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Although machine learning has become a powerful tool for coronary heart disease (CHD) prediction,

its effectiveness is often hindered by the complexity and nonlinear interactions among medical risk

factors. A major challenge lies in feature selection, where the absence of systematic strategies may

lead to information loss, over�tting, or the inclusion of irrelevant variables, ultimately degrading

predictive performance. Additionally, different ML models exhibit varying predictive capabilities

depending on the selected features. However, many studies fail to systematically evaluate how feature

selection in�uences the performance of traditional and deep learning approaches, limiting the

understanding of optimal feature selection strategies and their impact on improving CHD prediction.

To address these limitations, we propose a Feature-driven Grid Search-based Machine Learning

Framework (FGSCare) for CHD prediction. FGSCare systematically �lters and retains critical features

through a data-driven selection process, enhancing model interpretability and generalization. We

assess the impact of feature selection by comparing the performance of traditional machine learning

classi�ers. We assess the impact of feature selection by comparing the performance of traditional

machine learning classi�ers (e.g., k-Nearest Neighbors, ElasticNet, and Decision Tree) and deep

learning models such as Transformers before and after feature selection. Experimental results

demonstrate that feature selection signi�cantly in�uences model performance across various

evaluation metrics, including accuracy, precision, recall, F1-score, and AUC. Our �ndings provide

valuable insights into the trade-offs between traditional ML and deep learning methods in CHD
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prediction, contributing to the development of more robust, data-driven healthcare applications. Our

implementation is available at: https://github.com/zl3508/Heart.

1. Introduction

Coronary heart disease (CHD) remains the leading cause of death worldwide, accounting for nearly 17.9

million deaths annually[1][2]. Early detection and prevention of CHD can signi�cantly reduce mortality

rates and improve patient outcomes[3]. Traditional risk assessment models, such as the Framingham

Risk Score, have been widely used for decades, relying on statistical methods to estimate an individual’s

probability of developing heart disease[4]. However, these models often suffer from limitations in

capturing complex, non-linear interactions between risk factors[5].

In recent years, machine learning and deep learning techniques have demonstrated superior

performance in medical diagnosis and prognosis[6][7]. ML models, including decision trees, ensemble

learning methods, and neural networks, can leverage large datasets to identify patterns that may be

dif�cult to capture using traditional statistical methods[8][9]. Additionally, ML models can be �ne-tuned

to improve accuracy while maintaining interpretability, a key factor in medical decision-making[10][11].

Despite their potential, the application of ML techniques in CHD prediction still faces several challenges,

including data quality, model interpretability, and fairness across demographic groups[12]. Feature

selection also plays a crucial role in improving model performance by eliminating irrelevant or

redundant information[13][14]. This study aims to systematically compare various ML algorithms for CHD

prediction using the Framingham Heart Study dataset[15]. Speci�cally, we evaluate models such as

Decision Tree, Logistic Regression, and ElasticNet while also exploring deep learning models like

KAN[16].

Our objectives are to:

Leverage the well-established Framingham Heart Study dataset and apply preprocessing techniques,

including handling missing values, outlier detection, and feature scaling, to ensure data quality.

Evaluate and compare traditional ML and DL models to determine the most effective approach for

CHD prediction.

Investigate the effect of feature selection on model performance by comparing results using full and

reduced feature sets. Additionally, model interpretability is enhanced using Shapley Additive
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Explanations, providing insights into feature importance and the decision-making process of

different classi�ers.

The structure of this paper is as follows: Section 2 reviews related work, discussing various machine

learning techniques for CHD prediction, including supervised and deep learning models, feature selection

methods, and interpretability approaches, highlighting their strengths and limitations. Section 3

describes the dataset and outlines the assumptions made for the experiments. Section 4 details the data

preprocessing and feature engineering steps. Section 5 provides experimental results with quantitative

analysis for traditional machine learning models and deep learning models. Section 6 interprets Decision

Tree model using Shapley Additive Explanations. Finally, Section 7 concludes the paper by discussing

�ndings and potential directions for future research.

2. Related Work

Machine learning (ML) and deep learning (DL) have become indispensable tools across a wide range of

domains, transforming approaches to complex challenges. In entertainment, they enable accurate media

popularity prediction [17][18][19]; in medical diagnosis, they facilitate disease detection and prognosis [20]

[21][22]; in environmental analysis, they improve climate modeling and resource management [23][24][25]

[26]; in �nance, they support fraud detection and market forecasting  [27]; in transportation, they drive

innovations in autonomous systems and traf�c optimization  [28][29]; and in geography, they empower

socioeconomic monitoring and urban intelligence through database systems  [30]. Among these

applications, ML and DL have shown signi�cant promise in healthcare, particularly for cardiovascular

disease risk assessment  [31]. Coronary heart disease (CHD), a leading cause of mortality worldwide  [32],

has been a key focus of ML-based predictive modeling. Traditional ML algorithms, such as Decision

Trees  [33], Logistic Regression  [34], K-Nearest Neighbors (KNN)  [35], and Gradient Boosting  [36]—have

been extensively applied to CHD risk prediction  [37][38]. These models leverage structured clinical

datasets, including demographics, lipid pro�les, and blood pressure measurements, to generate

probabilistic risk scores [39]. Notably, Gradient Boosting has demonstrated strong predictive performance

through ensemble learning, improving both accuracy and generalization [40][41].

Although traditional ML models excel at analyzing structured data, their performance often declines

when applied to high-dimensional images and sequential data  [42]. Deep learning addresses these

challenges by automatically extracting hierarchical feature representations from raw data, enabling more

qeios.com doi.org/10.32388/NB9J6F 3

https://www.qeios.com/
https://doi.org/10.32388/NB9J6F


effective modeling of complex patterns  [43][44][45]. Convolutional Neural Networks (CNNs), in particular,

serve as powerful dense feature extractors across a variety of vision-related applications, including

autonomous driving and perception systems [46][47][48], medical imaging [49][50], salient object detection

(SOD) [51][52], and robotics perception [53][54][55]. CNNs have demonstrated strong performance in learning

image representations  [56][57][58], including cardiac imaging modalities such as echocardiograms and

coronary angiograms [59]. Recurrent Neural Networks (RNNs) [60] and Long Short-Term Memory (LSTM)

networks [61] are similarly effective in capturing temporal dependencies in ECG signals and continuous

blood pressure monitoring  [62]. In generative tasks, diffusion-based approaches utilize noise

optimization for healthcare applications like aging simulation [63], and have been successfully applied to

physiological trend analysis and disease progression modeling  [64]. However, both CNNs and RNNs

exhibit limitations when applied to structured tabular data, motivating the exploration of hybrid models,

such as combining CNNs with Vision Transformers (ViT) to enhance feature extraction capabilities [65].

Additionally, LLM-based multi-agent frameworks for medical consultations demonstrate how

collaborative reasoning and experience accumulation can improve diagnostic accuracy in complex

medical scenarios[66]. Further exploration of causal inference and knowledge graphs could uncover

hidden feature relationships, improving accuracy and interpretability.

Beyond model architecture, feature selection and interpretability are vital in CHD prediction due to the

high dimensionality and complexity of medical data [67]. Redundant or irrelevant variables can negatively

impact model performance, making effective feature selection essential. Various methods, such as

recursive feature elimination (RFE) [68], mutual information-based selection [69], genetic algorithm-based

optimization  [70], Lasso regression, and SHAP-based selection  [71]—have been applied to identify the

most informative predictors. In addition, automated approaches like self-supervised and reinforcement

learning can enhance adaptability and reduce selection bias. Notably, reinforcement learning-based

methods have demonstrated the ability to balance feature diversity and relevance [72], offering promising

potential for CHD risk modeling. Interpretability remains equally crucial for clinical adoption, as black-

box models often obscure the reasoning behind predictions. To address this, techniques such as Shapley

Additive Explanations (SHAP)  [73]  and Local Interpretable Model-agnostic Explanations (LIME)  [74]  are

widely employed to quantify feature importance and improve transparency  [75]. SHAP, in particular,

enables a direct comparison of feature contributions across both tree-based and deep learning

models [76], and is thus integrated into this study to evaluate model interpretability in CHD prediction.
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This study evaluates traditional machine learning and deep learning models for CHD prediction, focusing

on predictive performance, interpretability, and the role of feature selection. By comparing model

effectiveness before and after feature processing, we provide insights into how different architectures

respond to structured feature engineering. Furthermore, SHAP-based interpretability analysis improves

transparency in decision-making, ensuring clinically meaningful predictions. This work aims to advance

CHD risk assessment by developing more accurate and interpretable prediction frameworks.

3. Dataset

This study utilizes a publicly available, de-identi�ed dataset derived from the Framingham Heart Study,

comprising 4,240 records and 16 variables that capture demographic, lifestyle, and clinical risk factors

associated with coronary heart disease (CHD). Key features include gender, age, education, smoking

behavior, medical history (e.g., prevalent stroke, hypertension, diabetes), and clinical measurements such

as total cholesterol, systolic and diastolic blood pressure, body mass index (BMI), heart rate, and glucose

levels. The target variable, TenYearCHD, is a binary indicator of CHD occurrence within a ten-year period.

Some attributes contain missing values, notably education, cigsPerDay, BPMeds, totChol, BMI, heart rate,

and glucose, which are addressed using imputation techniques. No new data were collected in this study,

and no identi�able personal information was accessed. Ethics approval and informed consent were

obtained by the original study organizers, and this secondary analysis complies with institutional and

academic ethical guidelines.

4. Data Precessing

In our proposed FGSCare framework, we handled missing values in features such as education,

cigsPerDay, BPMeds, totChol, BMI, heartRate, and glucose using statistical imputation. Outliers in

numerical features were identi�ed and capped to prevent extreme values from affecting model

performance. Categorical variables were transformed using Label Encoding, while numerical variables

were normalized with MinMax scaling to ensure consistency. These basic preprocessing steps helped

clean the dataset and make it suitable for training machine learning models.

4.1. Handling missing data

Handling missing data is a critical step in data preprocessing, as it directly impacts the reliability and

accuracy of subsequent analyses. In this study, we addressed missing values by identifying high-
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missingness features, categorizing remaining features, and applying imputation strategies. To further

quantify the extent of missingness, Figure 1 was generated to visualize the proportion of missing values

for each feature.

Figure 1. Bar chart of missing values. Features such as ‘education’ and ‘glucose’ show the highest

missingness, while others like ‘BPMeds’ and ‘BMI’ have near-complete data.

Based on Figure 1, we applied different imputation strategies: for numerical features, mean imputation

was used, while for categorical features, median imputation helped maintain class balance. These

ensured that data integrity was preserved while minimizing potential biases introduced by missing

values. After imputation, all features remained in the dataset. These features were categorized into two

groups based on their data types and missingness levels.

qeios.com doi.org/10.32388/NB9J6F 6

https://www.qeios.com/
https://doi.org/10.32388/NB9J6F


Figure 2. The distribution of features before imputation shows noticeable gaps due to missing values in

numerical features, particularly in ‘glucose’ and ‘totChol’.

Figure 3. After imputation, the feature distributions appear smoother as the missing values have been �lled,

especially in numerical features.

The comparison between Figure  2 and Figure  3 demonstrates the effect of missing data imputation.

Initially, some numerical features exhibited signi�cant gaps, making their distributions uneven.

However, after applying mean and median imputation, the distributions became smoother, ensuring

better data quality for subsequent analyses. This step was crucial in maintaining statistical integrity and

preventing potential biases in model training. As Figure  4 and Figure  5 show, the impact of our

imputation methods on numerical features was assessed using histograms, which compared the

distributions of selected features before and after imputation. These histograms con�rmed that the
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central tendencies and overall distributions of features were preserved, validating the effectiveness of our

imputation methods.

Figure 4. Missing value matrix. The missing value matrix displays the distribution of missing values

across different features.

Figure 5. Post-imputation missing value matrix. The post-imputation missing value matrix con�rms

the resolution of all missing data.
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4.2. Outlier Detection & Treatment

Outlier detection and handling are crucial preprocessing steps in healthcare datasets, as extreme values

may result from measurement errors, data entry mistakes, or signi�cant anomalies in patient conditions.

To ensure robust analysis, we employed a combination of boxplot visualization and statistical techniques

to identify and mitigate the impact of outliers.

Figure 6. Boxplots of numerical features before outlier handling.

As illustrated in Figure 6, we began by visualizing numerical features using boxplots to detect potential

anomalies. Features such as dlaBP, heart rate, and glucose exhibited values well beyond their typical

ranges, with dlaBP showing particularly high values that could impact the reliability of TenYearCHD

predictions. To further examine the distribution of outliers, we separately analyzed boxplots for

individuals with TenYearCHD. This subgroup analysis helped determine whether certain extreme values

were inherently linked to disease presence or appeared arbitrarily across the dataset, allowing for more

informed outlier-handling strategies.

To mitigate the impact of extreme values while preserving meaningful variations in the dataset, we

applied a combination of Interquartile Range (IQR) �ltering [77], Winsorization [78], and Clipping. Using

the IQR method, we identi�ed outliers as values beyond 1.5 times the interquartile range and capped

them at the respective lower and upper bounds instead of removing them. Winsorization was performed

by replacing extreme values beyond the 5th and 95th percentiles to reduce their in�uence while

maintaining the overall distribution. Additionally, clipping was applied to constrain values within

prede�ned statistical limits, ensuring that excessive deviations did not distort the dataset. These

preprocessing steps effectively minimized the impact of extreme values. Post-treatment boxplots are

shown in Figure 7. The adjusted distributions no longer contained extreme values while preserving their
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central tendencies, ensuring that the dataset remained robust and reliable for subsequent analysis and

modeling.

Figure 7. Boxplots of numerical features after outlier handling.

4.3. Feature Selection & Reconstruction

After handling outliers, we performed a series of feature processing steps to optimize the dataset for

predictive modeling. These steps included feature correlation analysis, feature selection, feature scaling,

and data balancing using Synthetic Minority Over-sampling Technique (SMOTE). The goal was to reduce

redundancy and address class imbalance to improve model performance.

To identify redundant features and potential multicollinearity, we computed the Pearson correlation

matrix for all numerical variables. The correlation matrix was visualized using a heatmap, where features

with high correlation coef�cients were easily identi�able. Beyond correlation analysis, recent studies

have explored more sophisticated techniques for evaluating feature redundancy. Lin et al. [79] introduced

the Integrated Transportation Distance (ITD), which provides a rigorous mathematical framework to

quantify the similarity between stochastic kernels in Markov systems. ITD can be adapted to feature

selection by identifying redundant variables based on their probabilistic distributions rather than just

their linear correlation. In our study, we leverage Pearson correlation for initial selection, but future work

may integrate ITD to further re�ne feature importance ranking. Additionally, we observed that diaBP and

sysBP provide more detailed information related to blood pressure compared to the binary int64 feature

prevalentHyp. Therefore, we decided to retain diaBP and sysBP as they offer a more comprehensive

representation of blood pressure variations, while removing prevalentHyp to enhance the dataset’s

ef�ciency.
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Figure 8. Correlation heatmap before feature selection.
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Figure 9. Correlation heatmap after feature selection.

Based on the correlation analysis, we rank the features according to their absolute correlation with the

target variable, TenYearCHD. A pie chart in Figure 10 was created to visualize the top 15 most correlated

features. Features such as currentSmoker and prevalentHyp were removed due to high multicollinearity

predictive performance. After removing redundant features, we recalculated the correlation matrix to

con�rm that the remaining features exhibited lower multicollinearity. The updated correlation heatmap

is shown in Figure 9.
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Figure 10. Pie chart showing top 5 features correlated with TenYearCHD.

To ensure that all features contributed equally to the model, we applied MinMax scaling, transforming all

numerical variables to a standardized range between 0 and 1. This scaling technique is particularly

effective for algorithms sensitive to feature magnitudes, such as neural networks, as it helps accelerate

convergence during model training and ensures that no single feature dominates due to its scale. In

addition to scaling, we addressed the class imbalance inherent in the dataset, where cases of TenYearCHD

were signi�cantly fewer than non-cases. To mitigate this issue, we employed the SMOTE, which

generates synthetic samples for the minority class by creating new instances based on the feature space

similarities of existing minority samples. This approach helps to prevent over�tting, which can occur

with simple duplication of minority instances, and improves the model’s ability to generalize to unseen

data.

Through the combination of correlation analysis, feature selection, scaling, and data balancing, we

re�ned the dataset to ensure it was robust, well-structured, and optimized for predictive modeling. These
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preprocessing steps played a crucial role in enhancing the model’s accuracy, stability, and generalization

capabilities.

4.4. Principal Component Analysis

To better understand the contribution of different features in the dataset, we performed t-Distributed

Stochastic Neighbor Embedding (t-SNE) and Principal Component Analysis (PCA). PCA is a

dimensionality reduction technique that transforms correlated variables into a smaller number of

uncorrelated variables called principal components. The �rst principal component captures the highest

variance in the dataset, followed by subsequent components that explain the decreasing amounts of

variance. It is widely used for feature selection, noise reduction, and data visualization. On the other

hand, t-SNE is a non-linear technique that helps visualize high-dimensional data by preserving local

similarities between data points. Unlike PCA, which captures global variance through linear projections,

t-SNE focuses on maintaining the relative distances between points in lower-dimensional space, making

it particularly effective for cluster visualization. The t-SNE and PCA results are shown in Figure 11.

Figure 11. The left side shows the t-SNE visualization of CHD classes, while the right side presents the PCA

biplot illustrating feature contributions to the �rst two principal components.

As Figure  11 shows, the t-SNE plot visualizes the distribution of people without CHD over a 10-year

period. Given that the data set was balanced before analysis, both classes are equally represented at 50%

each. Although some degree of overlap is evident, distinct clusters with a higher concentration of CHD

cases suggest potential underlying patterns that may aid predictive modeling. The PCA biplot elucidates

the relationships among features and their contributions to the �rst two principal components, which
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collectively explain 34.0% of the variance. In particular, age, glucose, and diabetes contribute strongly to

the �rst principal component, while blood pressure (sysBP, diaBP), BMI, and total cholesterol contribute

signi�cantly to both components. Furthermore, CigsPerDay shows a negative correlation with the

primary component. To re�ne the set of characteristics, gender and education were excluded based on

heat map analysis, as their in�uence on CHD prediction was minimal while occupying a

disproportionately large part in PCA.

These visualizations demonstrate the effectiveness of t-SNE and PCA in analyzing the dataset, providing

additional evidence that our prior feature processing steps were correctly applied. In the next section, we

outline the methodology for training and evaluating various machine learning and deep learning models

for CHD prediction and analyze the preferences of different models.

5. Experiment

5.1. Evaluation Metrics

To comprehensively assess the performance of our selective model, multiple evaluation metrics are

utilized, including Accuracy, Precision, Recall, Area Under the ROC Curve (AUC), and F-measure. Each of

these metrics captures different aspects of model performance, ensuring a holistic evaluation across

various dimensions.

Accuracy re�ects the overall correctness of predictions, making it a general measure of model

performance. However, it may be less informative when dealing with unbalanced datasets. Precision

(positive predictive value) quanti�es the proportion of correctly predicted positive cases, which is

particularly crucial in scenarios where false positives are costly. Recall (sensitivity) evaluates the model’s

ability to identify all actual positive instances, making it essential in cases where missing positive

samples are detrimental. AUC measures the model’s discriminative ability between classes by analyzing

the trade-off between the true positive rate (TPR) and false positive rate (FPR) across classi�cation

thresholds. Finally, the F-measure (or  -score) provides a balanced representation of Precision and

Recall through a weighted harmonic mean, with   determining the relative importance of Recall.

The mathematical de�nitions of these metrics are given as follows:

Fβ

β

Accuracy =   ,
TP + TN

TP + TN + FP + FN
(1)

Precision = ,
TP

TP + FP
(2)
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In the case of  , the  -score provides an equally weighted measure of Precision and Recall, making

it a widely used metric in classi�cation tasks where both aspects are equally signi�cant.

5.2. Interpretability Analysis

To improve the interpretability of our machine learning models, we leverage Shapley Additive

Explanations (SHAP)[73], a game-theoretic method designed to quantify each feature’s contribution to the

model’s predictions, thereby enhancing transparency and explainability.

SHAP values are derived from Shapley values in cooperative game theory, ensuring a fair allocation of

each feature’s impact across various feature subsets. The SHAP value for a given feature   is computed as

follows:

where   denotes the SHAP value of feature  ,   represents the full set of features,   is a subset of features

excluding  ,    refers to the model’s prediction when considering only features in  , and 

 captures the in�uence of adding feature   on the model’s output.

In this work, SHAP is applied to interpret the feature importance of the most effective DTT classi�er, with

two summary visualizations produced. Figure  12a presents a global feature importance bar chart,

illustrating the mean SHAP values for different features. The x-axis represents the mean absolute SHAP

value (mean(|SHAP value|)), while the y-axis lists various feature names, including ‘age’, ’education’, and

’glucose’. The bar lengths correspond to the magnitude of the mean SHAP values, where the feature ‘age’

exhibits the highest mean SHAP value, approaching 0.12, indicating its dominant in�uence on the

model’s output. Conversely, ‘prevalent stroke’ has the lowest mean SHAP value, around 0.005, implying a

minimal effect on the model’s predictions. This visualization enables a quick assessment of feature

relevance, facilitating feature selection and model re�nement by prioritizing the most impactful

variables in predictive analysis.

Recall = ,TP
TP+FN

(3)

AUC = TPR(t),dFPR(t) = P ( > ),∫ 1
0 ŷ

+
ŷ

− (4)

= (1 + ) ⋅ .Fβ β2 Precision⋅Recall

⋅Precision+Recallβ
2

(5)

β = 1 F1

i

= [f(S ∪ i) − f(S)]ϕi ∑
S⊆N∖i

|S|!(|N| − |S| − 1)!

|N|!
(6)

ϕi i N S

i f(S) S

f(S ∪ i) − f(S) i
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Figure 12a. Mean SHAP values (DT)

Figure 12b. SHAP distribution (DT)
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Figure 12c. Mean SHAP values (LR)

Figure 12d. SHAP distribution (LR)
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Figure 12e. Mean SHAP values (GB)

Figure 12f. SHAP distribution (GB)
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Figure 12g. Mean SHAP values (LASSO)

Figure 12h. SHAP distribution (LASSO)
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As illustrated in Figure  12(b,d,f,h), the detailed feature importance distribution plots provide a SHAP-

value dependence analysis for different models, including Decision Tree (DT), Logistic Regression (LR),

Gradient Boosting (GB), and LASSO Regression. These plots reveal how each feature in�uences model

predictions under varying conditions. The horizontal axis represents the SHAP values, ranging

approximately from -0.6 to 0.8, while the vertical axis lists different feature names. To the right, a color

bar labeled ‘Feature value’ transitions from blue to red, indicating that feature values span from ‘Low’ to

‘High’. Each row of points corresponds to a feature, where the color of the points re�ects the actual

feature values, and their horizontal positions indicate the SHAP values. For instance, in the Decision Tree

model, the ‘age‘ feature exhibits a wide distribution of points with colors spanning from blue to red,

signifying that the impact of ‘age‘ on model predictions varies signi�cantly in both direction and

magnitude. In contrast, the ‘education‘ feature in the Logistic Regression model predominantly shows

red points with mostly positive SHAP values, suggesting that higher education levels have a consistently

positive in�uence on model outputs. Similarly, the ‘glucose‘ feature in the Gradient Boosting model

reveals a strong positive correlation, indicating its crucial role in prediction outcomes. These SHAP

dependence plots enhance the interpretability of machine learning models by revealing complex

interactions between features and their contributions to predictions. The distinct distributions across

different models highlight the varying mechanisms through which different algorithms leverage feature

information, underscoring the necessity of model-speci�c interpretation when analyzing feature

importance. Such insights are particularly valuable in feature selection, risk assessment, and decision-

making processes, ensuring a transparent and data-driven approach to model evaluation.

5.3. Quantitative Experiment

In this experiment, the proposed framework, FGSCare, integrates both traditional machine learning

models and deep learning architectures. Inspired by the work of stroke prediction  [80], which

demonstrated the effectiveness of machine learning and neural networks to enhance predictive accuracy,

we adopt a similar approach to explore various models for CHD prediction. Their �ndings highlight the

importance of leveraging both conventional and deep learning models to capture complex feature

interactions and improve predictive accuracy. Classical approaches include Decision Tree (DT), Logistic

Regression (LR), Naive Bayes (NB), K-Nearest Neighbors (KNN), Gradient Boosting (GB), and ElasticNet,

while deep learning-based models encompass Multilayer Perceptron (MLP), CNN, ResNet, RNN,

Transformers, and KAN. Empirical analysis demonstrates that the 8:1:1 dataset split consistently achieves
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superior performance compared to alternative ratios. Consequently, this con�guration has been adopted

as the standard for all subsequent experiments to ensure consistency and robustness. For

hyperparameter optimization, we employed GridSearchCV to evaluate parameter con�gurations

systematically through cross-validation. Instead of conducting an exhaustive search, parameter ranges

were re�ned based on observed patterns, reducing the search space while maintaining the ability to

converge to optimal solutions. However, grid search is computationally expensive, particularly when

dealing with high-dimensional feature spaces. Lin et al.  [81]  proposed a Fast Dual Subgradient

Optimization method to ef�ciently optimize stochastic kernels, which has potential applications in

machine learning hyperparameter tuning. By leveraging kernel-based optimization, it may be possible to

reduce the search complexity while maintaining or even improving model accuracy. Future work could

explore integrating these optimization techniques into the CHD prediction pipeline. This strategy

enhances computational ef�ciency and minimizes the likelihood of suboptimal selections.

For the traditional machine learning models, the optimal hyperparameter con�gurations are shown in

Table  1, and the quantitative results are shown in Table  2. The results highlight variations in model

performance, with some algorithms bene�ting from feature processing while others showing marginal

or negative changes.

Optimal Hyperparameters for Traditional Machine Learning Models

Model Hyperparameters

DT
criterion = ‘entropy’, max_depth = 40, max_features = ‘sqrt’, min_samples_leaf = 1, min_samples_split =

2

LR estimator_C = 1, solver = ‘liblinear’, estimator_max_iter = 1000

NB alpha = 10, binarize = 0.5

KNN n_neighbors = 80, p = 1, weight = ‘distance’

GB learning_rate = 0.1, n_estimators = 500

ElasticNet C = 50, l1_ratio = 0.0001

Table 1. Optimal hyperparameter settings for traditional machine learning models derived via grid search

optimization.
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Traditional Machine Learning Models (Original Data)

Method Acc Prec Recall AUC F1

DT 0.752 0.274 0.380 0.600 0.318

LR 0.672 0.259 0.620 0.703 0.365

NB 0.685 0.257 0.566 0.681 0.354

KNN 0.612 0.237 0.698 0.684 0.354

GB 0.860 0.556 0.388 0.771 0.457

ElasticNet 0.670 0.254 0.605 0.700 0.358

Table 2. Performance comparison of traditional machine learning models before and after feature processing.

Traditional Machine Learning Models (Feature Processing)

Method Acc Prec Recall AUC F1

DT 0.758 0.317 0.512 0.657 0.392

LR 0.671 0.255 0.605 0.697 0.359

NB 0.672 0.246 0.558 0.677 0.341

KNN 0.624 0.225 0.605 0.676 0.328

GB 0.874 0.634 0.403 0.784 0.493

ElasticNet 0.671 0.256 0.612 0.697 0.362

Table 3. Performance comparison of traditional machine learning models before and after feature processing.

According to Table 2, the six traditional machine learning models exhibit varying predictive capabilities

in CHD prediction. GB achieves the highest overall performance, demonstrating strong generalization

ability due to its ensemble nature, which iteratively re�nes predictions by correcting previous errors. DT

↑ ↑ ↑ ↑ ↑

↑ ↑ ↑ ↑ ↑
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follows, bene�ting from its hierarchical splitting strategy, though it is more prone to over�tting

compared to GB. Logistic Regression LR and ElasticNet, which rely on linear decision boundaries and

regularization, perform moderately well but are limited in capturing complex feature interactions. KNN

and NB, on the other hand, generally perform less effectively. KNN’s reliance on distance metrics makes it

sensitive to feature scaling and distribution, while NB’s assumption of feature independence may not

hold for complex medical datasets.

Feature processing had varying effects on different models. Tree-based models like DT and GB improved

as noise reduction and feature selection enhanced decision boundaries and generalization. GB further

bene�ted from ensemble learning, re�ning predictions iteratively. In contrast, KNN and NB were

negatively impacted; changes in feature distributions disrupted KNN’s distance-based classi�cation,

while increased feature correlations weakened NB’s independence assumption. Regularized models like

LR and ElasticNet showed minimal change as they inherently mitigate redundant features.

For the deep learning models, the optimal hyperparameter con�gurations are shown in Table 3 and the

quantitative results are shown in Table 4. According to Table 4, the deep learning models exhibit varying

predictive performance on CHD prediction. KAN and MLP achieved relatively higher overall performance,

bene�ting from their ability to model complex feature interactions and nonlinear relationships

effectively. KAN, in particular, demonstrated strong generalization ability, likely due to its structured

representation learning, which enables more �exible function approximation. Transformer-based

models showed moderate performance, indicating their capability to capture temporal or long-range

dependencies in the dataset, though they may require larger data volumes for optimal effectiveness. CNN

and RNN exhibited lower accuracy compared to other deep learning models, possibly due to their

sensitivity to feature dependencies and the nature of tabular medical data, which may not align well with

their architecture originally designed for sequential or spatial information. ResNet showed the lowest

predictive performance, which suggests that its deep hierarchical structure may not be well-suited for

CHD prediction tasks, likely due to the lack of spatially correlated features in the dataset.
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Optimal Hyperparameters for Deep Learning Models

Model Hyperparameters

MLP learning_rate = 0.001, hidden_sizes = [128, 64, 32], activation = ‘relu’, alpha = 0.001

Transformer
learning_rate = 0.001, embed_dim = 16, nhead = 4, num_layers = 1, dim_feedforward = 64, activation

= ‘relu’

KAN learning_rate = 0.001, Q = 2, hidden_dim = 64, activation = ‘relu’

RNN learning_rate = 0.001, hidden_size = 64, num_layers = 2, activation = ‘relu’

CNN learning_rate = 0.001, batch_size = 64, num_�lters = 32, kernel_size = 3, activation = ‘relu’

ResNet
learning_rate = 0.001, batch_size = 64, num_blocks = 2, hidden_dim = 32, kernel_size = 3, activation =

‘relu’

Table 3. Optimal hyperparameter settings for deep learning models derived via grid search optimization.

Deep Learning Models (Original Data) Deep Learning Models (Feature Processing)

Method Acc Prec Recall AUC F1 Method Acc Prec Recall AUC F1

MLP 0.754 0.273 0.372 0.647 0.315 MLP 0.767 0.298 0.395 0.649 0.340

Transformer 0.669 0.250 0.589 0.677 0.351 Transformer 0.685 0.252 0.543 0.684 0.344

KAN 0.756 0.329 0.581 0.768 0.420 KAN 0.789 0.370 0.550 0.771 0.442

RNN 0.663 0.244 0.581 0.696 0.344 RNN 0.640 0.240 0.628 0.694 0.347

CNN 0.587 0.217 0.659 0.672 0.327 CNN 0.574 0.224 0.729 0.661 0.342

ResNet 0.153 0.151 0.992 0.568 0.263 ResNet 0.206 0.161 1.000 0.668 0.277

Table 4. Performance comparison of deep learning models before and after feature processing.

Feature processing had mixed effects on the performance of deep learning models. KAN and MLP

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
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exhibited performance improvements, likely due to the removal of noisy or irrelevant features, allowing

these models to focus on more informative patterns. Feature processing particularly bene�ted KAN, as its

function approximation capabilities were enhanced with cleaner and more representative data.

Transformer models also saw slight improvements, suggesting that re�ned feature representations

helped stabilize their learning dynamics. Conversely, CNN and RNN experienced performance declines,

which may be attributed to changes in feature distributions that disrupted their ability to capture

meaningful patterns. CNNs, typically designed for spatial data, may have struggled with transformed

tabular data, while RNNs could have been affected by altered feature relationships. ResNet’s performance

remained relatively poor even after feature processing, likely due to its deep structure not aligning well

with the dataset’s characteristics.

In conclusion, traditional machine learning models, particularly tree-based methods, provided strong

baseline performance with clear interpretability, while deep learning models like KAN and MLP showed

greater �exibility in capturing complex feature interactions. Feature processing signi�cantly improved

tree-based models but had mixed effects on distance-based and probabilistic classi�ers. Deep learning

models exhibited varied responses, with some bene�ting from re�ned feature representations while

others, like CNN and RNN, struggled with tabular data. Overall, selecting the appropriate model and

preprocessing strategy is crucial for optimizing CHD prediction performance.

6. Conclusion and Future Work

This study introduces FGSCare, integrating traditional machine learning classi�ers and deep learning

models for CHD prediction. A structured data preprocessing pipeline, including feature engineering and

SMOTE for class imbalance mitigation, contributed to improved model performance. Additionally,

hyperparameter tuning using GridSearchCV further enhanced predictive accuracy. Experimental results

indicate that GB achieved the best performance among traditional models, while KAN outperformed

other deep learning methods, demonstrating strong generalization ability. Model interpretability

analysis using SHAP provided valuable insights into feature importance, reinforcing the necessity of

informed feature selection strategies. These �ndings highlight the importance of ensemble learning,

model interpretability, and the balance between precision and recall in real-world predictive tasks.

Future work may focus on incorporating multi-modal and longitudinal clinical data, such as medical

imaging, genomic pro�les, and wearable sensor readings, to enhance the model’s predictive capabilities

and clinical applicability. Developing adaptive, lightweight models—such as those based on online or
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federated learning—could facilitate real-time updates and deployment in decentralized healthcare

environments while preserving data privacy. Additionally, introducing uncertainty quanti�cation

through probabilistic methods or conformal prediction may improve model transparency and assist

clinicians in decision-making. Efforts should also be made to evaluate and mitigate algorithmic bias by

analyzing model performance across diverse subgroups, ensuring fairness and equity in predictive

healthcare. Finally, integrating ethical, interpretable, and causal modeling frameworks would support the

creation of robust and trustworthy systems capable of addressing real-world diagnostic challenges in

coronary heart disease prediction.
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