generating square, pentagonal, Hexagonal, Heptagonal and Octagonal numbers with using of Triangular number $p(3, n - 1) (= T_{n-1})$.

Part-B: Introduce to define additive and multiplicative operations on Sets of Polygonal numbers.

Part-C: Repeated steps of Residues of above Polygonal numbers with integer modulo n from 0 to 10.

https://doi.org/10.32388/MY0OLE

Part-A: Generating of Polygonal numbers

k-gonal numbers are denoted by P (k, n), and defined by $\frac{n}{2}[(k-3)(n-1) + (n+1)]$ for k > 2. From Reference [1], Replace k = 3, we obtain Triangular Numbers, defined by $p(3, n) = \frac{n(n+1)}{2}, n \ge 0$. In general Triangular numbers are denoted by $p(3, n) = T_n$.

Table 1: A set of Triangular numbers for n = 0 to n = 8 as follows:

n	0	1	2	3	4	5	6	7	8	9	10
T_n	0	1	3	6	10	15	21	28	36	45	55

Now, we can go to generate k-gonal numbers from each integer k = 4 to k = 8 with using of Triangular number p(3, n - 1) as follows:

Case1: Generating Square numbers *p*(4, *n*):

The sum of two consecutive successive triangular numbers can form a square number.

Consider $p(4, n) = p(3, n - 1) + p(3, n) = T_{n-1} + T_n = \frac{n(n-1)}{2} + \frac{n(n+1)}{2} = n^2$. In general Square numbers are denoted by $p(4, n) = S_n$.

In general square numbers are denoted by $p(\mathbf{x}, n) = \mathbf{y}_n$

Table 2: Generated some Set of square numbers

п	0	1	2	3	4	5	6	7	8
$p(4,n) = n^2$	0	1	4	9	16	25	36	49	64
$p(3, n-1) = \frac{n(n-1)}{2}$	0	0	1	3	6	10	15	21	28
$p(3,n) = \frac{n(n+1)}{2}$	0	1	3	6	10	15	21	28	36
p(3, n-1) + p(3, n)	0	1	4	9	16	25	36	49	64

Case2: Generating Pentagonal numbers p(5, n):

The sum of a triangular number p(3, n-1) and a square number p(4, n) can form a pentagonal number.

Consider $p(5,n) = p(3,n-1) + p(4,n) = \frac{n(n-1)}{2} + n^2 = \frac{n(3n-1)}{2}$.

Also, from Case 1, $p(5, n) = 2p(3, n-1) + p(3, n) = 2T_{n-1} + T_n = 2\left(\frac{n(n-1)}{2}\right) + \frac{n(n+1)}{2} = \frac{n(2n-2+n+1)}{2} = \frac{n(3n-1)}{2}$.

In general pentagonal numbers are denoted by $p(5, n) = P_n$.

 Table 3: Generated Some Set of pentagonal numbers:

n	0	1	2	3	4	5	6	7	8
$p(5,n) = \frac{n(3n-1)}{2}$	0	1	5	12	22	35	51	70	92
p(3, n-1) + p(4, n)	0	1	5	12	22	35	51	70	92
2p(3, n-1) + p(3, n)	0	1	5	12	22	35	51	70	92

Case3: Generating Hexagonal numbers *p*(6, *n*)::

The sum of a triangular number p(3, n-1) and a pentagonal number p(5, n) can form a hexagonal number.

Consider $p(6,n) = p(3, n - 1) + p(5, n) = \frac{n(n-1)}{2} + \frac{n(3n-1)}{2} = n(2n - 1).$ Also, from Case 2, $p(6,n) = 3p(3, n - 1) + p(3, n) = 3T_{n-1} + T_n$ $= 3\left(\frac{n(n-1)}{2}\right) + \frac{n(n+1)}{2} = \frac{n(3n-3+n+1)}{2} = n(2n-1).$

In general hexagonal numbers are denoted by $p(6, n) = Hx_n$.

Table 4: Generated Some Set of hexagonal numbers :

n	0	1	2	3	4	5	6	7	8
p(6, n) = n(2n - 1)	0	1	6	15	28	45	66	91	120
<i>p</i> (5 , <i>n</i>)	0	1	5	12	22	35	51	70	92
<i>p</i> (3 , <i>n</i> − 1)	0	0	1	3	6	10	15	21	28
p(3, n-1) + p(5, n)	0	1	6	15	28	45	66	91	120
p (3, n)	0	1	3	6	10	15	21	28	36
3p(3, n-1) + p(3, n)	0	1	6	15	28	45	66	91	120

Case4: Generating Heptagonal numbers p(7, n):

The sum of a triangular number p(3, n-1) and a hexagonal number p(6, n) can form a Heptagonal number.

Consider $p(7, n) = p(3, n-1) + p(6, n) = \frac{n(n-1)}{2} + n(2n-1) = \frac{n(5n-3)}{2}$ Also, from Case $3, p(7, n) = 4p(3, n-1) + p(3, n) = 4T_{n-1} + T_n$ $= 4\left(\frac{n(n-1)}{2}\right) + \frac{n(n+1)}{2} = \frac{n(4n-4+n+1)}{2} = \frac{n(5n-3)}{2}.$

In general heptagonal numbers are denoted by $p(7, n) = Hp_n$

1	U						
п	0	1	2	3	4	5	
$p(7,n)=\frac{n(5n-3)}{2}$	0	1	7	18	34	55	
<i>p</i> (3 , <i>n</i> − 1)	0	0	1	3	6	10	

 Table 5: Generated Some Set of Heptagonal numbers :

Case5: Generating Octagonal numbers p(8, n):

p(6, n)

p(3, n-1) + p(6, n)

p(3,n)

4p(3, n-1) + p(3, n)

The sum of a triangular number p(3, n - 1) and a heptagonal number p(7, n) can form an octagonal number. Consider $p(8, n) = p(3, n - 1) + p(7, n) = \frac{n(n-1)}{2} + \frac{n(5n-3)}{2} = n(3n - 2)$. Also, from Case 4, $p(8, n) = 5p(3, n - 1) + p(3, n) = 5T_{n-1} + T_n = 5\left(\frac{n(n-1)}{2}\right) + \frac{n(n+1)}{2}$ $= \frac{n(5n-5+n+1)}{2} = \frac{n(6n-4)}{2} = n(3n - 2)$. In general octagonal numbers are denoted by $p(8, n) = O_n$

п	0	1	2	3	4	5	6	7	8
p(8,n)=n(3n-2)	0	1	8	21	40	65	96	133	176
p(3, n-1)	0	0	1	3	6	10	15	21	28
p (7, n)	0	1	7	18	34	55	81	112	148
p(3, n-1) + p(7, n)	0	1	8	21	40	65	96	133	176
5p(3, n-1) + p(3, n)	0	1	8	21	40	65	96	133	176

 Table 6: Generated Some Set of Octagonal numbers :

By observing above cases, we can go to generate k-gonal numbers using a Triangular number p(3, n - 1) is

$$p(k,n) = (k-3) p(3,n-1) + p(3,n)$$

= (k-3) T_{n-1} + T_n
= (k-3) $\frac{n(n-1)}{2} + \frac{n(n+1)}{2}$
= $\frac{n}{2}[(k-3)(n-1) + (n+1)]$ for k > 2.

n	T _n	<i>T</i> _{<i>n</i>-1}	<i>S</i> _n	<i>P</i> _n	Hx _n	Hp_n	<i>O</i> _n
0	0	0	0	0	0	0	0
1	1	0	1	1	1	1	1
2	3	1	4	5	6	7	8
3	6	3	9	12	15	18	21
4	10	6	16	22	28	34	40
5	15	10	25	35	45	55	65
6	21	15	36	51	66	81	96
7	28	21	49	70	91	112	133
8	36	28	64	92	120	148	176
9	45	36	81	117	153	199	235
10	55	45	100	145	190	235	280

 Table 7: Generated Some Set of k-gonal numbers:

Table 8: Generating Polygonal numbers with using of Positive integers as follows:

-						
n	$T_n = \frac{n(n+1)}{2}$	$S_n = n^2$	$P_n = \frac{n(3n-1)}{2}$	$Hx_n = n(2n-1)$	$Hp_n=\frac{n(5n-3)}{2}$	$O_n = n(3n - 2)$
0	0	0	0	0	0	0
1	1	1	1	1	1	1
2	3	4	5	6	7	8
3	6	9	12	15	18	21
4	10	16	22	28	34	40
5	15	25	35	45	55	65
6	21	36	51	66	81	96
7	28	49	70	91	112	133
8	36	64	92	120	148	176

9	45	81	117	153	199	235
10	55	100	145	190	235	280

Also, by observation, for each positive integer n, Square numbers are generated by $\frac{2n^2-(0)n}{2}$; Pentagonal numbers are generated by $\frac{3n^2-n}{2}$; Hexagonal numbers are generated by $\frac{4n^2-2n}{2}$; Heptagonal numbers are generated by $\frac{5n^2-3n}{2}$; Octagonal numbers are $\frac{6n^2-4n}{2}$;

Hence for generalisation of k-gonal numbers are generated by $\frac{(k-2)n^2-(k-4)n}{2}$ for some integer k >2. Initially For k =3, we obtain Triangular numbers $\frac{n^2+n}{2}$. Similarly replace k as 4 ,5 ,6 ,7 ,8 to obtain square

numbers, Pentagonal numbers, Hexagonal numbers, Heptagonal numbers and Octagonal numbers respectively.

Part-B:

Introduce to study Additive and Multiplicative operations on Set of k-gonal numbers

Now, I can go to introduce to some inherent properties of Sets of Polygonal numbers.

In particular, concerning addition (+), p(k,m) + p(k,n) = p(k,m+n) - (k-2)mn for some integer k > 2. Also, concerning multiplication (*),

 $p(k,m) * p(k,n) = p(k,mn) + \frac{(k-4)(k-2)mn}{4}(m-1)(n-1)$ for some integer k > 2.

Also, verified these properties are well defined for following Sets of Polygonal numbers by replacing k values for 3,4,5,6,7 and 8.

From Reference [1], Binary operations on a set of Triangular numbers are well defined

That is $T_m + T_n = T_{m+n} - mn$, $T_m * T_n = T_{mn} - \frac{mn}{4} (n-1)(m-1)$. Now I can go to extend this property to all k-gonal numbers as follows:

Case 6: Now we can introduce an additive ('+') operation on a set of Triangular numbers as follows

p(3,m) + p(3,n) = p(3,m+n) - mn

Table 9: Verification of additive operation on a Set of Triangular numbers:

m	n	p (3, m)	p (3, n)	p(3, m+n)	mn	p(3,m)+p(3,n)	p(3, m+n) - mn
1	2	1	3	6	2	4	4
2	3	3	6	15	6	9	9
4	5	10	15	45	20	25	25

Now we can introduce a multiplicative ('*') operation on a Set of Triangular numbers as follows, for some positive integers $a, b \ p(3,m) * p(3,n) = p(3,mn) - \frac{mn}{4}(m-1)(n-1)$.

Table 10: Verification of multiplicative operation on a Set of Triangular numbers:

m	n	p (3, m)	p (3, n)	$\frac{mn}{4}(m-1)(n-1)$	p (3, mn)	$p(3,mn) - \frac{mn}{4}(m-1)(n-1)$	p(3,m) * p(3,n)
2	3	3	6	3	21	21-3 =18	18
3	4	6	10	18	78	78-18 = 60	60

4	5	10	15	60	210	210-60 = 150	150
5	6	15	21	150	465	465-150 = 315	315

Now we can extend this methodology to remaining all other polygonal numbers.

Case 7: Now we can go to define two types of Operations on a Set of Square numbers as follows

 $S_n = n^2$, $S_m = m^2$ then addition (+) and multiplication (*) operation are defined as follows

 $S_n + S_m = S_{m+n} - 2mn$ and $S_n * S_m = S_{mn}$.

Proof: Consider $S_{m+n} - 2mn = (n+m)^2 - 2mn = n^2 + m^2 = S_m + S_n$.

Hence $S_n + S_m = S_{m+n} - 2mn$.

Table 11: Verification of additive operation on a Set of square numbers:

n	m	S _n	S _m	S_{n+m}	$S_{n+m} - 2mn$	$S_n + S_m$
1	2	1	4	9	5	5
2	3	4	9	25	13	13
4	5	16	25	81	41	41

Again consider $S_n * S_m = n^2$. $m^2 = (nm)^2 = S_{nm}$. Hence $S_n * S_m = S_{nm}$.

Table 12: Verification of multiplicative binary operation on a Set of square numbers

n	m	<i>S</i> _n	S_m	S _{nm}	$S_n * S_m$
1	2	1	4	4	4
2	3	4	9	36	36
4	5	16	25	400	400

Under these operations, we can verify easily algebraic structure of $(S_{n'})$ is becomes as a Monoid, since this Nonempty Set is satisfying Closure axiom, Associate and Existence of Identity element is 1 concerning multiplication. Also, '*' is a binary operation on S_n .

i.e Closure Axiom: $S_a * S_b = S_{ab} \in S_n$, for all $S_a \in S_n$, $S_b \in S_n$.

Associative axiom: $(S_a * S_b) * S_c = S_a * (S_b * S_c) = S_{abc}$

Existence of identity: identity element $S_1 = 1 \in S_n$, such that $S_n * S_1 = S_1 * S_n = S_n$.

Hence $(S_n, *)$ is becomes a Monoid.

Case 8: Now we can go to define two types of Operations on a Set of Pentagonal numbers as follows

 $P_{n} = p(5, n) = \frac{n(3n-1)}{2}, P_{m} = p(5, m) = \frac{m(3m-1)}{2} \text{ then additive (+), multiplicative (*) operations are defined as follows } P_{n} + P_{m} = P_{n+m} - 3mn, P_{n} * P_{m} = P_{nm} + \frac{3mn}{4} (n-1)(m-1)$ **Proof:** Consider $P_{n+m} - 3mn = \frac{(n+m)(3(n+m)-1)}{2} - 3mn = \frac{3(n+m)^{2} - (n+m) - 6mn}{2}$ $= \frac{n(3n-1)}{2} + \frac{m(3m-1)}{2} = P_{n} + P_{m}. \text{ Hence } P_{n} + P_{m} = P_{n+m} - 3mn$

Table 13: Verification of additive of	peration on a Set	of Pentagonal	numbers:
---------------------------------------	-------------------	---------------	----------

п	т	P_n	P _m	P_{n+m}	$P_{n+m} - 3mn$	$P_n + P_m = P_{n+m} - 3mn$
1	2	1	5	12	6	6
2	3	5	12	35	17	17
4	5	22	35	117	57	57

Again consider, $P_n * P_m - P_{nm} = \frac{n(3n-1)}{2} \frac{m(3m-1)}{2} - \frac{nm(3nm-1)}{2}$

$$=\frac{nm}{2}\left[\frac{9nm-3n-3m+1}{2}-\frac{3nm-1}{1}\right]=\frac{3mn}{4}(n-1)(m-1)$$

Hence
$$P_n * P_m = P_{nm} + \frac{3mn}{4} (n-1)(m-1).$$

 Table 14: Verification of multiplicative operation on a Set of pentagonal numbers:

n	т	P _n	P _m	$P_{nm} + \frac{3mn}{4} (n-1)(m-1)$	$P_n * P_m$
1	2	1	5	5	5
2	3	5	12	60	60
4	5	22	35	770	770

It follows that the above binary operations are well-defined.

Case 9: Now we can go to define two types of Operation on a Set of Hexagonal numbers as follows $Hx_n = n(2n - 1), Hx_m = m(2m - 1)$ then additive (+), multiplicative (*) operations are defined as follows $Hx_n + Hx_m = Hx_{n+m} - 4mn$ and $Hx_n * Hx_m = Hx_{nm} + 2mn(m - 1)(n - 1)$. **Proof:** Consider $Hx_n + Hx_m - Hx_{n+m}$ = n(2n - 1) + m(2m - 1) - (n + m)(2(n + m) - 1) = -4mnHence $Hx_n + Hx_m = Hx_{n+m} - 4mn$.

Table 15: Verification of additive binary operation on a Set of Hexagonal numbers:

n	m	Hx _n	Hx _m	Hx_{n+m}	$Hx_{n+m} - 4mn$	$Hx_n + Hx_m$.
1	2	1	6	15	7	7
2	3	6	15	45	21	21
4	5	28	45	153	73	73

Again consider $Hx_n * Hx_m - Hx_{nm}$ = n(2n - 1) m(2m - 1) - mn(2mn - 1)= mn [(2n - 1) (2m - 1) - (2mn - 1)] = 2mn(m - 1)(n - 1)Hence $Hx_n * Hx_m = Hx_{nm} + 2mn(m - 1)(n - 1)$

 Table 16: Verification of multiplicative operation on a Set of Hexagonal numbers:

n	т	Hx _n	Hx _m	$Hx_{nm} + 2mn(m-1)(n-1)$	$Hx_n * Hx_m$
1	2	1	6	6	6
2	3	6	15	90	90

4	5	28	45	1260	1260

Case 10: Now we can go to define two types of Operations on a Set of Heptagonal numbers as follows $Hp_n = \frac{n(5n-3)}{2}$, $Hp_m = \frac{m(5m-3)}{2}$ then additive (+), multiplicative (*) operations are defined as follows $Hp_n + Hp_m = Hp_{n+m} - 5mn$ and $Hp_n * Hp_m = Hp_{nm} + \frac{15mn}{4}(n-1)(m-1)$. **Proof:** Consider $Hp_n + Hp_m - Hp_{n+m} = \frac{n(5n-3)}{2} + \frac{m(5m-3)}{2} - \frac{(n+m)(5(n+m)-3)}{2} = -5mn$ Hence $Hp_n + Hp_m = Hp_{n+m} + 5mn$

Table 17: Verification of additive operation on a Set of Heptagonal numbers:

n	т	Hp _n	Hp _m	Hp_{n+m}	$Hp_{n+m} - 5mn$	$Hp_n + Hp_m$.
1	2	1	7	18	8	8
2	3	7	18	55	25	25
4	5	34	55	189	89	89

Again consider $Hp_n * Hp_m - Hp_{nm} = \frac{n(5n-3)}{2} \frac{m(5m-3)}{2} - \frac{mn(5mn-3)}{2} = \frac{nm}{2} \left[\frac{25nm-15n-15m+9}{2} - \frac{5nm-3}{1}\right]$ = $\frac{15mn}{4} (n-1)(m-1)$ Hence $Hp_n * Hp_m = Hp_{nm} + \frac{15mn}{4} (n-1)(m-1)$

Table 18: Verification of multiplicative operation on a Set of Heptagonal numbers

n	т	Hp _n	Hp _m	Hp _{nm}	$Hp_{nm} + \frac{15mn}{4}(n-1)(m-1)$	$Hp_n * Hp_m$
1	2	1	7	7	7	7
2	3	7	18	81	126	126
4	5	34	55	970	1870	1870

Case 11: Now we can go to define two types of Operations on a Set of Octagonal numbers as follows $O_n = n(3n-2)$, $O_m = m(3m-2)$ then additive (+), multiplicative (*) operations are defined as follows $O_n + O_m = O_{n+m} - 6mn$ and $O_n * O_m = O_{nm} + 6mn(m-1)(n-1)$ **Proof:** Consider $O_n + O_m - O_{n+m} = n(3n-2) + m(3m-2) - (n+m)(3(n+m)-2) = -6mn$.

Hence $O_n + O_m = O_{n+m} - 6mn$.

Table 19: Verification of additive operation on a Set of Octagonal numbers :

n	т	<i>O</i> _n	O_m	O_{n+m}	$O_{n+m} - 6mn$	$O_n + O_m = O_{n+m} - 6mn$
1	2	1	8	21	9	9
2	3	8	21	65	29	29
4	5	40	65	225	105	105

Again consider $O_n * O_m - O_{nm} = n(3n-2)m(3m-2) - nm(3nm-2)$

= mn [(3n-2) (3m-2) - (3mn-2)] = 6mn(m-1)(n-1)Hence $O_n * O_m = O_{nm} + 6mn(m-1)(n-1).$

n	т	<i>O</i> _n	<i>O</i> _m	O_{nm}	$O_{nm} + 6mn(m-1)(n$	$O_n * O_m = O_{nm} + 6mn(m-1)(n$
					- 1)	- 1)
1	2	1	8	8	8	8
2	3	8	21	96	168	168
4	5	40	65	1160	2600	2600

Table 20: Verification of multiplicative operation on a Set of Octagonal numbers:

Hence, by observation, p(k,m) + p(k,n) = p(k,m+n) - (k-2)mn forsome integer k > 2. Also, concerning multiplication (*), $p(k,m) * p(k,n) = p(k,mn) + \frac{(k-4)(k-2)mn}{4}(m-1)(n-1)$ forsome integer k > 2. **Case 12:** summation of any two different k-gonal is $p(k_1,n) + p(k_2,n) = n(n+1) + \frac{n(n-1)}{2}[(k_1 + k_2) - 6]$. **Proof:** we know that $p(k,n) = \frac{n}{2}[(k-3)(n-1) + (n+1)]$ for k > 2. **Consider** $p(k_1,n) + p(k_2,n) = \frac{n}{2}[(k_1-3)(n-1) + (n+1)] + \frac{n}{2}[(k_2-3)(n-1) + (n+1)]$ $= n(n+1) + \frac{n(n-1)}{2}[(k_1 + k_2) - 6] = 2T_n + [(k_1 + k_2) - 6]T_{n-1}$. **E.** g: Verify above result by taking some values of n, k_1, k_2 . Let $k_1 = 4, k_2 = 5$ and n = 4. Hence $T_4 = 10, T_3 = 6, S_4 = 16$ and $P_4 = 22$ implice $S_4 + P_4 = 38$. Also, $n(n+1) + \frac{n(n-1)}{2}[(k_1 + k_2) - 6] = 20 + 18 = 38$. Also, $2T_n + [(k_1 + k_2) - 6]T_{n-1} = 20 + 18 = 38$.

Part-C:

Repeated steps of Residues of Polygonal numbers

Property 1: Repeated steps of Residues of Triangular numbers as follows Residues mod p repeats every p step if p is odd, and every 2p step if p is even. **Proof:** $p(3, n) = \{1,3,6,10,15,21,28,36,45,55,66,78,91,105,120, \dots \dots \}$. **Table 21:** Some results are represented in the below table:

Integer Modulo of	Sequence of Residues	Repeated steps of Residues
2	(1,1,0,0,1,1,0,0,)	4 steps
3	(1,0,0,1,0,0,1,0,0,)	3 steps
4	(1,3,2,2,3,1,0,0,1,3,2,2,3,1,0,,)	8 steps
5	(1,3,1,0,0,1,3,1,0,0,)	5 steps
6	(1,3,0,4,3,3,4,0,3,1,0,0,1,3,0,4,3,)	12 steps
7	(1,3,6,3,1,0,0,1,3,6,3,1,0,0,)	7 steps

Integer modulo	Residues	Repeated steps of	non Residues
		Residues	
2	0,1,0,1,0,1,	2	-
3	0,1,1,0,1,1,	3	2
4	0,1,0,1,	2	2,3
5	0,1,4,4,3,0,1,4,4,3,	5	2
6	0,1,4,3,4,1,0,1,4,3,	6	2,5
7	0,1,4,2,2,4,1,0,1,4,	7	3,6
8	0,1,4,1,0,1,4,1,	4	3,6
9	0,1,4,0,7,7,0,4,1,0,1,3,0,7,7,	18	2,5,6,8
	0,4,,1,0,1,4,		
10	0,1,4,9,6,5,6,9,4,1,0,1,4,9,	10	2,3,7,8
11	0,1,4,9,5,3,3,5,9,4,1,0,1,4	11	2,6,7,8
12	0,1,4,9,4,1,0,1,4,	6	2,3,5,6,7,8,10,11
13	0,1,4,9,3,12,10,10,12,3,	13	2,5,6,7,8,11
	9,4,1,0,1,4,		

Table 22: Repeated steps of Residues with integer modulo 2 to 13 of a Set of Square numbers as follows p(4, n) = {0,1,4,9,16,25,36,49,64,81,100,121,144,169,196,225,256,289,324,,....}

Table 23: Repeated steps of Residues with integer modulo 2 to 5 of a sequence of Set of pentagonal numbers $p(5,n)=\{0,1,5,12,22,35,51,70,92,117,145,....\}$ as follows

Integer modulo	Residues	Repeated steps of	Non Residues
		Residues	
2	{0,1,1,0,1,1}	3	-
3	{0,1,2,0,1,2,0,1,2,}	3	-
4	{0,1,1,0,2,3,3,2,0,1,1,}	8	-
5	{0,1,0,2,2,0,1,0,2,2,}	5	3,4

Table 24: Repeated steps of Residues with integer modulo 2 to 7 of a sequence of Set of Hexagonal numbers $p(6,n) = \{0,1,6,15,28,45,66,91,120,153,190,....\}$ as follows

Integer modulo	Residues	Repeated steps of	Non Residues
		Residues	
2	{0,1,0,1,}	2	-
3	{0,1,0,0,1,0,0,1,}	3	2
4	{0,1,2,3,0,1,2,3,}	4	-
5	{0,1,1,0,3,0,1,1,}	5	2,4
6	{0,1,0,3,4,3,0,1,0,}	6	2,5
7	{0,1,6,1,0,3,3,0,1,6,}	7	2,4,5

Table 25: Repeated steps of Residues with integer modulo 2 and 3 of sequence of Set of Heptagonal numbers $p(7,n) = \{0,1,7,18,34,55,81,112,148,199,235,\dots\}$ as follows

Integer modulo	Residues	Repeated steps of	Non Residues
		Residues	
2	{0,1,1,0,0,1,1,0,0,1,1,}	4	-
3	{0,1,1,0,1,1,0,1,1,}	3	2
4	{0,1,3,2,2,3,1,0,3,0,		

Table 26: Repeated steps of Residues with integer modulo 2 and 3 of a sequence of Set of Octagonal numbers $p(8,n) = \{0,1,8,21,40,65,\dots\}$ as follows

Integer modulo	Residues	Repeated steps of	Non Residues
		Residues	
2	{0,1,0,1,0,1}	2	-
3	{0,1,2,0,1,2,}	2	-

Theorem 1: Generalisation of k-gonal numbers with using of triangular numbers is $\frac{n}{2}[(k-3)(n-1) +$

(n + 1)] for k > 2. Successive Replacement of k values 3,4,5,....etc in $\frac{n}{2}[(k - 3)(n - 1) + (n + 1)]$

we obtain Triangular numbers, Square Numbers, Pentagonal numbers... etc.

Proof: We know that nth term of Triangular number $p(3, n) = \frac{n(n+1)}{2}$,

Also, generate all other Polygonal numbers with using of Triangular numbers as follows:

Square number $S_n = T_{n-1} + T_n$, Pentagonal number $P_n = T_{n-1} + S_n = 2T_{n-1} + T_n$

Hexagonal numbers $Hx_n = T_{n-1} + P_n = 3T_{n-1} + T_n$,

Heptagonal numbers $Hp_n = T_{n-1} + Hx_n = 4T_{n-1} + T_n$

Octagonal numbers $O_n = T_{n-1} + Hp_n = 5T_{n-1} + T_n$.

Hence, generalised k-gonal numbers $k_n = (k-3)T_{n-1} + T_n = \frac{n}{2}[(k-3)(n-1) + (n+1)]$ (if k>2).

Conclusion: In this paper proposed to generate some Polygonal numbers of nth term like Triangular number is $\frac{n(n+1)}{2}$; Square number is n^2 ; Pentagonal number is $\frac{n(3n-1)}{2}$; Hexagonal number is n(2n-1); Heptagonal number is $\frac{n(5n-3)}{2}$; and octagonal number is n(3n-2). generalised k-gonal numbers are obtained from $\frac{n}{2}[(k-3)(n-1) + (n+1)]$ for k > 2.

Also, by observation Square numbers are represented as $\frac{2n^2-(0)n}{2}$; Pentagonal numbers are represented as $\frac{3n^2-n}{2}$; Hexagonal numbers are represented as $\frac{4n^2-2n}{2}$; Heptagonal numbers are $\frac{5n^2-3n}{2}$; Octagonal numbers are $\frac{6n^2-4n}{2}$; Hence for generalisation of k-gonal numbers is $\frac{(k-2)n^2-(k-4)n}{2}$ for k >2

Also introduced Binary operations under addition and multiplication on a Set of Polygonal numbers as follows : On a set of Triangular numbers $T_m + T_n = T_{m+n} - mn$, $T_m * T_n = T_{mn} - \frac{mn}{4} (n-1)(m-1)$. On a Set of Square numbers $S_n + S_m = S_{n+m} - 2\sqrt{S_nS_m}$, $S_n * S_m = S_{nm}$. On a Set of Pentagonal numbers $P_n + P_m = P_{n+m} - 3mn$, $P_n * P_m = P_{nm} + \frac{3mn}{4} (n-1)(m-1)$. On a Set of Hexagonal numbers $Hx_n + Hx_m = Hx_{n+m} - 4mn$, $Hx_n * Hx_m = Hx_{nm} + 2mn(m-1)(n-1)$. On a Set of Heptagonal numbers $Hp_n + Hp_m = Hp_{n+m} - 5mn$, $Hp_n * Hp_m = Hp_{nm} + \frac{15mn}{4} (n-1)(m-1)$. On a Set of Octagonal numbers $O_n + O_m = O_{n+m} - 6mn$ and $O_n * O_m = O_{nm} + 6mn(m-1)(n-1)$. particularly concerning addition, Binary operation of k-gonal numbers is

 $k_m + k_n = k_{m+n} - (k-2)mn$. Also, concerning multiplication, Binary operation of k-gonal numbers is $k_n * k_m = k_{nm} + \frac{(k-4)(k-2)mn}{4}(n-1)(m-1)$.

Conflict of Interest: There is no conflict of interest.

References

[1] Sridevi, K., & Srinivas, T. (2023). Transcendental representation of Diophantine equation and some of its inherent properties. *Materials Today: Proceedings*, *80*, 1822-1825.

[2] Sridevi, K., & Srinivas, T. (2023). Existence Of Inner Addition and Inner Multiplication On Set of Triangular Numbers and Some Inherent properties of Triangular Numbers. *Materials Today: Proceedings*, *80*, 1822-1825.

[3] Sridevi, K., & Srinivas, T. (2023). Cryptographic coding To Define Binary Operation on Set of Pythagorean Triples. *Materials Today: Proceedings*, *80*, 1822-1825

[4] Srinivas, T., & Sridevi, K. (2022). Transcendental representation of Diophantine Equation $x^{n+} y^{n-} z^{n}$ to Generate At most All Pythagorean and Reciprocal Pythagorean Triples. *JOURNAL OF ALGEBRAIC STATISTICS*, 13(2), 3600-3609.

[5] Sridevi, K., & Srinivas, T. (2022). Algebraic Structure Of Reciprocal Pythagorean Triples. Advances And Applications In Mathematical Sciences, Volume 21, Issue 3, January 2022, P.1315-1327© 2022 Mili Publications, India Issn 0974-6803)

[6] Srinivas, T., & Sridevi, K. (2022, January). A new approach to define a new integer sequences of Fibonacci type numbers with using of third order linear Recurrence relations. In *AIP Conference Proceedings* (Vol. 2385, No. 1, p. 130005). AIP Publishing LLC

[7] Srinivas, T., & Sridevi, K. (2021, November). A New approach to define Algebraic Structure and Some Homomorphism Functions on Set of Pythagorean Triples and Set of Reciprocal Pythagorean Triples " in JSR (Journal of Scientific Research) (UGC CARE 1, Print Journal), Volume 65, Issue 9, November 2021, Pages 86-92.

[8] Sridevi, K., & Srinivas, T. (2020). A new approach to define two types of binary operations on set of Pythagorean triples to form as at most commutative cyclic semi group. *Journal of Critical Reviews*, 7(19), 9871-9878.

[9] SRINIVAS,. T. (2020). Proof Of Fermat's Last Theorem By Choosing Two Unknowns in the Integer Solution Are Prime Exponents. *pacific international Journal*, *3*(4), 147-151. ISSN 2616-4825 [Online] 2663-8991 [Print] Volume number 03 , issue number 03

[10] Srinivas, T. (2014). Transportation and its health implications in India. Int. J. Eng. Res. Dev, 10(7), 67-73.

[11] Srinivas T(2018), Taguchi Philosophy of Engineering Quality" in Pacific International Journal, ISSN 2616-4825 [Online] 2663-8991 [Print] Volume number 03, issue number 03

[12] Srinivas T(2018), <u>Financial Soundness Of Selected Indian Petroleum Companies Using Altman Z–Score</u> <u>Model</u> in Pacific International Journal, ISSN 2616-4825 [Online] 2663-8991 [Print] Volume number 03, issue number 03

[13] Srinivas, T. (2023). Some Inherent Properties of Pythagorean Triples. *Research Highlights in Mathematics and Computer Science Vol.* 7, 156-169.