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This study explores a novel logarithmic parameterization of the deceleration parameter within the 

 gravity framework, incorporating a nonlinear functional form  , where   and 

 denote the nonmetricity scalar and boundary term, respectively, and  . This approach provides a

distinctive perspective on the universe’s accelerated expansion without resorting to exotic �elds. Using

observational data from Hubble measurements ( ) and the   Type Ia supernovae

dataset, the model parameters were constrained through a   minimization technique. The analysis reveals a

transition from deceleration to acceleration in the universe’s expansion history, with the transition redshifts 

 ( ) and   ( ). The model demonstrates consistency with observations,

o�ering insights into the dynamics of dark energy and alternative gravity theories, while e�ectively modeling

cosmic evolution across epochs.

I. Introduction

Recent observations have signi�cantly altered our understanding of the universe, revealing that its expansion is

currently accelerating[1][2]. Evidence from various sources, including Type Ia Supernovae (SNeIa), Cosmic

Microwave Background (CMB) radiation, and Baryon Acoustic Oscillations (BAO)[3][4], has consistently indicated

this acceleration, implying the presence of an energy form with signi�cant negative pressure, commonly known

as dark energy (DE), which contributes nearly 70% to the current energy budget of the universe. Several DE

models have been proposed to explain this phenomenon. The cosmological constant ( ), which corresponds to a

simple equation of state with  , indicates a constant energy density across space and time, which being

the simplest and most widely accepted. However, the   model faces critical challenges, such as the �ne-

tuning problem[5], the coincidence problem[6], and the age problem[7], which call for alternative explanations for

the nature and origin of DE. In response to these issues, scalar �eld models both canonical and noncanonical have

gained prominence as they provide a more dynamic and versatile framework for describing cosmic evolution. Over

the past decade, numerous DE models, including quintessence, K-essence, phantom energy, tachyon �elds, and

Chaplygin gas, have been explored as potential candidates for explaining cosmic acceleration (see ref.[8]  for a

comprehensive review). Despite this progress, a universally accepted and de�nitive DE model remains elusive.
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These unresolved issues have encouraged the exploration of modi�ed gravity theories, which aim to provide

alternative explanations for the universe’s accelerated expansion. Rather than relying on exotic energy

components such as DE, these theories propose that cosmic acceleration could arise from modi�cations to the

fundamental laws of gravity. In the following passage, we delve into the various modi�ed gravity models,

focusing on how they extend the standard framework of General Relativity (GR) and o�er new insights into the

dynamics of the cosmos.

Modi�ed theories of gravity are advanced frameworks designed to extend or re�ne the GR, aiming to address

phenomena that the original theory cannot fully explain. These modi�cations strive to provide a deeper insight

into the fundamental nature and dynamics of the universe by introducing innovative mathematical concepts and

formulations. Some prominent examples of these theories include:   gravity, which extends the Ricci scalar (

) [9][10].   gravity, formulated via the torsion scalar ( ) [11].   gravity, incorporating the Gauss-Bonnet

term ( )  [12].    gravity, which combines the scalar    and the trace of the energy-momentum tensor (

) [13].   gravity, uniting the scalar   with the term   [14][15].   gravity, focused on the nonmetricity

scalar ( )  [16].    gravity, which merges the scalar    with the tensor    [17]. These theories provide a

foundation for exploring alternative perspectives on gravitational phenomena and cosmic evolution.

Recently, a groundbreaking theoretical framework called    gravity has been introduced, providing new

insights into DE and the universe’s accelerating expansion. This theory investigates the nonlinear interplay

between the nonmetricity scalar    and the boundary term  , o�ering a potential explanation for late-time

cosmic acceleration without the need for exotic �elds or  . The    gravity model is an extension of the 

  gravity framework, enhancing the nonmetricity-based approach by introducing a second scalar term,  ,

which depends on both the Hubble parameter and its time derivative. The additional term  , de�ned as 

, is directly linked to the dynamic aspects of cosmic expansion, particularly the rate of change in

the Hubble parameter over time  [18][19][20][21]. This feature sets    gravity apart, as it combines the

geometric property of nonmetricity (represented by  ) with the evolution of cosmic expansion (captured by  ).

By incorporating this unique interplay between    and    within the gravitational action,    gravity is

capable of e�ectively describing both the decelerating and accelerating phases of the universe. The incorporation

of   in   gravity introduces new gravitational e�ects that can be tested via observational data from CMB,

large-scale structure (LSS), and SNeIa. In this framework,    measures deviations in the metric during parallel

transport, distinguishing it from GR, which assumes a torsion-free and symmetric connection. The boundary

term  , which emerges from the interaction between torsion-free and curvature-free connections, ensures the

model’s dynamic equivalence to GR under speci�c conditions, allowing seamless transitions between di�erent

geometric representations of gravity. Additionally,    introduces extra degrees of freedom that signi�cantly

impact the behavior of gravitational �elds, particularly on cosmological scales. In this work, the functional form

of   gravity is employed as
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where  , and    are constants; to maintain nonlinearity, we consider integer  . The reason behind

considering the nonlinear functional form is explained in Section II.  [19][22][20][23][24][25][26]. These studies

explain the recent work on  .

Cosmological observations suggest that the observed accelerated expansion of the universe is a relatively recent

phenomenon. During earlier epochs, particularly in the matter-dominated era, when DE was absent or had a

negligible e�ect, the universe must have experienced a decelerated phase to enable the formation of cosmic

structures, as gravitational forces held matter together. Consequently, a comprehensive cosmological model must

encompass decelerated and accelerated phases of expansion to represent the universe’s evolutionary history

accurately. In this context, the deceleration parameter serves as a crucial tool. One of the most common ways to

achieve such a scenario is through parameterizations of the deceleration parameter, expressed as a function of the

scale factor ( ), redshift ( ), or cosmic time ( ) (refer to Refs.  [27][28][29][30][31][32]). On the other hand,

nonparametric methods, which directly derive the universe’s evolution from observational data without

assuming speci�c parameterizations, o�er advantages by avoiding constraints on cosmological quantities; they

also have certain limitations  [33][34][35][36][37]. To date, no theoretical model exists that can fully describe the

universe’s entire evolution. Therefore, adopting a parametric approach remains a practical choice.

There are several key reasons for adopting such a parameterization. First, it provides a �exible yet controlled

approach to studying cosmic evolution, allowing for the exploration of complex dynamics without the need to

solve intricate di�erential equations. Second, parameterized forms are well suited for observational studies, as

they enable a direct comparison between theoretical predictions and data from SNeIa, CMB, and BAO [1][38]. Third,

they allow for a more intuitive understanding of how the deceleration parameter evolves over cosmic time,

capturing key features of cosmological models in terms of a few well-de�ned parameters  [39]. This structured

approach enables a detailed investigation of the DE role in cosmic dynamics and its potential implications for

modi�ed gravity theories, providing valuable insights into the universe’s expansion history.

In the   gravity framework, parameterizing the deceleration parameter ( ) is particularly bene�cial for

investigating the implications of cosmic acceleration theories. Unlike the static cosmological constant model,

which requires precise �ne-tuning.   gravity integrates nonmetricity and dynamic terms that evolve with

cosmic time. This combination enables the model to naturally describe the transition between the decelerating

and accelerating phases of the universe’s expansion. Parameterizing    within this framework provides a

structured approach to compare theoretical predictions with empirical data from multiple cosmological probes,

such as SNeIa, CMB, and BAO. Notably, many of these parameterizations of   diverge in the far future: whereas

others are only valid for low redshift values ( ) [40][41][42][43][44].

Motivated by these considerations, our study adopts parameterization of a speci�c form of the deceleration

parameter:
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where   and   are arbitrary model parameters. The logarithmic term is pivotal in capturing the dynamics

of  . The inclusion of this term ensures smooth and controlled evolution of the deceleration parameter,

facilitating a gradual transition between the deceleration and acceleration phases rather than an abrupt shift. This

smooth evolution is essential for modeling subtle dynamic changes in the universe’s expansion history  [45].

Moreover, at high redshifts ( ), the logarithmic term evolves more gradually than the linear terms do,

avoiding unphysical divergences and maintaining consistency with early-universe observations  [7]. This

parameterization signi�cantly enhances the study of the universe’s expansion by providing a uni�ed framework

to model its evolutionary dynamics. It captures the intricate transition between matter-dominated cosmic

deceleration and DE-driven acceleration within a single mathematical expression. Adjusting the model

parameters allows for a detailed investigation of the interplay between various cosmic components across

di�erent epochs, o�ering deeper insights into the nature of DE and the mechanisms underlying the universe’s

accelerated expansion. Furthermore, the controlled and smooth behavior of the logarithmic term ensures

alignment with observational constraints from both late-time and early-time cosmological data, making it a

robust and versatile tool for understanding the dynamics of cosmic evolution.

This paper examines the parameterization of the deceleration parameter   as a function

of  . The chosen parameterization exhibits the desired characteristic of transitioning from a decelerating to an

accelerating phase. The study investigates the FLRW universe within the framework of   gravity, adopting

the functional form  . To determine the best-�t values of the model parameters, the chi-

square ( ) minimization technique is employed. By comparing theoretical predictions with observational data,

this study identi�es the parameter set that aligns most closely with empirical evidence, facilitated by statistical

analysis. The paper is organized as follows: In Section II, we outline the fundamental formalism of 

 gravity and derive the �eld equations for the FLRW metric. Section III introduces the parametric form of

the deceleration parameter and determines the corresponding Hubble solution. In Section IV, we apply Bayesian

analysis to observational datasets, including the Observational Hubble Data ( ) and 

  data, to constrain the free parameters of the model. Section V examined the evolutionary

trajectories of energy density, pressure, equation of state (EoS) parameters, state�nder parameters, and the 

 diagnostic to demonstrate the universe’s accelerating behavior. Finally, section VI summarizes and concludes

the results.

II.    gravity and �eld equations

In GR , the Levi-Civita connection   satis�es two important properties: metric compatibility and torsion-free

behavior. However, in symmetric teleparallel geometry, these restrictions are removed. Instead, the theory

employs a torsion-free and curvature-free a�ne connection  , which is symmetric in its lower indices,
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justifying the term symmetric teleparallelism. The nonmetricity tensor   signi�es that the a�ne connection

is not consistent with the metric, which is described by

The a�ne connection can be expressed as a combination of the Levi-Civita connection    and an additional

term, the disformation tensor   as,

where

Two important nonmetricity vectors are derived from the nonmetricity tensor:

Similar vectors are also de�ned from the disformation tensor:

To connect nonmetricity with gravitational dynamics, a superpotential tensor  , also called the conjugate to

nonmetricity, is introduced. It is expressed as:

where parentheses denote symmetrization over indices. Using  , the nonmetricity scalar   is de�ned as:

Owing to the torsion-free and curvature-free properties, certain geometric relationships hold:

The boundary term   is then introduced to relate the nonmetricity scalar   to the Ricci scalar   of Levi-Civita

geometry. From the above relation, we can also de�ne the boundary term as

where the expression   indicates that the boundary term   represents the di�erence between

the nonmetricity vectors. This formulation highlights that    encapsulates not only the di�erence between the

Ricci scalar   and the nonmetricity scalar   but also illustrates their relationship through the divergence of the

nonmetricity vector di�erences. Fundamentally, this establishes a link between the geometric structure of

spacetime and the behavior of the nonmetricity vectors, demonstrating how variations in nonmetricity in�uence

the curvature within the framework of the theory.

The action for   gravity is de�ned as:
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where   is a general function of the nonmetricity scalar   and boundary term  ,   is the coupling

constant, and   represents the matter Lagrangian, and  .

Varying the action to the metric yields the �eld equations:

For a detailed demonstration of this equation, one can refer to [46]. The covariant form is given as

where    is an Einstein tensor corresponding to the Levi-Civita connection. An e�ective energy-momentum

tensor    is introduced to simplify the equations. This tensor accounts for the geometric modi�cations and

generates additional terms, mimicking the e�ects of DE:

Using the above equation, we derive an equation analogous to that in GR as follows:

We consider the energy-momentum tensor of a perfect �uid to be:

where   is the energy density,   is the pressure and   represents the four velocities of the �uid.

In this theory, where the a�ne connection is considered an independent entity, the connection �eld equation is

derived by varying the action with respect to the a�ne connection.

where

The cosmological principle states that, on large scales, the universe is homogeneous and isotropic. This

assumption leads to the widely used Friedmann–Lemaître–Robertson–Walker (FLRW) metric, which describes a

spatially �at universe. In Cartesian coordinates, the FLRW metric is expressed as:
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where   is the scale factor determining the universe’s expansion. The Hubble parameter, which measures the

rate of expansion, is de�ned as   where the overdot ( ) represents the derivative for cosmic time  .

As demonstrated in the previous section, the framework of    gravity introduces an additional, e�ective

sector of geometric origin, as expressed in Eqn. (14). In a cosmological context, this extra term can be interpreted

as an e�ective DE component characterized by its corresponding energy-momentum tensor.

Fundamental to all modi�ed gravity theories, this additional    component essentially produces negative

pressure, which drives the late-time acceleration of the universe.

The Lie derivatives of the connection coe�cients concerning the generating vector �elds of spatial rotations and

translation vanish in a symmetric teleparallel a�ne connection, which is a torsion-free, curvature-free a�ne

connection with both spherical and translational symmetries. In the context of   gravity, we work with a

vanishing a�ne connection,  . To explore this setup in greater detail, refer to  [47], and the following

quantities are derived:

where  ,  . The modi�ed Friedmann-like equations in   gravity are obtained by

introducing these quantities in the general �eld equation (12) as

where   and   are the energy density and pressure of the matter sector, respectively. The e�ective DE density

and pressure are de�ned as

where    and    are partial derivatives of the function    concerning    and  ,

respectively. The derivatives   and   represent time derivatives of  . These equations generalize the standard

FLRW equations of general relativity by incorporating the additional contributions from the   and   dependent

terms in the   gravity. The �rst equation corresponds to the energy constraint, whereas the second governs

the dynamics of the universe’s expansion.
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In general, the deceleration parameter   in terms of   is given as
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where  . The parameterization of the deceleration parameter signi�cantly in�uences the nature of the

universe’s expansion. Some studies used a variety of parametric forms of deceleration parameters in this regard,

whereas others looked at nonparametric forms. These techniques have been extensively addressed in the

literature to characterize issues with cosmological inquiries, including the Hubble tension, the initial singularity

problem, the horizon problem, the all-time decelerating expansion problem, and others[48][41][49]. Inspired by

this �nding, we analyze the parametric form of the deceleration parameter in terms of redshift   in this article as:

where   and   are free parameters, whereas   is a function of  . Several functional forms of   have been

presented[41][50][51][52][53][54], which can satisfactorily address several cosmological issues. However, as already

established, some of these parameters lose their power to forecast how the universe will evolve in the future,

whereas others are only applicable for  . Moreover, A.A. Mamon et al. investigated the divergence-free

parameterization of    to study the universe’s expansion history[55]. They demonstrated that such a model is

more in line with the existing observational constraints for certain model parameter restrictions. Therefore,

e�orts are being made to �nd a suitable functional form of   that will work well to address cosmological issues.

Inspired by these facts, we adapt a parameterization of the deceleration parameter in this article, which is

provided by

where   and   are arbitrary model parameters. Equation (27) shows two limiting conditions.

At the early epoch. i.e.,     

At the current epoch. i.e.,     

We derive the di�erential equation by solving Eqns. (25) and (27). On further calculations, we obtained

where   is the integrating constant. Furthermore, to eliminate  , we assume a boundary condition, i.e.,  .

When solving (28), we, obtain

where   is the Hubble value/constant at  . After substituting this value in (28), the expression for the Hubble

parameter   is obtained as
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Now we consider the nonlinear   model as:

where   and   are constants. The choice of a nonlinear form over a linear form of   gravity has been

thoroughly justi�ed in the literature[22]. The dynamical system in   gravity theory was thought to be analyzed

by Rana et al.[56]  in the form  . In contrast, D.C. Maurya examined the 

 form to examine the quintessence behavior in   gravity theory[23]. Several authors

have used a variety of nonlinear forms in various gravity theories. Motivated by the models mentioned earlier, we

consider this speci�c nonlinear form in our computations.

IV. Data Interpretation

This section outlines the methodologies and the selection of observational datasets utilized to constrain the

parameters  ,  ,  ,  , and    in the proposed cosmological model. The posterior distributions of these

parameters are derived through statistical analysis, speci�cally employing the Markov Chain Monte Carlo

(MCMC) technique. For the data analysis, the Python module emcee is used.

The probability function    is employed to optimize the parameter �t, where    denotes the

pseudo-Chi-squared function[57]. Details of the    function for various data samples are discussed in the

subsequent subsections. The MCMC plot features   curves for each model parameter, obtained by marginalizing

over the remaining parameters. The thick-line curve represents the best-�t value. The diagonal panels of the plot

show these    distributions, whereas the o�-diagonal panels illustrate    projections of the posterior

probability distributions for parameter pairs. These panels include contours highlighting the regions

corresponding to the   and   con�dence levels.

A. Observed Hubble Data

Accurately determining the expansion rate as a function of cosmic time   is challenging. The cosmic chronometers

(CC) method o�ers a distinctive and potentially valuable approach because the expansion rate can be expressed as 

. In this method, only the di�erential age progression of the universe,  , within

a speci�c redshift interval  , needs to be measured, as    is obtained from high-precision spectroscopic

surveys. From the ratio  , an approximate value for   can be determined.

To estimate the model parameters, we utilize 31 data points from the   datasets derived via the di�erential age

(DA) technique, spanning the redshift range  . The complete list of this dataset is compiled in[58].

The Chi-square function used for deducing the model parameters is as follows:

f(Q,C)

f(Q,C) = + C,γ1Q
n

γ2 (31)

,γ1 γ2 n f(Q,C)

f(Q)

f(Q,C) = −Q + γ1Q
n

f(Q,C) = γ +Q2 γ2C
2 f(Q,C)

H0 q0 q1 α β

L ∝ exp(− /2)χ2 χ2

χ2

1-D

1-D 2-D

1-σ 2-σ

t

H(z) = /a = −[1/(1 + z)]dz/dtȧ Δt

Δz Δz

Δz/Δt dz/dt

H(z)

0.07 < z < 2.42

= ,χ2
CC

∑
i=1

31

[ ]
( , ) − ( )H th

i Θs zi H obs
i zi

σH( )zi

2

(32)
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here,    and    represent the theoretical and observed values of the Hubble parameter, respectively. The

parameter set    de�nes the cosmological background parameter space. The standard

deviation of the   data point is denoted by  . Figure 1 shows the Hubble parameter pro�le derived from the

CC dataset alongside the behavior predicted by the  CDM model. For the MCMC analysis, we employed 100

walkers and 10,000 steps to obtain the �tting results. Contour plots showing the   and   con�dence levels are

provided in Figure 2. While the model closely aligns with the  CDM paradigm at low redshift, noticeable

deviations appear at higher redshifts. The marginal values of all the model parameters derived from the Hubble

dataset are summarized in Table 1.

Figure 1. Error bar plots for 31 data points from the Hubble datasets, together

with best-�t plots.

H th H obs

= ( , , ,α,β)Θs H0 q0 q1

ith σH( )zi

Λ

1-σ 2-σ

Λ
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Figure 2. Marginalized constraints on the coe�cients in the expression of   in Eqn. 28 are

shown by using the Hubble sample

Parameters

Table 1. Constrained values of the model parameters obtained from the   and   data samples

H(z)

OHD Pantheon

+ SH0ES

H0 70.01+0.12
−0.11

70.01
± 0.11

α 1.863
± 0.087

1.864
± 0.099

β 1.58 ± 0.11 1.61 ± 0.10

q0 3.53 ± 0.11 3.53 ± 0.10

q1
−1.151
± 0.094

−1.14+0.11
−0.12

OHD Pantheon + SH0ES
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B.   Data

The discovery of the accelerated expansion of the universe has been signi�cantly advanced through observations

of SNeIa. SNeIa has proven to be one of the most powerful tools for investigating the properties of the

components driving the universe’s rapid evolution. In recent years, numerous compilations of SNeIa data, such as

the Joint Light-Curve Analysis (JLA), Pantheon, Pantheon+, Union, Union 2, and Union 2.1[59][60][61][62][63], have

been published. The   dataset consists of 1701 light curves from 1550 distinct SNeIa , covering

redshifts from   to  . To constrain the model parameters, the observed and theoretical distance

modulus values must be compared. The theoretical distance modulus,  , is expressed as:

where   is the dimensionless luminosity distance de�ned as,

Now, the Chi-square function is de�ned as:

  represents the di�erence between the theoretical and observed distance moduli. The

observed distance modulus is denoted as  , where    de�nes the parameter space and    is the covariance

matrix[64].

The MCMC analysis was conducted using the same number of steps and walkers as in the CC example. Figure 3

presents the distance modulus pro�le, whereas Figure 4 displays the   and   con�dence level contour plots.

The model shows excellent agreement with the   dataset. The marginal values of all the model

parameters obtained via this dataset are listed in Table 1.

Pantheon + SH0ES

Pantheon + SH0ES

z = 0.00122 2.2613

μth
i

(z, θ) = 5 log (z, θ) + 25,μth
i Dl (33)

Dl

(z, θ) = (1 + z) .Dl ∫
z

0

dz̄̄̄

H( )z̄̄̄
(34)

(z, θ) = ∇ ( ∇ ,χ2
SN ∑

i,j=1

1701

μi C−1
SN )ij μj (35)

∇ = (z, θ) −μi μth
i μobs

i

μobs
i θ CSN

1-σ 2-σ

Pantheon + SH0ES
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Figure 3. Error bar plots for 1701 data points from the 

 datasets together with best-�t plots.Pantheon + SHE0ES
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Figure 4. The MCMC con�dence contours derived from constraining the   model via 

 dataset are shown in the plot.

Datasets

Table 2. Best-�t values of the cosmological parameters and statistical analysis results for the   and 

 datasets, including con�dence levels.

f(Q,C)

Pantheon + SH0ES

q0 zt ω0

OHD −0.2815+0.25
−0.15 0.98+0.007

−0.066 −0.545+0.49
−0.66

Pantheon + SH0ES −0.2584+0.26
−0.28 0.76+0.012

−0.048 −0.695+0.46
−0.56

OHD

Pantheon + SH0ES
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V. Cosmographic parameters

A. Deceleration parameter

The deceleration parameter   measures the rate at which the universe’s expansion changes over  , or  . A positive 

  signi�es a decelerated expansion, typically associated with matter or radiation dominance. In contrast, a

negative value indicates accelerated expansion, as seen in the present DE-dominated universe. Tracking its

behavior helps in understanding the impact of di�erent cosmic components on the universe’s expansion. The

equation for  , obtained from the parametrically derived   Eqn. (30), is given by:

Figure 5 depicts the universe’s evolution, highlighting its transition from early-time deceleration to late-time

acceleration, as determined by the constrained values of the model parameters derived from the observational

data used in this article. The transition redshifts are obtained as    and,    for the    and 

  datasets, respectively. The    clearly indicates a delayed transition for cosmic

acceleration. The current values of the deceleration parameter for the   and   samples are

observed to be    and  , respectively. This con�rms that the universe is undergoing

accelerated expansion, with the negative values highlighting the dominance of DE in the current epoch. From

these values, it is evident that the model initially struggles to align with the widely accepted value of  .

However, as it evolves, the model may successfully transition into an accelerating de Sitter regime.

Figure 5. Plot of deceleration parameter   versus redshift 

q t z

q(z)

q(z) H(z)

q(z) = [(1 + z) [2 + + α(α + − 3) − β] + ( − α )log [α + z]]
1

(1 + z)(α − 1)
q0(α − 1)2

q1 q1(α − 1)2
q1 q1 (36)

≈ 0.98zt ≈ 0.76zt OHD

Pantheon + SH0ES OHD

OHD Pantheon + SH0ES

≈ −0.30q0 ≈ −0.25q0

≈ −0.55q0

q(z) z
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B. Density and pressure

With the help of Eqns. (23), (24) and (31), the energy density and pressure for the derived DE model are given as

The value of   determines how   and   are expressed. This suggests that the nonmetricity factor   directly

impacts the obtained model. To preserve a positive energy density and the accelerating features of the EoS

parameter, We then set the values of our model parameters,    and  , appropriately. Additionally, an integer

value of   is required to achieve valid results for noninteger values, given that the model does not correlate

correctly. The model parameters,  ,  ,  , and  , a�ect the energy density and pressure of the DE model.

Therefore, we use    and  , to keep the Hubble and deceleration parameters within the ranges

suggested by cosmological discoveries.

Figure 6 presents the evolution of the DE density    as a function of redshift  . At low redshifts ( ), the

results from both datasets demonstrate similar trends in energy density, which approaches near-zero values. This

behavior aligns with the current epoch of accelerated cosmic expansion, which is dominated by DE or low-density

matter. At higher redshifts, the energy density    exhibits exponential growth, with the 

 dataset predicting slightly higher values than the   dataset does. This indicates a denser

universe in the past, particularly for redshifts ( ). As the redshift approaches ( ), DE density 

 appears to stabilize or entirely dominate, in agreement with the theoretical expectations of an accelerating de

Sitter universe.

Figure 6. Plot of energy density   versus redshift 

= [3 + (n − 0.5) ],ρDE
1

κ
H 2 γ1 (−6 )H 2 n

(37)

= − [2 + 3 + (n − 0.5)(−6 + (−6 ( ] .pDE
1

κ
Ḣ H 2 γ1 H 2)n

n(2n − 1)γ1 Ḣ

3
)n H 2)n−1 (38)

γ1 ρDE pDE Q

γ1 γ2

n ≥ 1

q0 q1 α β

= 0.235γ1 n = 2

ρDE z z ≈ 0

ρDE

Pantheon + SH0ES OHD

z > 2 z → −1

ρDE

ρ z
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Figure 7 shows the variation in DE pressure    as a function of redshift    for two datasets:    and 

. The plot illustrates the evolution of pressure across di�erent cosmic epochs. In the past (

), corresponding to the early universe, the pressure was highly negative, with the 

 dataset showing a steeper decline than the   datset. This indicates a stronger in�uence

of DE in the   dataset during earlier times, suggesting a more rapid expansion of the universe.

At present ( ), both datasets converge to less negative pressure values, which is consistent with the current

accelerated expansion dominated by DE and low-density matter. Looking toward the future ( ), although

the �gure does not explicitly extend into this regime, the pressure is expected to stabilize near zero or remain

negative, aligning with the universe transitioning into a de Sitter phase.

Figure 7. Plot of pressure   versus redshift 

pDE z OHD

Pantheon + SH0ES

z > 0

Pantheon + SH0ES OHD

Pantheon + SH0ES

z ≈ 0

z → −1

p z
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C. The EoS parameter

Figure 8. Plot of the EoS parameter   versus redshift the 

The EoS parameter  , which is de�ned as  , is useful for classifying the universe’s acceleration and

decelerating behavior. To accelerate the universe, the EoS classi�es three possible states: the cosmological

constant  , phantom   era, and quintessence   era. Figure 8 explains the trajectory

of EoS parameter. It indicates that   ranges between   to  , throughout the evolution, which means that the

whole trajectory lies in the quintessence era. The current values of the EoS parameter for    and 

 are observed to be   and,  , respectively.

D.   parameter

It is well known that DE promotes the expansion of the universe. Understanding the origins and basic

characteristics of DE have gained attention in recent decades. Consequently, many DE models have surfaced,

underscoring the necessity of making both quantitative and qualitative distinctions between them. To distinguish

between several DE theories, Sahni et al.[65]  presented a state�nder diagnostic technique. The state�nder

parameter  , a pair of geometrical parameters used in this approach, are speci�ed as follows:

The DE models are represented by di�erent values of  ; for example, the    model is represented by 

, the Chaplygin gas region is represented by  , and the Quintessence region is

represented by  . Figure 9 illustrates the trajectory of the    parameter for the    and 

ω z

ω ω = pDE

ρDE

(ω = −1) (ω < −1) (−1 < ω < − )1
3

ω −1 − 1
3

OHD

Pantheon + SH0ES ≈ −0.55ω0 ≈ −0.70ω0

r − s

{r, s}

r = 2 + q + (1 + z) ,q2 dq

dz
(39)

s = .
r − 1

3(q − )1
2

(40)

(r, s) ΛCDM

(r = 1, s = 0) (r > 1, s < 0)

(r < 1, s > 0) r − s OHD
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  datasets. This indicates that    the pair falls within the Chaplygin gas regime 

 and eventually converges to the   point  .

Figure 9. Plot of   parameter versus redshift 

E.   diagnostics

Figure 10. Plot of Om diagnostic   versus redshift 

Hubble parameter   and redshift   provide the geometrical diagnosis known as  . It can distinguish between a

dynamic DE model and  , both with and without matter density. The negative slope of   indicates that

DE behaves like a quintessence  , the positive slope suggests that DE is a phantom  . Following

Zunckel & Clarkson [66] and Sahni et al. [67],   for a spatially �at universe is de�ned as

Pantheon + SH0ES r − s

(r > 1, s < 0) ΛCDM (0, 1)

r − s z

Om(z)

Om(z) z

H z Om

ΛCDM Om(z)

(ω > −1) (ω < −1)

Om(z)
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Figure 10 shows that   has a negative slope, which denotes the quintessence-like behavior of DE, in a slowly

evolving equation of state for both datasets.

VI. Conclusion

The present theory of the universe’s accelerating expansion has become more exciting over time. To �nd a good

representation of the accelerating universe, many dynamic DE models and modi�ed gravity theories have been

used in di�erent ways. In this work, we employ an extension   gravity, along with a boundary term  ., i.e., 

  gravity. The nonlinear functional form    gravity is shown by Eqn. (31). We execute the

parameterization of the logarithmic deceleration parameter Eqn. (27) with the help of    gravity in the

FLRW universe. The optimal results are determined via the   minimization method to identify the best-�t values

for the model parameters  ,  ,  , and  . This process involves the use of data samples, mainly   data points

from the CC dataset for Hubble measurement and   data points from the   dataset for SNeIa.

Table 1 presents the constrained parameter values along with their corresponding 1-   con�dence intervals.

Additionally, Table 2 provides the best-�t values of the cosmological parameters for the current epoch. We

compute and study cosmographic parameters, such as the deceleration parameter, pressure, energy density of the

DE model, e�ective EoS parameter, state�nder parameter, and   diagnostic.

Figure 1.S shows the trajectory of the Hubble parameter, which indicates that it aligns well with the standard 

 model. The current values of the Hubble parameter   for the   and   data samples

are   and   respectively, which are similar to the results

of  [68][69]. The behavior of the deceleration parameter is shown in Figure 5. At higher redshifts, where    has

positive values, the model exhibits a decelerating phase. Upon crossing the transition redshift values, 

 for the   dataset and   for the   dataset, the model transitions

into an accelerated phase at lower redshifts. As the model continues to evolve, it is expected to eventually

transition successfully into an accelerating de Sitter phase soon. The current values of the deceleration parameter

for each dataset are provided in Table 2. These results align closely with the arguments presented in [70][46].

The energy density   experiences a steady decline from its high values in the early universe ( ) to nearly

zero as we approach the future ( ) (Figure 6). This behavior corresponds with the transition from a radiation-

dominated era to a vacuum-dominated, de Sitter-like phase, highlighting the model’s e�ectiveness in accounting

for the diminishing in�uence of matter and radiation as the universe expands. These �ndings are consistent with

the reasoning outlined in [69][71][72].

In parallel, the DE pressure   shifts from signi�cantly negative values in the early universe to values near zero

in the later stages, as depicted in Figure 7. This trend mirrors the dynamics of accelerated expansion promoted by

Om(z) = .
− 1[H(z)/ ]H0

2

(1 + z − 1)3
(41)

Om(z)

f(Q) C

f(Q,C) f(Q,C)

f(Q,C)

χ2

α β q0 q1 31

1701 Pantheon + SH0ES

σ

Om

ΛCDM H0 OHD Pantheon + SH0ES

=H0 70.01+0.12
−0.11kms−1Mpc−1 = 70.01 ± 0.11H0 kms−1Mpc−1

q

=zt 0.98+0.007
−0.066 OHD =zt 0.76+0.012

−0.048 Pantheon + SH0ES

ρDE z > 0

z < 0

pDE
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DE. The increasing negativity of pressure further underscores the importance of   gravity in representing

the repulsive forces essential for cosmic acceleration. These outcomes support similar conclusions as those

reported in [73][74].

The equation of the state parameter    (Figure 8) exhibits negative behavior, indicating that it lies within the

quintessence era. This behavior suggests that the present universe is undergoing an accelerating phase,

reinforcing the notion that DE plays a signi�cant role in its dynamics. It does not cross the phantom divide line

for    for each dataset. The current values of the Eos parameter are    for    and 

 for   data samples. These results align closely with the arguments presented

in [75][76][77].

The state�nder    parameter for constrained values of model parameters, derived from the    and 

  data samples, is presented in Figure 9. Initially, the trajectory of the    plane is

positioned in the region where    and , which is typically associated with Chaplygin gas. As the model

evolves, the pair   converges toward  , aligning it with the widely accepted   model. These results

are in agreement with the results highlighted in [78][79][80].

In Figure 10, the evolution of the   diagnostic is clearly depicted with a negative slope. This suggests that our

model aligns with the quintessence phase of DE for each dataset, characterized by a slowly evolving equation of

state. This �nding is consistent with theoretical expectations for quintessence, where DE is dynamic and evolves,

in contrast to the static nature of the cosmological constant. These results correspond well with the arguments

discussed in [81][76][82].

To summarize, the choice of   Eqn. 25 with a logarithmic term is somewhat arbitrary and is adopted here to

explore the impact of the logarithmic term on the resulting cosmological model and its parameters. This

assumption also helps close the system of equations. Since the true nature of the universe remains elusive,

parameterizing    o�ers a simple yet e�ective approach to studying the universe’s transition from a

decelerating to an accelerating expansion phase, while paving the way for future investigations into the

properties of DE. Incorporating additional observational datasets into this analysis would undoubtedly improve

the accuracy of constraints on the universe’s expansion history, positioning this work as a foundational step in

that direction. Furthermore, the    gravity framework provides a uni�ed explanation of the universe’s

physical behavior across its early, current, and late stages. By analyzing the dynamics of isotropic pressure,

energy density, stability parameters, and energy conditions. This model o�ers a comprehensive alternative to 

.

f(Q,C)

ω

(z < 0) = −ω0 0.545+0.49
−0.66 OHD

= −ω0 0.695+0.46
−0.56 Pantheon + SH0ES

r − s OHD

Pantheon + SH0ES r − s

r > 1 s < 0

(r, s) (1, 0) ΛCDM
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