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Abstract

Lying in the core of the conceptual scheme of current quantum theory,
the notion of quantum superposition is a consequence of the quantum-
mechanical superposition principle. However, relying on precise but not
attainable space or time coordinates, quantum superposition makes lit-
tle sense physically if we use it to describe or explain experimental re-
sults obtained by measurement. Space or time is usually modeled by
a metric space endowed with the usual distance function. Irrelevant to
instrument precision and measurement accuracy, unattainability of pre-
cise coordinates is a well-established mathematical fact following from
properties of the corresponding metric topology, and hence rules out com-
pletely, in principle, the possibility for us to obtain precise coordinates by
measurement in actually performed experiments. In classical mechanics,
unattainability of precise coordinates is hardly noticeable, and measure-
ment results obtained in classical physics can still be reasonably explained
even though precise coordinates are unattainable. However, when we ex-
plain measurement results obtained in quantum physics, unattainability
of precise coordinates should not be omitted. In the conceptual scheme of
current quantum theory, omission of unattainability of precise coordinates
is an unfortunate flaw, which is largely responsible not only for the invalid-
ity of quantum superposition in description of the physical world but also
for various ineligible applications of quantum mechanics. Nevertheless, in
no sense does the flaw imply quantum mechanics as a successful theory
failing to be correct. As shown in this article, the flaw is repairable. By
taking into account unattainability of precise coordinates, we can rein-
terpret the meaning of quantum superposition to repair the flaw without
affecting eligible applications of quantum mechanics while avoiding all the
ineligible applications.

Keywords: Foundations of quantum theory, Quantum superposition, Quantum
randomness, Quantum measurement
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1 Introduction

At the level of quantum objects, such as electrons, atoms, and photons, the
physical world is described by quantum mechanics. The quantum-mechanical
description is typically based on the notion of quantum superposition. Lying
in the core of the conceptual scheme of current quantum theory, quantum su-
perposition is intended to describe physical quantities concerning microscopic
objects, which can be observed by measurement. Although quantum-mechanical
predictions are always in agreement with experimental results obtained by mea-
surement, there are some unresolved issues relevant to quantum superposition.

For example, according to quantum theory in its current form, if no mea-
surement is performed on a system, the system is in a quantum superposition
of orthogonal states corresponding to mutually exclusive properties. Each or-
thogonal state represents a deterministic outcome obtained by measurement.
Orthogonal states are added by vector addition, which requires use of conjunc-
tion (“and”) as the logical relation between mutually exclusive properties of the
system before measurement. Described by quantum mechanics, the system is
simultaneously in each orthogonal state, and hence possesses mutually exclusive
properties at the same time. However, after a measurement is performed on the
system, the quantum superposition collapses immediately onto one of orthogo-
nal states. Beginning initially in the quantum superposition with conjunction as
the logical relation between mutually exclusive properties before measurement,
the system, as time evolves, ends up inexplicably in one of orthogonal states,
which requires use of disjunction (“or”) as the logical relation between mutually
exclusive properties after measurement. In other words, without any physical
meaning, the logical relation between mutually exclusive properties before and
after a measurement changes from conjunction to disjunction. A question then
appears as John S. Bell put it: How does an “and” get converted into an “or”?
This is an important question concerning the conceptual foundations of quan-
tum mechanics, which characterizes the essence of the quantum measurement
problem. The question is still open.

By raising the above question, Bell assumed implicitly the validity of quan-
tum superposition as a meaningful description of the physical world at the level
of quantum objects. If this assumption holds, we are forced to choose one of
the two options regarding description of the physical world:

(a) Quantum superposition is valid for description of both quantum objects
and macroscopically distinguishable objects, i.e., objects with macroscop-
ically distinct states.

(b) Quantum superposition can only describe quantum objects, but is invalid
for description of macroscopically distinguishable objects. There exists a
boundary between the former and the latter.

Option (a) is the choice of most physicists, although they have never seen any
effects of quantum superposition at the level of macroscopically distinguishable
objects. The reason for them to choose this option is the so-called decoherence.
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They believe, without any evidence, decoherence making effects of quantum
superposition disappear beyond the level of quantum objects. Option (b) is the
choice of the minority [1, 2, 3]. This option has been intensively investigated by
experiment. The aim is to find macroscopically distinguishable objects, which
cannot be described by quantum superposition. So far, such objects have not
been found yet [4]. On the other hand, if the assumption implied by options (a)
and (b) is false, then there also exists another option:

(c) The validity of quantum superposition for description of the physical world
is questionable even at the level of quantum objects.

Option (c) is the choice of Einstein, but dismissed by Bohr in the Einstein-
Bohr debate [5, 6, 7]. According to Einstein, the use of quantum superposition
for description of the physical world may not make sense physically, because the
quantum-mechanical description involves instantaneous collapse of a quantum
superposition onto one of orthogonal states upon measurement, which contra-
dicts relativity. Nowadays, this third option seems to have been excluded by
the standard interpretation of the experimental invalidation of Bell inequalities
[8, 9, 10, 11, 12, 13]. However, as we shall see in this article, Einstein’s choice,
i.e., option (c) is correct. Even at the level of quantum objects, description of
the physical world based on quantum superposition is physically meaningless.
Consequently, we may rule out options (a) and (b), but need reinterpret the
meaning of quantum superposition in the conceptual scheme of current quan-
tum theory.

As we all know, physical quantities described by quantum superposition
can be observed by measurement in experiments with quantum objects. Only
in space and time can physical quantities exist and be measured. To measure
physical quantities in space and time, we must model space and time mathemati-
cally. Space or time is usually modeled by a metric space endowed with the usual
distance function. By using the distance function together with precise space
or time coordinates, we can calculate the distance between two points in space
or the length of a time interval between two instants. However, precise coordi-
nates are practically unattainable. Irrelevant to instrument precision and mea-
surement accuracy, unattainability of precise coordinates is a well-established
mathematical fact following from properties of the corresponding metric topol-
ogy. When reinterpreting the meaning of quantum superposition, we must take
into account unattainability of precise space and time coordinates.

For actually performed experiments, unattainability of precise coordinates
rules out completely, in principle, the possibility for us to obtain precise coor-
dinates by measurement. In classical mechanics, unattainability of precise co-
ordinates is hardly noticeable and hence can be safely omitted. This is why we
may still reasonably explain measurement results obtained in classical physics.
Although the role played by unattainability of precise coordinates in classical
mechanics is insignificant, when we explain measurement results obtained in
quantum physics, unattainability of precise coordinates must not be omitted.
In the conceptual scheme of current quantum theory, omission of unattainability
of precise coordinates is an unfortunate flaw, which is largely responsible not
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only for the invalidity of quantum superposition in description of the physical
world, but also for various ineligible applications of quantum mechanics. Nev-
ertheless, in no sense does the flaw imply quantum mechanics as a successful
theory failing to be correct. As shown in this article, the flaw is repairable. By
taking into account unattainability of precise coordinates, we can reinterpret
the meaning of quantum superposition to repair the flaw without affecting el-
igible applications of quantum mechanics while getting rid of all the ineligible
applications.

After briefly reviewing a few definitions and mathematical facts about metric
topology concerning unattainability of precise space or time coordinates (Section
2), we scrutinize the quantum-mechanical superposition principle and the notion
of quantum superposition (Section 3). Based on the scrutiny, we propose a fea-
sible way to repair the flaw in the conceptual scheme of current quantum theory
by reinterpreting the meaning of quantum superposition (Section 4), and then
discuss briefly implications of unattainability of precise coordinates concerning
the foundations of quantum theory (Section 5). The topics discussed include
Bell inequalities [14] and the EPR experiment [5], the so-called entangled state
in experimental tests of Bell theorem, statistical regularities and probabilities in
classical and quantum mechanics, quantum information [15], Heisenberg’s un-
certainty relation, and Kochen-Specker theorem [16]. Finally, we conclude with
a summary of the main findings reported in this article (Section 6).

2 Metric Topology and Unattainability of
Precise Coordinates

As a mathematical model of space in which we live, Euclidean-3 space (de-
noted by R3) consists of ordered triples of real numbers r = (r1, r2, r3). The
triples are also referred to as points in R3. Write

x(r) = r1, y(r) = r2, z(r) = r3,

where x, y, z are the natural coordinate functions, and their values are precise
coordinates of the corresponding points in R3. To measure physical quantities
in space modeled by Euclidean-3 space, we need a metric, also referred to as dis-
tance function, defined on R3. The metric or distance is a real-valued function,
which satisfies the well-known properties characterizing the notion of distance.
The distance between any two points r and r′ is usually given by

d3(r, r′) =
√

(r1 − r′1)2 + (r2 − r′2)2 + (r3 − r′3)2. (1)

By definition, d3(r, r′) = 0 if and only if r = r′.
Equipped with the distance function (1), R3 is a metric space (R3, d3). Con-

sequently, the open subsets of R3 form a metric topology T3, and (R3,T3) is a
topological space. For a point r ∈ R3, its neighborhood is a set V (r) ⊂ R3, such
that r ∈ U ⊂ V (r), where U ∈ T3. Any point r ∈ R3 has uncountably many
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neighborhoods, and cannot be isolated from any of its neighborhoods. In other
words, r is not an isolated point of any V (r), i.e., for any sufficiently small real
number γ > 0,

V (r) ∩B(r, γ) = B(r, γ) 6= {r}, (2)

where
B(r, γ) = {r′ ∈ R3 : d3(r, r′) < γ}

is an open ball with center r and radius γ. Consequently, so long as γ > 0,
there always exist uncountably many points different from and arbitrarily close
to r in B(r, γ), and hence the distance between any of such points and r, given
by (1), is strictly greater than zero. The point r considered above is arbitrary.

As shown above, no point in R3 can be isolated from any of its neighbor-
hoods. Consequently, by using the distance function (1), we cannot obtain any
desired point r. Instead of the desired point r, we can only obtain a neighbor-
hood V (r) as an approximation. The approximation is at best an infinitesimal
volume. In this sense, precise coordinates are unattainable.

Implied by the properties of the topological space (R3,T3), unattainability
of precise coordinates of any point in R3 is a well-established mathematical fact
based on the distance function (1), and essentially irrelevant to anything about
measurement in practice, such as instrument precision or accuracy of measure-
ment results. On the other hand, the distance function (1) is a necessary tool
devised for practical measurement in general, and we need it when measuring
physical quantities in space. However, because we cannot isolate any desired
point in R3 from any of its neighborhoods by using (1), it is then prohibited,
in principle, for us to attain precise coordinates by measurement. In other
words, the property (2) rules out completely, in principle, the possibility for
us to obtain precise coordinates of any point in space by using (1). Actually,
because of the well-established mathematical fact characterized by (1) and (2),
no measurement performed in space can be perfectly accurate. A measurement
can only determine some neighborhood V (r) ⊃ B(r, γ). The open ball B(r, γ)
contains r together with uncountably many other points, such that the distance
between any of such points and r is strictly greater than zero, no matter how
small γ is.

Euclidean-2 space (denoted by R2) is a subset of R3, and so is R+, the set
of nonnegative real numbers. Points in a plane are typically given by their
coordinates in Euclidean-2 space. Instants of time are usually modeled by non-
negative real numbers. By restricting the distance function (1) respectively to
Euclidean-2 space (for example, the xy-plane) and R+, we can make R2 and R+

into metric spaces. The restrictions of (1) to R2 and R+ are

d2(x, y) =
√

(x1 − y1)2 + (x2 − y2)2

and
d+(s, t) = |s− t|,

where x = (x1, x2), y = (y1, y2), x, y ∈ R2, and s, t ∈ R+. Define

T2 = {U ∩ R2 : U ∈ T3}
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and
T+ = {U ∩ R+ : U ∈ T3},

which are relative topologies inherited from (R3,T3). The following statements
are evident mathematical facts.

• The topological spaces (R2,T2) and (R+,T+) are subspaces of (R3,T3).

• The collection T2 (respectively, T+) consists of relatively open sets of R2

(respectively, R+).

• An open ball in the metric space (R2, d2) with center x and radius γ is a
disc {y ∈ R2 : d2(x, y) < γ}; an open ball in the metric space (R+, d+)
with center t > 0 and radius γ is simply an open interval (t − γ, t + γ),
where γ < t.

• Unattainability of precise coordinates of points in R2 (respectively, on
R+) is implied by properties of the corresponding metric topology T2

(respectively, T+).

With the mathematical facts we have just reviewed, now we are ready to
scrutinize the quantum-mechanical superposition principle and the notion of
quantum superposition.

3 Quantum Superposition Revisited

The notion of superposition given by its original form in quantum physics
concerns waves, and is a consequence of the superposition principle proved in
mathematics regarding solutions of a linear differential equation. In quantum
mechanics, which is a mathematical theory of quantum physics, abstract quan-
tum states and their superposition may not necessarily be solutions of a linear
differential equation. As a generalization of the superposition principle proved
for linear differential equations, the quantum-mechanical superposition principle
is simply taken to be a basic postulate, which is not reducible to anything more
elementary and hence needs no proof. According to the quantum-mechanical
superposition principle, if a quantum system can be in either of two states,
the system can also be in a linear combination of the two states. This linear
combination is also referred to as a quantum superposition.

Thus, roughly speaking, quantum superpositions may be divided into two
categories: quantum superposition of waves, resulting from the superposition
principle proved in mathematics regarding solutions of a linear differential equa-
tion, and quantum superposition of abstract quantum states, where quantum
states may be associated either with a single quantum object, or with a system
consisting of multiple quantum objects. In this article except Section 5, where
we discuss the EPR experiment and the so-called entangled state in experimen-
tal tests of Bell inequalities, our focus is mainly on quantum superposition of
waves associated with a single particle, and superposition of quantum states
associated with a single quantum object.
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3.1 Quantum Superposition of Waves

Associated with a single particle, a wave function (also referred to as a
quantum state) is a solution of a wave equation. The wave equation can have
different solutions, which are wave functions associated with the same single
particle. Let ψi(r, t), i = 1, 2, · · · , n be solutions of the wave equation, such that
none of them is identically zero. In current quantum theory, the wave functions
represent orthogonal states, corresponding to mutually exclusive properties of
the particle. The wave equation is a linear differential equation, and hence
satisfies the superposition principle, according to which

Ψ(r, t) =
n∑

i=1

ciψi(r, t) (3)

is also a solution. The linear combination given by (3) is a quantum superposi-
tion, where ci, i = 1, 2, · · · , n are complex numbers. By assumption, Ψ(r, t) and
ψi(r, t), i = 1, 2, · · · , n are all associated with the same single particle. Apply-
ing Born’s probabilistic interpretation of wave functions and the normalization
condition to (3), we have

n∑
i=1

|ci|2 = 1,

where |ci|2 is the probability of finding the particle in state ψi. According to
Born’s probabilistic interpretation, for a wave function ψ(r, t),

f(r, t) = |ψ(r, t)|2 with
∫

R3
f(r, t)dv = 1

is a time-dependent probability density, and hence f(r, t)dv is the probability
of finding the particle in an infinitesimal volume dv containing point r ∈ R3

at time t. Clearly, by treating f(r, t)dv as a probability, Born’s probabilistic
interpretation of wave functions has already taken into account unattainability
of precise position coordinates of a particle in space.

However, unattainability of precise time coordinates is omitted in Born’s
probabilistic interpretation. Moreover, in (3), an important physical constraint
imposed on measuring individual quantum objects is also omitted. According
to this constraint, the same single quantum object can at most be measured only
once. This is why we need a sequence of identically prepared quantum objects
of the same kind for experiments in quantum physics. Because the constraint
above and unattainability of precise time coordinates are omitted, (3) is not
an experimental fact; it is only mathematically meaningful as a consequence of
the superposition principle proved in mathematics regarding solutions of a linear
differential equation, but meaningless when we use it to describe or explain phe-
nomena observed in quantum physics. Therefore, although ψi, i = 1, 2, · · · , n
and Ψ satisfy the same linear differential equation, Ψ is physically meaningless,
and so is the assertion that the same single particle can possess mutually ex-
clusive properties simultaneously before measurement. Nevertheless, the same
particle may still have mutually exclusive properties at different times.
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In fact, what can be observed in an actually performed experiment are dif-
ferent particles of the same kind, each of which is associated with one and only
one of the wave functions ψi, i = 1, 2, · · · , n, and can at most be detected only
once at unknown, almost surely different instants. Consider, for example, a
sequence (ρk)k≥1 of identically prepared particles of a given kind. Suppose we
want to detect ρk, k = 1, 2, · · · at an arbitrarily given instant τ represented by a
precise coordinate after a time interval [0, τ ] elapses in different runs of the ex-
periment. At the beginning of the interval, i.e., at t = 0, each prepared particle
is ready for detection under the purported same condition. In general, once a
particle has been detected, it cannot be detected anymore. One at a time, the
particles are detected. For k = 1, 2, · · · , we may find the k-th particle ρk, which
is associated with one of the wave functions, say, ψj , with a positive probabil-
ity fj(rk, tk)dvk, in an infinitesimal volume dvk containing rk represented by
precise space coordinates during an infinitesimal time interval containing both
tk and τ , where tk, represented by a precise time coordinate, is an unknown
instant, and

fj(rk, tk) = |ψj(rk, tk)|2

is the corresponding probability density for ρk to be detected at point rk at
instant tk. All instants tk, k = 1, 2, · · · are unknown to us, and cannot be
predicted in any way. The instants are random points in an infinitesimal interval.

As shown above, omission of unattainability of precise time coordinates is
responsible for confusion of infinitesimal time intervals and instants of time.
The confusion eventually leads to various incorrect explanations of experiments
involving quantum superpositions. However, in a way similar in spirit to Born’s
probabilistic interpretation, we can take into account unattainability of precise
time coordinates when explaining measurement results obtained by experiments
with quantum objects, although we may not be able to find a probability distri-
bution for the involved instants, because they are all in an infinitesimal interval.

3.2 Superposition of Abstract Quantum States

As a basic postulate of current quantum theory, the quantum-mechanical
superposition principle is misleading. Firstly, this generalized superposition
principle obscures the connection to its original form proved in mathematics
regarding solutions of a linear differential equation. Secondly, unattainability
of precise coordinates for representing directions in space is omitted. Finally,
because the original superposition principle is merely proved for linear differ-
ential equations without considering physical constraint imposed on measuring
individual quantum objects, its generalized form is not eligible to serve as a
basic postulate of quantum theory.

To explain further why the quantum-mechanical superposition principle is
not eligible, consider, for example, an ensemble of identically prepared spin-1/2
particles. Let (qk)k≥1 be a sequence of particles in the ensemble. Mathemat-
ically, a spin-1/2 particle lives in a Hilbert space spanned by two eigenvectors
|↑〉 and |↓〉. Thus neither time dependence of the states nor spatial motion of
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the particle needs to be considered here. This system is described by a linear
combination of the eigenvectors.

|ψ〉 = c1 |↑〉+ c2 |↓〉 , (4)

where c1 and c2 are complex numbers. The linear combination given by (4)
is a quantum superposition. None of |↑〉, |↓〉, and |ψ〉 is a solution of a linear
differential equation. According to (4), when a spin-1/2 particle is in the state
|ψ〉, it has no definite spin in any direction; the particle has two states |↑〉 and
|↓〉 in every direction before measurement. As a consequence of the quantum-
mechanical superposition principle, (4) simply represents a way to account for
the weird behavior of the particles observed in a Stern-Gerlach experiment.

Let qi and qj , where i 6= j, be two arbitrarily given particles in (qk)k≥1. Mea-
suring the spin of qi along a direction yields a deterministic outcome. Measuring
the spin of qj along the purported same direction for measuring the spin of qi
also yields a deterministic outcome, but it may or may not be identical to the
outcome obtained by measuring the spin of qi. The outcomes may correspond
to either |↑〉 or |↓〉 with a probability equal to |c1|2 or |c2|2, where

|c1|2 + |c2|2 = 1.

There seems to be no way for us to distinguish any one particle in (qk)k≥1 from
any other. In other words, the weird behavior of the particles looks inexplicable;
this is exactly why (4) is needed here, which seems to be the only way to
account for such behavior. In fact, however, (4) is not only unnecessary but
also misleading.

Spin measurements are performed in space modeled by R3. As we can readily
see, each direction in R3 corresponds to one and only one point in the set D
given below.

D = {r ∈ R3 : d(r, 0) = 1}.

Consequently, directions or orientations in space can be represented by coordi-
nates of the points in D. Because the unattainability applies to points in D,
precise coordinates of any point in D are unattainable.

Now consider the Stern-Gerlach experiment again. Suppose we want to
measure spins of particles in (qk)k≥1 along an arbitrarily given direction in
R3 represented by precise coordinates of the corresponding point a in D for
spin measurements. However, because precise coordinates are unattainable, an
infinitesimal volume V containing a is what we can use for the measurements
at best. For the same reason, we are not aware of the exact directions ai and
aj in D, where i 6= j, along which the spins of qi and qj are measured, so ai

and aj may not necessarily be identical to a. Nevertheless, a, ai, and aj are all
contained in V .

Suppose aj is inclined at a tiny angle to ai. The angle between ai and aj is
unknown, and cannot be predicted in any way, so it is a value taken by a random
variable θ. Because V is an infinitesimal volume, θ is a continuous, infinitesi-
mal random variable, although the probability distribution and values of θ are
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unknown. Evidently, {θ = 0} is an event of probability zero so long as i 6= j.
In other words, ai and aj are different almost surely. Consequently, the two
outcomes obtained by measuring the spins of qi and qj may or may not be iden-
tical. This may explain, in an intuitively understandable way without involving
(4), why the outcomes obtained by measuring the spins of identically prepared
particles in an actually performed experiment are unpredictable, although the
measurements seem to be performed along the purported same direction.

In the everyday world, we may treat an infinitesimal quantity as zero; such
treatment is a useful and sometimes necessary approximation when we measure
or calculate physical quantities. However, treating θ as zero amounts to mis-
taking V , which is an infinitesimal volume, for the exact directions represented
by precise coordinates contained in V , along which the measurements are actu-
ally performed. In fact, the seemingly inexplicable behavior of the particles is
due to ignorance of knowledge about the exact directions contained in V as im-
plied by unattainability of precise coordinates, and (4) is merely a consequence
of the misleading quantum-mechanical superposition principle rather than an
experimental fact. By distinguishing strictly infinitesimal volumes from points
in D when explaining the measurement results obtained in the Stern-Gerlach
experiment, we can take into account unattainability of precise coordinates rep-
resenting exact directions in a way similar in spirit to Born’s probabilistic inter-
pretation of wave functions, although we may not be able to find a probability
distribution for the involved directions.

4 Reinterpreting Quantum Superposition

According to current quantum theory, orthogonal states in a quantum super-
position of a system are orthonormal vectors added by vector addition, which
requires use of conjunction as the logical relation between mutually exclusive
properties corresponding to the orthogonal states if we do not measure the sys-
tem. Before measurement, the orthogonal states are supposed to hold for the
system simultaneously at any instant represented by a precise time coordinate
or along any direction represented by precise space coordinates. As a result, use
of conjunction as the logical relation between mutually exclusive properties im-
plies omission of unattainability of precise coordinates, which is an unfortunate
flaw in the conceptual scheme of current quantum theory.

Because it is vector addition that requires use of conjunction as the logical
relation between mutually exclusive properties, omission of unattainability of
precise coordinates is essentially implied by the notion of quantum superposi-
tion. On the other hand, because any single quantum object can at most be
measured only once, what can be actually observed by measurement is a single
quantum object in one of the orthogonal states, which requires use of disjunction
as the logical relation between mutually exclusive properties after measurement.
However, as shown in the previous section, independent of our observation, the
exclusive properties can only belong to different quantum objects at different
times or in different directions. The logical relations between these properties
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before and after measurement remain unchanged. Before measurement, the log-
ical relation is also disjunction, which is just mistaken for conjunction mainly
because unattainability of precise coordinates is omitted. Therefore, to repair
the flaw in the conceptual scheme of current quantum theory, we may have to
reinterpret the meaning of quantum superposition.

In current quantum theory, a quantum superposition ψ is a generalized vec-
tor in an abstract multi-dimensional vector space spanned by orthonormal vec-
tors ψi with expansion coefficients ci.

ψ =
∑

i

ciψi, (5)

where states ψi serve as the basis vectors of the vector space. By calculating
〈ψi|ψ〉, we can obtain the expansion coefficients ci, from which we can further
obtain the probabilities |ci|2. However, if ψ describes the same quantum object
as assumed in current quantum theory, this quantum object appears to possess
simultaneously the mutually exclusive properties corresponding to the orthonor-
mal states before measurement, because |ci|2 > 0 for each i. If a measurement
is performed on the system, the measurement triggers an abrupt collapse of ψ
onto one of the orthonormal states, say, ψj , and the probability for ψ to collapse
onto ψj is |cj |2. According to the quantum-mechanical interpretation, random-
ness exhibited in the measurement results is inherent, coming from nowhere.
However, as shown in the previous section, quantum superposition is physically
meaningless. The quantum-mechanical interpretation just attaches some phys-
ical meaning to it. Moreover, because unattainability of precise coordinates is
omitted in current quantum theory, mutually exclusive properties correspond-
ing to different orthonormal states associated with different quantum objects
are attached to the same quantum object.

The above analysis suggests a feasible way to repair the flaw in the concep-
tual scheme of current quantum theory without affecting eligible applications
of quantum mechanics: We may simply remove any physical meaning attached
to quantum superposition by taking vector addition merely as a means of cal-
culation to obtain the probabilities |ci|2. This reinterpretation of quantum su-
perposition differs from the so-called “statistical” interpretation of quantum
mechanics [17]. The former is an effort to repair the flaw in the conceptual
scheme of current quantum theory, but the latter is not.

Needless to say, the calculated probabilities |ci|2 can be verified by measure-
ment in actually performed experiments, and of course, quantum-mechanical
predictions are always in agreement with the experimental results. However,
because of 1) unattainability of precise coordinates, and 2) the physical con-
straint imposed on measuring individual quantum objects, i.e., any single quan-
tum object can at most be measured only once, we cannot find correct answers
to the following two questions by experiment.

1. Why are the measurement outcomes random rather than deterministic?

2. Are the measurement outcomes inherently random or merely due to our
ignorance of some relevant knowledge?
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The two questions are crucial, as they reflect, in a sense, the most important is-
sue debated by Einstein and Bohr. However, as a version of Bohr’s point of view,
the “statistical” interpretation [17] is not intended to answer the above questions
at all. Actually, the answers to the questions have already been given in the
previous section. It may be worth providing the answers again concerning a gen-
eral experimental setting. By doing so, we can establish a connection between
quantum-mechanical probabilities and classical probability theory formulated
based on generally accepted Kolmogov’s axioms, where quantum-mechanical
probabilities are simply probabilities in quantum mechanics and have nothing
to do with the so-called quantum probability, as we shall see in the next section.
The connection is helpful for us to understand that there is nothing mysterious
about quantum-mechanical probabilities; however, because of unattainability of
precise coordinates, measurement results obtained by experiment are not suffi-
cient for us to answer the two crucial questions.

Because a single quantum object can at most be measured only once in an
actually performed experiment, we must consider a sequence (qk)k≥1 of identi-
cally prepared quantum objects of the same kind. For each k, let H(qk) be the
result obtained by measuring qk. Because precise coordinates are unattainable,
in different runs of the experiment, H(qk) cannot remain unchanged. Suppose
each qk has n possible measurement outcomes, i.e.,

H(qk) ∈ {h1, h2, · · · , hn}.

Denote by N the set of positive integers. The outcomes obtained by measuring
qk, k = 1, 2, · · · then constitute a set Ω given below.

Ω = {H(qk) : k ∈ N}.

To connect classical probability theory with probabilities in quantum mechanics,
we show that quantum-mechanical probabilities can be obtained by conventional
analytic techniques in classical probability theory. Let A be the σ-algebra of
subsets of Ω, and P the probability measure on A . Now we have a probability
space {Ω,A ,P} in classical probability theory. For j = 1, 2, · · · , n, write

Nj = {k ∈ N : H(qk) = hj}, Ωj = {H(qk) ∈ Ω : k ∈ Nj}.

Clearly, Nj , j = 1, 2, · · ·n form a partition of N.

n⋃
j=1

Nj = N,
n⋂

j=1

Nj = ∅.

Accordingly, Ωj , j = 1, 2, · · ·n constitute a partition of Ω.

n⋃
j=1

Ωj = Ω,
n⋂

j=1

Ωj = ∅.

The partitions of N and Ω formed respectively by {Nj : j = 1, 2, · · · , n} and
{Ωj , j = 1, 2, · · · , n} are random, because both {k ∈ Nj} and {H(qk) ∈ Ωj} are
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random events for arbitrarily given k and j. Needless to say, we can measure the
frequencies of {H(qk) ∈ Ωj} in the experiment. The strong law of large numbers
in classical probability theory will guarantee the frequencies converging to the
corresponding probabilities calculated in quantum mechanics. To see this, define

Xj,k =
{

1, k ∈ Nj

0, k 6∈ Nj .

Clearly, for any fixed j, Xj,k, k = 1, 2, · · · are independent and identically dis-
tributed random variables. Because k ∈ Nj if and only if H(qk) ∈ Ωj , we
have

E(Xj,k) = P(k ∈ Nj) = P[H(qk) ∈ Ωj ].
According to quantum mechanics, |cj |2 is the probability for us to find the
outcome H(qk) in Ωj , i.e.,

P[H(qk) ∈ Ωj ] = |cj |2.

Write

Mj,` =
∑̀
k=1

Xj,k.

By the strong law of large numbers,

P

{
lim

`→∞

∑̀
k=1

Mj,`

`
= E(Xj,k) = |cj |2

}
= 1.

As demonstrated above, quantum-mechanical probabilities can indeed be ob-
tained by conventional analytic techniques in classical probability theory, and
hence are not mysterious at all. However, without taking into account unattain-
ability of precise coordinates, we cannot answer the two crucial questions by
means of measurement and experiment.

Answer to question (i): The outcomes hj , j = 1, 2, · · · , n are random rather
than deterministic, because they are results obtained by measurement at almost
surely different, unknown instants contained in an infinitesimal time interval, or
along almost surely different, unknown directions represented by precise coordi-
nates contained in an infinitesimal volume. Because unattainability of precise
coordinates is omitted, the infinitesimal time interval is mistaken for a desired
instant represented by a precise time coordinate (Subsection 3.1), and simi-
larly, the infinitesimal volume is mistaken for a desired direction represented by
precise space coordinates (Subsection 3.2).

Answer to question (ii): Randomness exhibited in the measurement out-
comes is not inherent. As implied by unattainability of precise coordinates,
quantum randomness is due to our ignorance of knowledge concerning space
and time, but we may not be able to find a probability distribution to charac-
terize the desired time or space coordinates involved in the experiment, because
such coordinates are contained in infinitesimal intervals or volumes as shown
in Section 3. From the measurement outcomes we cannot identify the origin
of quantum randomness. Failing to capture the origin of quantum randomness
can lead to serious consequences.
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5 Discussion

One of the most controversial issues concerning the foundations of cur-
rent quantum theory is the standard interpretation of randomness exhibited
in quantum superposition for description of an individual microscopic object.
According to the standard interpretation, quantum randomness is inherent, ir-
relevant to our subjective ignorance of relevant knowledge. Although numerous
experiments have confirmed quantum-mechanical predictions, scientists and re-
searchers in the minority of the scientific community have never ceased to ques-
tion the standard interpretation since the inception of quantum mechanics.

5.1 Bell Inequalities and the EPR Experiment

As we all known, in his debate with Bohr, Einstein argued against the stan-
dard interpretation, and never changed his objection. Together with Podolsky
and Rosen, Einstein proposed the famous EPR experiment [5], in which two
correlated and spatially separated systems, particle I and particle II, are con-
sidered. The two systems had previously interacted, then separated, and there
is no longer any interaction between them. After the two particles are sepa-
rated, by assuming freedom of choice, one can choose to measure either of two
complementary observables, such as momentum and position of a system, say,
particle I. From the measured outcome of particle I, the value of the same ob-
servable of particle II can be obtained by prediction without measurement, and
measuring particle I will not in any way disturb particle II.

In the following, we consider a slightly different version of the EPR exper-
iment to simplify the argument. With the simplified argument, we no longer
assume freedom of choice but impose explicitly the constraint on measuring
individual quantum objects, according to which the same particle can at most
be measured only once. Because the two systems are correlated, by measur-
ing momentum of particle I and position of particle II, position of particle I
and momentum of particle II can be obtained by prediction from the measured
outcomes corresponding to position of particle II and momentum of particle I,
respectively. Thus, each system can be measured without disturbing in any way
the other system while values of position and momentum can be obtained for
both systems. The EPR experiment actually reveals a contradiction implied
by Heisenberg’s uncertainty relation and the quantum-mechanical description
of the combined system consisting of particle I and particle II. According to
the uncertainty relation, momentum and position of a particle cannot be si-
multaneously measured to arbitrary precision because of disturbance caused by
simultaneous measurements of position and momentum of the same particle.

Motivated by the Einstein-Bohr debate, and inspired by David Bohm’s work
[18], John S. Bell derived the first of Bell inequalities [14, 19], attempting to
express the EPR argument mathematically by introducing some hidden vari-
able to account for quantum randomness, purportedly under the assumptions
of locality, realism, and freedom of choice. Unlike the EPR experiment, real ex-
periments can be performed to test Bell inequalities [20, 21, 22]. After three Bell
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experiments attempting to close all the relevant loopholes at once [23, 24, 25], it
is claimed that the Einstein-Bohr debate is purportedly settled ultimately [12].

Unfortunately, Bell inequalities fail to capture the origin of quantum ran-
domness. Irrelevant to the hidden variable and the corresponding assumptions
introduced by Bell, quantum randomness is due to our subjective ignorance of
knowledge concerning space and time. The ignorance is implied by unattain-
ability of precise space or time coordinates. As a well-established mathematical
fact irrelevant to anything about measurement in practice, unattainability of
precise coordinates does not allow us to obtain precise space or time coordi-
nates by measurement in principle. Therefore, it is impossible to resolve the
Einstein-Bohr debate by experimental tests of Bell inequalities, and hence the
Einstein-Bohr debate remains unsettled.

In fact, quantum randomness is not necessarily in conflict with the existence
of reality corresponding to physical quantities independent of our observation.
As correctly pointed out by EPR [5], the question whether elements of physical
reality exist can only be answered “by an appeal to results of experiments and
measurements” rather than by a priori philosophical considerations, yet mea-
surement results obtained by experiment are not sufficient for us to capture the
origin of quantum randomness caused by unattainability of precise coordinates.

5.2 Quantum Entanglement

In the derivation of the original Bell inequality [14], Bell considered a se-
quence of ordered pairs (p1, p2) of spin 1/2 particles. Each pair is quantum-
mechanically described by a singlet state.

|ψ〉 =
1√
2

(|↑1〉 |↓2〉 − |↓1〉 |↑2〉), (6)

which corresponds to the spins (σ1, σ2) of the particles in the same pair (p1, p2),
where σ1 and σ2 are aligned anti-parallel to each other in any direction before
measurement. This |ψ〉 is a so-called entangled state, which is a linear combi-
nation of spin states of the two particles in the same pair. In other words, |ψ〉
is a quantum superposition of |↑1〉 |↓2〉 and |↓1〉 |↑2〉.

Taking the entangled state given by (6) as an example, now we can apply
the results presented in previous sections to scrutinize the notion of quantum
entanglement. Suppose we want to measure (σ1, σ2) for each pair (p1, p2) along a
given direction a. For k = 1, 2, · · · , denote by Hk(p1, p2) the outcomes obtained
by measuring (σ1, σ2) for the k-th pair.

Hk(p1, p2) ∈ {h1, h2},

where h1 and h2 correspond to |↑1〉 |↓2〉 and |↓1〉 |↑2〉, respectively. The outcomes
hj , j = 1, 2 are random rather than deterministic, because they are results
of measuring the spins for different pairs in almost surely different, unknown
directions ak, k = 1, 2, · · · . The precise coordinates of ak and a are all contained

15



in an infinitesimal volume V . The outcomes Hk(p1, p2) are elements of the
following set.

Ω = {Hk(p1, p2) : k ∈ N}.

For j = 1, 2, write

Nj = {k ∈ N : Hk(p1, p2) = hj}, Ωj = {Hk(p1, p2) ∈ Ω : k ∈ Nj}.

Clearly, {N1, N2} form a random partition of N, and {Ω1,Ω2} constitute a
random partition of Ω. For each k, the outcome Hk(p1, p2) falls into either Ω1

or Ω2 with equal probabilities 1/2.
Because unattainability of precise coordinates is omitted, the infinitesimal

volume V is mistaken for the desired direction a. Consequently, randomness
exhibited in the measurement outcomes is due to our ignorance of knowledge
concerning exact directions represented by precise space coordinates for spin
measurements rather than inherent, and has nothing to do with the hidden
variable and the corresponding assumptions, i.e., realism, locality, and freedom
of choice introduced by Bell. Actually, the notion of quantum entanglement
is not physically meaningful; the standard interpretation of the experimental
invalidation of Bell inequalities [8, 9, 10, 11, 12, 13] just attaches some physical
meaning to it. The above discussion also applies to the entangled state de-
scribing ordered pairs of correlated photons in optical tests of Bell inequalities
[22].

5.3 Statistical Regularities in Quantum and
Classical Physics

As a consequence of unattainability of precise coordinates, quantum random-
ness is due to lack of knowledge concerning time and space, such as exact instants
or directions involved in actual measurements of physical quantities. The in-
volved instants or directions are unknown to us, and cannot be predicted in any
way. In this sense, they must be described by random quantities. On the other
hand, however, precise coordinates of such random quantities are contained in
infinitesimal intervals or volumes, and hence cannot be characterized by sta-
tistical regularities usually observed in the everyday world, where “statistical
regularities” refer to probability distributions or statistics such as expectation
values and mean-square deviations calculated with probability distributions or
probability densities. In this sense, quantum randomness is subtle. Because
of the subtlety, infinitesimal intervals or volumes are mistaken for precise but
practically unattainable coordinates.

Macroscopic objects in classical physics and microscopic objects in quantum
physics are all measured in time and space. In classical physics, the same
macroscopic object may be measured as many times as we can. For instance,
a coin is a macroscopic object. Tossing the coin is a random experiment, as
the outcome of each toss may be either a “head” or a “tail”, and cannot be
predicted with certainty, where randomness is due to subjective ignorance of
initial condition and environment for each toss. Nevertheless, the same coin can
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be tossed repeatedly. As the number of tosses increases, the frequency of each
outcome gradually approaches a definite probability. After a large number of
tosses, a statistical regularity can be observed.

Unlike macroscopic objects, any single quantum object can at most be mea-
sured only once. For example, pairs of spin 1/2 particles considered by Bell [14]
are quantum objects. Needless to say, detection of individual particles are also
random events, where randomness is due to lack of relevant knowledge concern-
ing directions along which the spins of the particles are actually measured. After
a particle is registered at a detector, the same single particle is not available for
detection anymore.

Therefore, because no statistical regularity can be observed by measuring
the same single quantum object, a statistical regularity concerning individual
quantum objects of a given kind must be a consequence of measuring a large
number of different quantum objects of the same kind. Such a statistical reg-
ularity is useful for us to understand a typical quantum object representative
of a given kind of individual quantum objects, but may not be appropriate to
describe a particular quantum object.

5.4 Quantum-Mechanical Probabilities and
Classical Probability

According to current quantum theory, probabilities in quantum mechanics
differ from classical probability mainly because the former can be obtained by
calculation in quantum mechanics.

| 〈ψi|ψ〉 |2 = |ci|2,

where ci are the expansion coefficients of a vector given by (5) in a Hilbert space,
purportedly showing that quantum mechanics is intrinsically probabilistic and
the so-called quantum probability contradicts Kolmogorov’s axioms adopted in
classical probability.

However, as shown in Section 3, quantum randomness is due to lack of knowl-
edge concerning time and space, such as exact instants or directions involved in
actual measurements of physical quantities. The involved instants or directions
must be described by random quantities but cannot be characterized by sta-
tistical regularities usually observed in classical physics, because their precise
coordinates are contained in infinitesimal intervals or volumes. The seemingly
intrinsically probabilistic character of current quantum theory is actually due
to omission of unattainability of precise space or time coordinates, which is an
unfortunate flaw in the conceptual scheme of current quantum theory. Because
of the flaw, the origin of quantum randomness is missing from quantum theory
in its current form.

Characterized by classical probability, randomness exhibited in results of
measuring macroscopic objects is due to subjective ignorance, which may be
reduced by improving our knowledge. Characterized by probabilities in quan-
tum mechanics, quantum randomness is also due to subjective ignorance, but
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improving our knowledge may not reduce the subjective ignorance concerning
quantum objects about exact instants of time or directions in space represented
by precise coordinates contained in infinitesimal intervals or volumes. This is
the principal difference between probabilities in quantum mechanics and clas-
sical probability. So long as we take into account unattainability of precise
coordinates when describing or explaining measurement results obtained by ex-
periments in quantum physics, we can still use classical probability as shown in
Section 4. The notion of quantum probability is unnecessary and misleading.

5.5 Uncertainty Relation and Kochen-Specker Theorem

As demonstrated by the EPR experiment [5], Heisenberg’s uncertainty rela-
tion and the quantum-mechanical description for a pair of spatially-separated
but correlated particles imply a contradiction. The revealed contradiction indi-
cates at least one thing: the uncertainty relation is irrelevant to the individual
particles considered in the EPR experiment. Expressed in terms of statistics
concerning position and momentum corresponding to measurement results of a
large number of different particles of the same kind, Heisenberg’s uncertainty
relation makes little sense if we use it to describe a particular particle as shown
in the preceding two subsections.

Furthermore, the proof of the uncertainty relation is based on the commu-
tator for operators corresponding to position and momentum of the same single
particle, with Planck’s constant ~ serving to determine the scale of the quantum
fuzziness responsible for the incompatibility, which results in the uncertainty re-
lation. Consider two observables α and β of a single quantum object described
by a general state ψ in the form of a quantum superposition. Let Â and B̂
represent two operators associated with the two observables. The commutator
for the two operators is defined by

[Â, B̂] = ÂB̂ − B̂Â.

For example, α and β may represent position and momentum of a single particle,
such as particle I or particle II in the EPR experiment.

According to current quantum theory, the only impediment to simultaneous
determination of values for α and β by measurement is

[Â, B̂]ψ 6= 0. (7)

However, the commutator allows the same single quantum object to be measured
more than once, which violates the constraint imposed on measuring individ-
ual quantum objects, i.e, the same single quantum object cannot be measured
twice. This constraint is more stringent than (7). Therefore, after measuring
either α or β but not both, we cannot measure the quantum object anymore.
Nevertheless, the constraint imposed on measuring individual quantum objects
is not necessarily an impediment for α and β to have definite values before
measurement, as shown correctly by EPR [5].
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In quantum theory in its current form, Kochen-Specker theorem [16] serves
as an alternative demonstration that quantum mechanics is intrinsically proba-
bilistic. However, just like the proof of Heisenberg’s uncertainty relation, in all
the proofs of Kochen-Specker theorem, commutators for operators correspond-
ing to observables of the same single quantum object are taken for granted, and
measuring the same single quantum object is treated as tossing the same coin,
as if we could measure the same single quantum object as many times as we toss
the same coin. Clearly, Kochen-Specker theorem also violates the physical con-
straint imposed on measuring individual quantum objects, and hence appears
to make little sense physically.

On the other hand, without taking into account unattainability of precise co-
ordinates, the uncertainty relation, Kochen-Specker theorem, and Bell inequali-
ties all fail to capture the origin of quantum randomness. Although Bell’s work
[14, 19] is motivated by the Einstein-Bohr debate, introducing the hidden vari-
able under the corresponding assumptions (i.e., locality, realism, and freedom
of choice) appears to be an unsuccessful effort to interpret quantum mechanics
in terms of a statistical account, and eventually results in the standard interpre-
tation of the experimental invalidation of Bell inequalities [8, 9, 10, 11, 12, 13].
The standard interpretation is misleading, as it is exactly what EPR argued
against reasonably.

5.6 Quantum Information

Quantum mechanics has led to a large number of successful applications in
practice so far. A successful application of quantum mechanics in practice must
be an eligible application, such that its aim is not to realize anything that is
not physically meaningful. However, because of the standard interpretation of
the experimental invalidation of Bell inequalities [8, 9, 10, 11, 12, 13], physically
meaningless quantum superposition and quantum entanglement are considered
resources physically real “out there” in the physical world. By trying to close
the door on the Einstein-Bohr debate [12], the standard interpretation opens
the door to various ineligible applications, such as quantum computation and
quantum communication [15]. In these ineligible applications, a quantum su-
perposition of two orthogonal states is treated as a “quantum bit” for quantum
information processing, and quantum entanglement is considered necessary for
quantum cryptography and teleportation.

As we can readily see, the ineligible applications share two things in common:
One is omission of unattainability of precise coordinates, which is an unfortu-
nate flaw in the conceptual scheme of current quantum theory; the other is
trying to exploit physically meaningless quantum superposition and entangle-
ment. Such applications are doomed to failure. Instead of doing nothing about
the above already identified flaw, we must take into account unattainability of
precise coordinates to repair the flaw. As shown in Section 4, by reinterpreting
the meaning of quantum superposition, we can indeed repair the flaw with-
out affecting eligible applications of quantum mechanics while avoiding all the
ineligible applications.
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6 Conclusion

Unattainability of precise coordinates is a well-established mathematical fact
implied by properties of the corresponding metric topology. Based on this fact,
the main findings reported in this article are as follows.

• Irrelevant to instrument precision and measurement accuracy, unattain-
ability of precise coordinates rules out completely, in principle, the possi-
bility for us to obtain precise time or space coordinates by measurement.

• Instead of precise coordinates, infinitesimal intervals or volumes containing
desired coordinates are our best approximations for measuring physical
quantities in actually performed experiments.

• Unattainability of precise coordinates is hardly noticeable and hence can
be safely omitted in classical mechanics. This is why results obtained by
measurement in classical physics can still be reasonably explained even
though precise coordinates are unattainable.

• Because a single quantum object can at most be measured only once,
unattainability of precise coordinates plays a vital role in quantum me-
chanics, and should not be omitted when we explain results obtained by
measurement in quantum physics.

• As a consequence of unattainability of precise time or space coordinates,
quantum randomness is epistemic, due to our ignorance of relevant knowl-
edge concerning time and space, rather than inherent.

• The notion of quantum superposition implies omission of unattainability
of precise coordinates, which is an unfortunate flaw in the conceptual
scheme of current quantum theory. The flaw makes quantum superposition
physically meaningless, and is largely responsible for various ineligible
applications of quantum mechanics.

• In no sense does the flaw imply quantum mechanics as a successful theory
failing to be correct. By reinterpreting the meaning of quantum super-
position, we can repair the flaw without affecting eligible applications of
quantum mechanics while getting rid of all the ineligible applications.
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son, Kochen-Specker contextuality, Rev. Mod. Phys., 94(2022), DOI
10.1103/RevModPhys.94.045007.

21



[17] L. E. Ballentine, The statistical interpretation of quantum mechanics, Rev.
Mod. Phys., 42(1970), 358-381, DOI 10.1103/RevModPhys.42.358.

[18] D. Bohm, A suggested interpretation of the quantum theory in terms of
“hidden variables”, Physical Review, 85(1952), 166-93, DOI 10.1103/Phys-
Rev.85.166.

[19] J. S. Bell, Introduction to the hidden-variable question, in Foundations of
Quantum Mechanics, 171-81, 1971, ed. B. d’Espagnat, Academic Press,
New York.

[20] J. F. Clauser, M. A. Horne, A. Shimony and R. A. Holt, Proposed ex-
periment to test local hidden variable theories, Physical Review Letters,
23(1969), 880-84, DOI 10.1103/PhysRevLett.23.880.

[21] A. Aspect, Bell’s inequality test: more ideal than ever, Nature, 398(1999),
189-190, DOI 10.1038/18296.

[22] A. Aspect, Bell’s theorem: the naive view of an experimentalist, in Quan-
tum [Un]speakables: From Bell to Quantum Information, 119-53,
2002, Springer, Berlin, Heidelberg, DOI 10.1007/978-3-662-05032-3-9.
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