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Background: There is a marked discrepancy between SARS-CoV-2 seroprevalence and COVID-19

cases and deaths in Africa. 

Main: SARS-CoV-2 stimulates humoral and cellular immunity systems, as well as mitogen-activated

protein kinase (MAPK) and nuclear NF-kB signalling pathways, which regulate in�ammatory gene

expression and immune cell di�erentiation. The result is pro-in�ammatory cytokines release,

hyperin�ammatory condition, and cytokine storm, which provoke severe lung alterations that can

lead to multi-organ failure in COVID-19. Multiple genetic and immunologic factors may contribute

to the severity of COVID-19 in African individuals when compared to the rest of the global

population. In this article, the role of malaria, NF-kB and MAPK pathways, caspase-12 expression,

high level of LAIR-1-containing antibodies, and di�erential glycophorins (GYPA/B) expression in

COVID-19 are discussed. 

Conclusion: Understanding pathophysiological mechanisms can help identify target points for drugs

and vaccines development against COVID-19. To our knowledge, this is the �rst study that explores

this link and proposes a biological and molecular answer to the epidemiologic discrepancy in

COVID-19 in Africa. 

Background

The novel coronavirus disease (COVID-19) is caused by severe acute respiratory syndrome (SARS)

coronavirus 2 (SARS-CoV-2), which rapidly spread globally [1]. As of 21 August 2020, there have been

22,536,278 con�rmed cases of COVID-19, including 789,197 deaths, reported to WHO [2]. The disease

has a  mortality rate of 3.5% although this widely varies across di�erent countries. African mortality
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from COVID-19 is 1.7%, almost half of the global mortality (3.3%) and three-fold lower than European

mortality (5.7%). Uyoga et al. recently reported the seroprevalence of anti-SARS-CoV-2 IgG

antibodies in Kenyan blood donors. This study was the �rst national and regional estimation of

population exposure to SARS-CoV-2 in an African country. Results showed that three urban counties,

namely Mombasa, Nairobi, and Kisumu, had the highest prevalence, with 9.3%, 8.5%, and 6.5%

respectively, which sharply contrast with the minimal number of COVID-19 cases and deaths reported

during the same period. The crude prevalence was 5.6%, while the population-weighted, test-

adjusted seroprevalence was 5.2%. The cause of this discrepancy is currently unknown [3].

Various investigations have discussed the vulnerability of African populations to the expansion and

higher incidence of COVID-19 since the continent has experienced endemic diseases, such as

tuberculosis, human immunode�ciency virus, and malaria in recent decades, in addition to emerging

and re-emerging infectious pathogens, such as Lassa haemorrhagic fever or Ebola virus disease [4].

One factor that facilitates the rapid spread of diseases in Africa is population density [5]. Gilbert et al.

[6] argued that this risk is unequal and depends on the number of air connections with China,

especially with Guangdong—the origin of the pandemic [7]. In this case, Egypt, Algeria, and South

Africa were more exposed compared with Nigeria, Ethiopia, Sudan, Angola, Tanzania, Ghana, and

Kenya that had moderate risk [6]. This situation caused the WHO’s concern for and anticipation of

rapid expansion. Nevertheless, the WHO Director General on 25 May stated, "Africa's knowledge and

experience of suppressing infectious diseases have been critical to rapidly scaling up an agile response

to COVID-19" [8]. This fact is supported by the number of infected and deceased in Africa, which is

much lower than expected. Researchers have tried to explain the psychosocial aspect of con�nement,

saying that the African population has high levels of awareness about the dangers of these pandemics

[9] since they have su�ered from epidemics in recent years [4]. This, in turn, improved the

containment procedures of African health systems, an aspect that cannot fully explain lower mortality

in the country; hence, this work analyses possible molecular determinants.

Main

Previous coronaviruses (i.e. SARS-CoV and MERS-CoV) were characterized by fast and robust initial

virus replication with late IFN generation, resulting in disproportionate in�ammatory host response

[10]. SARS-CoV-2 uses angiotensin-converting enzyme II (ACE2) and a transmembrane serine

protease (TMPRSS) as cell entry receptors, followed by a cytokine-related syndrome and acute

respiratory distress syndrome (ARDS), which is induced by the hyperactivation of the nuclear factor
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kappa B (NF-kB) most likely in nonimmune cells, including lung epithelial cells [11]. Then, SARS-

CoV-2 stimulates humoral and cellular immunity systems as well as mitogen-activated protein kinase

(MAPK) and nuclear NF-kB signalling pathways, which regulate in�ammatory gene expression and

immune cell di�erentiation [12]. The result is pro-in�ammatory cytokines release [13],

hyperin�ammatory condition, and cytokine storm that provoke severe lung alterations [14,15] and

may result in multi-organ failure in COVID-19 [16].

The Janus kinase signal transducer and activator of transcription JAK/STAT pathway is the principal

signalling mechanism for a wide array of cytokines and growth factors. All cytokines need JAK

signalling to exert their functions [17]. JAK activation stimulates cell proliferation, di�erentiation,

migration, and apoptosis [18]. JAK/STAT-mediated NF-kB activation by coronaviruses (i.e. SAS-CoV

or MERS) is responsible for mediating the production of pro-in�ammatory cytokines and chemokines.

Therefore, NF-kB plays a key role in the pathogenesis of coronaviruses [19–21]. It has been observed

that tyrosine kinase activity is increased in COVID-19 [22], which leads to phospholipase C (PLC)

activation that actives protein kinase C (PKC). This induces reactive oxygen species (ROS) increase,

ROS-mediated NF-kappa B (NF-kB) activation, and mTOR inhibition, which result in the

transcriptional activation of NF-kB target genes. These genes include anti-apoptotic and survival

factors, positive cell-cycle regulators, and pro-in�ammatory genes, leading to cytokine production,

which in turn increases autophagy [23,24] and facilitates viral replication and cytokine storm.

A study of host responsive genes (HRG) for SARS-CoV-2 showed that they are especially enriched in

IL-17 signalling, cytokine-cytokine receptor interaction, and NF-kB pathways, among other proceses

[25]. Research has indicated that the NF-kB pathway, which is induced by several mediators, plays a

role in cytokine storm [26]. IL-6 also has a pivotal role in cytokine storm because it activates the

JAK/STAT signalling pathway [27–29]. Elevated serum levels of IL-6 are commonly reported in

patients with severe COVID-19 and correlate signi�cantly with nonsurvivors [30,31]. Overall, NK-kB,

JAK/STAT, and MAPK pathways are critical in COVID-19 pathogenesis. 

In the following sections, the role of malaria, NF-kB, and MAPK pathways, expression of caspase-12,

higher levels of LAIR-1-containing antibodies, and di�erential glycophorins (GYPA/B) expression in

COVID-19 are discussed.

Malaria

The malaria parasite Plasmodium falciparum kills on the order of a million African children each year

[32], and this is a small fraction of the number of infected individuals in the population [32–34]. In
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communities where everyone is repeatedly infected with Plasmodium falciparum, host genetic factors

account for around 25% of the risk of severe malaria, which is a life-threatening form of the disease

[34].

Sporozoites of malaria parasites ensure the endurance of their host cell by preventing apoptosis and

in�ammation by interfering with the host cell NF-kB pathway [35,36] and hence several genes

involved in the in�ammatory response [36]. The parasite also inhibits STAT3, which activates a wide

variety of genes that control cell proliferation and survival and whose absence inhibits the acute phase

response associated with infections [37]. Angiotensin-converting enzyme 2, a SARS-CoV-2 receptor,

is upregulated by IL-6 through STAT3 signalling [38]. IL-6, which is crucial for cytokine storm

development, is also downregulated by the parasite [39]. Both exoerythrocytic forms (EEFs) and

erythrocytic stages of malaria use the same strategies to ensure parasite expansion [36]. Other main

gene upregulated by Plasmodium is TMPRSS, which encodes a serine protease needed for SARS-CoV-2

entry into the host cell [40].

Apart from these pathways, the parasite promotes PD-1 expression in T cells with cell-extrinsic

immunosuppressive functions. Programmed cell death protein 1 (PD-1) is a protein on the surface of

cells expressed on activated T cells, B cells, and monocytes that regulates the immune response

promoting self-tolerance, suppressing T cell in�ammatory activity and likely regulating these cell

types [41]. Overexpression of PD1 on T cells is one of the indicators of T cell exhaustion (e.g. in chronic

infection) [42]. PD-1 reduces PKC/NF-kB signalling and IL-2 production and induces the expression

of ubiquitin ligase E3 that leads to NF-kB degradation and T cell receptor (TCR) internalization [43].

This down-regulation of the immune response may be an essential mechanism that controls T cell

responses and might limit severe in�ammation in patients with malaria and potentially other acute

infections, such as COVID-19. It is though SARS-CoV-2 increases PD-1 expression [44].

Caspase-12

In�ammasomes are large macromolecular complexes involved in in�ammatory response regulation.

They are key signalling platforms that detect pathogenic microorganisms and sterile stressors and

activate the highly pro-in�ammatory cytokines interleukin-1β (IL-1β) and IL-18 [45,46]. They trigger

in�ammation by activating, on the one hand, caspase-1 and other caspases that cleave pro–IL-1β and

pro–IL-18 into their mature active forms, and on the other hand, NF-kB pathway [46] that results in

pro-in�ammatory cytokines release [13]. Caspase-12 is a second member of the caspase-1 subfamily

that is catalytically inactive in humans; it acts as an inhibitor of both in�ammasome and NF-kB
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pathways [46]. Expression of human caspase-12 is predominantly con�ned to African descent (Figure

1) and is associated with dampened pro-in�ammatory cytokine production and sepsis-related

mortality [47]. Labbé et al. elegantly showed the role of caspase-12 in suppressing in�ammatory

response to malaria. Caspase-12 limited the immune control of parasite replication and dampened

hyperin�ammation. Experiments revealed that caspase-12 de�ciency causes hyperactivation of NF-

kB and enhances IFN-gamma production. As regards mechanism, caspase-12 competes with the NF-

kB essential modulator (NEMO) for association with the inhibitor-kB (IkB) kinase (IKK)-α/β,

e�ectively preventing the formation of the IKK complex and inhibiting downstream transcriptional

activation by NF-kB [46].

Leukocyte-associated immunoglobulin-like receptor-1

Leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) is a member of the immunoglobulin

superfamily [48] that inhibits T cell activation [49]. LAIR-1 is expressed on lymphoid and myeloid

cells, monocytes, and immature CD34+ progenitor cells [50]. It is also described in alveolar

macrophages [51]. LAIR-1 suppresses neutrophil tissue migration and acts as a negative regulator of

neutrophil-driven airway in�ammation in lung diseases, such as bronchiolitis in respiratory syncytial

virus (RSV) [52]. Qin et al. collected blood neutrophil gauge test data of 2976 patients who have been

diagnosed with SARS-CoV-2 at Wuhan Huoshenshan Hospital in Wuhan, China. They found that

disease deterioration is related to the increase in the abundance and proportion of neutrophils. The

percentage of neutrophils and the absolute value of neutrophils in patients with critical illness and

death were always higher than those of non-critically ill patients and surviving patients. This

indicates that continued excessive activation of neutrophils plays a crucial role in SARS-CoV-2,

leading to severe illness and death [25].

Likewise, COVID-19 patients who have died had a signi�cantly higher neutrophil to lymphocyte ratio

(NLR). NLR was thus positively correlated with death [53].

Achieng et al. discovered that low transcript expression of  LAIR-1  is associated with enhanced

susceptibility to malaria anaemia and severity. Blockade of the LAIR-1 inhibitory signal

by Plasmodium was also associated with enhanced NF-kB activation and cytokine production [54]. The

p65 subunit of NF‐kB, constitutively expressed in the nucleus of immune system cells, is retained in

the cytoplasm (i.e. inactive form) upon engagement of LAIR‐1. This was already evident eight hours

after LAIR‐1 occupancy. Moreover, a reduction in IkBα phosphorylation, the active form of the NF-kB

inhibitor, was observed after LAIR‐1 engagement [55].
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LAIR-1 activation decreases the boosting levels of critical components of the canonical T cell

signalling pathway, including the three MAP kinases ERK1/2, JNK1/2, and p38. All three activate IL-2

gene and promote cellular proliferation [56,57], a�ecting cell development and in�ammatory

cascades by intervening with the PI3K-AKT pathway. LAIR-1 also inhibits the production of IFN-1

[58].

Activation and increased levels of NK cells have been shown in COVID-19 [59].

LAIR‐1 in NK cells delivers a potent inhibitory signal that is capable of inhibiting target cell lysis by

resting and activating NK cells [60]. In primary B cells, LAIR‐1 leads to decreased cytokine production

[61]. 

Finally, LAIR-1 suppresses cell growth by inhibiting the PI3K-AKT-mTOR axis. LAIR-1 is also involved

in mRNA processing through its interaction with several eukaryotic translation initiation factors (i.e.

eIF4E1B, eIF2S3, eIF3D, eIF4G2, eIF5B) and eukaryotic translation elongation factors (i.e. eEF1A2 and

eEF1B2). The mechanisms involved may include LAIR-1 regulation of protein synthesis at the

translational level or its action as a modulator that suppresses the PI3K-AKT-mTOR pathway directly

[62].

Pieper et al. [63] reported that up to 10% of people living in malaria endemic regions produce

antibodies that contain LAIR-1, suggesting a public antibody response. However, less than 1% of

European individuals these antibodies (�gure 2). High levels of LAIR-1-containing

antibodies dominate the response to infection without conferring enhanced protection against febrile

malaria. Although LAIR-1 prevalence observed in African individuals may have been promoted by

malaria infection, the data suggests that it is the exposure to the malaria parasite that selects the rare

LAIR-1 B cells [63]. 

Glycophorins

Glycophorin A and glycophorin B are red blood cell surface proteins; they are both receptors for the

parasite  Plasmodium falciparum, which is the principal cause of malaria in sub-Saharan Africa [64].

DUP4 is a complex structural genomic variant that carries extra copies of a glycophorin A-glycophorin

B fusion gene [65] and reduces the risk of severe malaria by up to 40%. DUP4 is common in Kenyan

populations, with allele frequency reaching 10% [66]. DUP4 variant reaches a frequency of 13% in

south-eastern African populations and is restricted to East African populations [65]. This variant that
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reduces the risk of severe malaria by 40% has recently increased in frequency in parts of Kenya, yet it

appears to be absent in West Africa [67]. 

GYPA/B are involved in viral entry into the host cell and leukocyte migration, according to the

GeneCards database [68]. They are receptors of several viruses for host invasion. It has been reported

that several viruses bind to glycophorin proteins for penetration into the cell, including in�uenza

virus, hepatitis A virus, rotavirus, parvovirus, Sendai virus, reovirus, and encephalomyocarditis (EMC)

virus [68–70]. According to The Human Protein Atlas, GYPA/B are mainly expressed in bone marrow,

erythrocytes, neutrophils, lungs, lymphoid tissues, B- and T-lymphocytes, monocytes, spleen, and

kidneys. As such, malaria might protect patients against SARS-CoV-2 infection by damping regular

virus-host recognition through GYPA/B.

Conclusions

Multiple genetic and immunologic factors may be involved in the severity of COVID-19 in African

individuals compared with the rest of the global population. These factors include direct actions

of  Plasmodium falciparum  in the pathogenesis, expression of caspase-12, higher levels of LAIR-1-

containing antibodies, and di�erential glycophorins expression. Other hypotheses can be added to

this, such as chloroquine and its derivative drugs used for malaria, precarious data collection, ACE2

polymorphisms and other genes, and so on.

Knowledge of these pathophysiological mechanisms can help identify target points for drugs and

vaccines development against COVID-19. 

To our knowledge, this is the �rst study exploring the link between these variables and proposing a

biological and molecular answer to the epidemiologic discrepancy in COVID-19 in Africa.
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DNA Source n

Stop

TGA

Stop/Arg

(T/C)GA

Arg

CGA
 

Caucasian 187 187 0 0  

Asian 160 160 0 0  

South African 153 120 31 2  

African American 623 499 113 11  

TOTAL 1123 966 144 13  

Fig.1. Sequence analysis of more than 1,100 genomic DNA samples from people of distinct ethnic

backgrounds showed that most encoded the truncated prodomain-only form of caspase-12 (Csp12-S).

The less-frequent CGA (Arg) polymorphism resulting in a full-length caspase polypeptide (Csp12-L)

was found only in populations of African descent and was absent in all Caucasian and Asian groups

tested.
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  n IgG IgM Monoclonal LAIR-1

Tanzanian 112 6 (5.4%) 2-4%* 52*

Malian 656 57 (8.7%) 2-4%* 52*

European 1043 3 (0.28%) 4 (0.38%) 0

Fig.2. Prevalence of LAIR-1-containing antibodies in South-eastern African versus Europe.

* Sources together 
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