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Left−right asymmetries of animals

The L−R asymmetric features of animals are easily recognized by the positions of the organs. Many

organs, such as the gut, liver, and heart, are asymmetrically located in a determinative manner. L−R

asymmetries are a shared feature of metazoans; various aspects of animal characteristics are indeed

asymmetric. For example, the winding direction of snail shells is usually clockwise, with a few examples of

counterclockwise. Male grasshoppers have asymmetric wing shapes that create sounds to attract females.

In echinoderm sea urchins, whose adult morphology is basically radially symmetric, the adult rudiment

forms on one side near the gut of Pluteus larvae. 

L−R asymmetry is not limited to morphology. The left and right sides of the cerebellum are known to have

different roles (reviewed in [2]). This is associated with the different features of neurons, such as neuronal

subtypes, gene expression, and axon trajectories. The L−R asymmetries of animals are also reflected in

behavior. A famous example is the handedness of humans [3-4]. Behavioral asymmetries may be

associated with the cellular and structural asymmetries of our bodies, including the nervous systems,

because these factors determine behaviors. Thus, studies of L−R axis formation include molecular,

cellular, and behavioral backgrounds to elucidate animal asymmetries, as the title of this manuscript

suggests. 

To this end, it’s necessary to consider that certain left- or right-biased characteristics, particularly

behavioral ones, could be predominantly acquired features more than a result of genetic background.

these acquired features must be distinguished from those determined by the genetic system. Because

animals that have simple behavioral mechanisms are less influenced by acquired modifications, they will

be valuable for thorough studies of the L−R axis. 

 

Ascidians and their embryogenesis

Phylogenetic studies have shown that ascidians are the closest living relatives of vertebrates [5]. In this

chordate group, it is not easy to recognize the phylogenetic position at the sessile adult stage; however,

ascidians have a tadpole-shaped larval body, and the tadpole larva swims actively by swinging or beating

its tail. The overall larval morphology and the tissue organization in the larval body, having a notochord
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and a dorsally located, hollow CNS, are features shared among chordates [6]. 

              In contrast to the phylogenetic position of ascidians as the sister group of vertebrates, the

mechanisms underlying early embryogenesis in ascidians are very different from those in vertebrates.

Ascidian eggs are called mosaic eggs, in which the determinants of cell fate specification are prelocalized

[7-8]. A blastomere that receives a determinant is destined to differentiate into the cell type specified by

the determinant. This mosaic mode of embryogenesis is in contrast to the regulative mode of vertebrate

embryogenesis. Another characteristic of ascidian embryogenesis is its simplicity. In the model ascidian

Ciona, gastrulation starts as early as the 110-cell stage, and a larva is constituted by ~3,000 cells. The

CNS of Ciona includes 177 neurons whose synaptic connections have been well documented through

electron microscopy-based studies [9-10]. 

The embryogenesis of ascidians progresses in the chorion. The chorion forms a strong barrier that limits

the exchange of molecules between perivitelline space and outside seawater. The presence of the chorion

is important for the completion of embryogenesis; removal of the chorion results in low fertilization

efficiency, failure of morphogenesis (as seen in the Japanese ascidian Halocynthia roretzi), and improper

sizing of the tunic (Ciona) [8, 11, 12]. Embryos developed from dechorionated eggs usually have lower

rates of healthy development compared to control groups developed with the chorion. Dechorionation is an

important technique in ascidians because it allows the introduction of exogeneous molecules such as

DNA/RNA into embryos by means of electroporation or microinjection. However, its deleterious effect is

annoying to researchers.

 

The L−R asymmetry of ascidian larva

Ascidian larvae have L−R asymmetric features [13-14]. In Ciona, an easy example is the location of the

pigmented ocellus at the brain-corresponding region of the CNS; this structure is clearly visible only from

the right side. This bias occurs because the larval brain of Ciona is twisted and the ocellus is located on the

right side [reviewed in 15]. The otolith is the other pigmented sphere near the ocellus. The midline of the

otolith is somewhat biased to the right. In larvae with the twisted CNS, many brain regions, which can be

specified by the distribution of neuronal subtypes, are also asymmetrically located. 

The L−R asymmetric features of ascidian larvae are established during embryogenesis. During cleavage

stages, ascidian embryos are perfectly symmetric. For example, the left and right blastomeres of two-cell

embryos respectively form the left and right sides of the body [16]. Therefore, the bilateral symmetry is

disrupted at a certain developmental period. The earliest sign of L−R asymmetry is observed at the two-

cell stage, in which asymmetric inositol triphosphate (IP3)-mediated calcium ion signaling occurs [17].

Then, the famous signature of L−R asymmetry is seen at the neurula stage. At this stage, the gene

encoding Nodal, the key signaling molecule responsible for L−R asymmetry formation, is expressed only in

the left side of the ectoderm [18-19]. These relays between molecules are suggested to create the L−R

axis at the larval stage.

Removal of the chorion disrupts L−R asymmetries of larvae. This is because the chorion is necessary to
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specify theL−R axis. In Halocynthia, the physical contact between the chorion and the left side of the

embryo induces the left-side expression of nodal [20]. A similar phenomenon is observed in Ciona,

suggesting that a conserved mechanism underlies the breakage of L−R symmetry. Larvae developed from

dechorionated eggs exhibit randomization of the L−R axis; larvae with normal asymmetry, complete

reversal, partial reversal, and the absence of some asymmetric features are all seen in a single

experiment. 

L−R disruption by dechorionation persists after metamorphosis, which converts tadpole-like swimming

larvae into immotile adults. At the larval stage, many organs are at the premature state and are not

functional in solitary ascidians such as Ciona [12; 21]. After metamorphosis, however, ascidian juveniles

have developed organs such as the heart and digestive tube. The location and structure of these adult

organs are asymmetric, like those in vertebrates. The asymmetric features are disrupted in juveniles that

developed from dechorionated eggs, suggesting that the mechanism that specifies the L−R axis during

embryogenesis also determines this axis after metamorphosis. The rudiments of the adult organs are

specified during embryogenesis, and some organs start to form at the larval stage [22-23]. In this way, the

effect of L−R axis disruption by dechorionation could persist after metamorphosis.

 

How does the disruption of the L−R axis influence Ciona?

Kourakis and colleagues observed detailed changes in L−R disrupted larvae by dechorionation. They

employed a new way of removing the chorion after the L−R axis is established, and they compared larvae

subjected to dechorionation at this later stage (late-dechorionated larvae) with larvae developed from

dechorionated eggs (early-dechorionated larvae). The early-dechorionated larvae exhibited various ranges

of morphological and cellular abnormalities that seemed to be beyond the mere morphological disruption

of the characteristics along the L−R axis. 

In normal and late-dechorionated larvae, for example, the ocellus is cup-shaped while the otolith looks like

a complete sphere. In early-dechorionated larvae, on the other hand, two cup-shaped or two sphere-

shaped pigments, or a single large pigment, is frequently observed, and the pigment or pigments are

misoriented. These results suggest that L−R axis disruption is not merely a simple impairment of the

arrangement of properly specified cells, tissues, or organs; rather, this disruption interferes with the

specification processes. Accordingly, those authors showed that several sensory organs were absent in

~50% of the early-dechorionated larvae. The rate of loss of a neural structure in early-dechorionated

larvae differs among the structures. This difference is probably caused by the different strengths of the

association between the mechanisms of specification of structures and L−R axis formation.

In addition, those authors found that the bilateral structures along the L−R axis are also affected by

dechorionation at the early stage. Pitx is the key transcription factor responsible for the specification of the

L−R axis as a downstream factor of Nodal [24, 18-19]. Pitx is expressed only on the left side of the motor

ganglion, where motor neurons are aligned bilaterally [25]. Moreover, the gene encoding AMPA-type

glutamate receptor (AMPAR) is also expressed only on the left side of the motor ganglion. Therefore, left
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and right motor neurons could have different functions by the left-side-specific reception of the

neurotransmitter L-glutamate. Left-side-specific pitx and AMPAR expressions were impaired by early

dechorionation, suggesting that the effects of dechorionation are not limited to the morphologically

recognizable asymmetric characteristics but also influence the hidden asymmetric features of cells and

tissues at the molecular level.

 

Behavioral changes in dechorionated larvae

The disruption of the L−R axis by dechorionation affects larval behavior. Ciona larvae exhibit negative

gravitaxis at the initial stage after hatching [26-27]. By this activity, larvae swim toward the surface of the

ocean; this movement is suggested to enhance the diffusion of siblings by the tidal movement. This

gravitaxis is reproducibly observed in normally developed larvae. In addition to the gravitaxis, larvae start

tail beating by responding to the dim conditions from a certain period after hatching [28]. Therefore, by

using dimness to induce swimming, the authors observed swimming trajectories in relation to gravity. They

found that, in contrast to the control groups, early-dechorionated larvae exhibited a much lower frequency

of negative gravitaxis; many early-dechorionated larvae showed downward or sideways swimming in

addition to upward. As mentioned above, L−R axis disruption causes various changes in the nervous

systems beyond the positioning of structures along the L−R axis. Therefore, the variety of changes in

swimming behavior is suggested to reflect the sum of the complexity of the effects caused by

dechorionation.

The authors of the cited manuscript found that a portion of larvae from the early-dechorionation

experiment had an axis that was a perfectly mirror image reversal of the normal axis. Using these mirrored

larvae, the authors observed behavioral asymmetry in gravitaxis. When Ciona larvae with a normal L−R

axis swam upward, they exhibited counterclockwise trajectories when viewed from above. In contrast, the

L−R reversed larvae swam clockwise, suggesting that the mirroring of the body also causes the perfect

reversal of swimming behavior with respect to gravity. This reversal means that the asymmetry in

swimming behavior is based on the L−R asymmetric features in the body and could not be adjusted in an

acquired manner.

 

Perspectives

L−R axis disruptions influence molecular, cellular, morphological, and behavioral aspects of ascidian

larvae. Owing to this study and previous studies, we have accumulated knowledge about L−R asymmetric

characteristics in ascidian larvae, the mechanisms underlying how the asymmetries are formed, and how

the asymmetries influence animals. After reading the manuscript cited in this review, I have realized that

there remains a big question: What is the significance of the rigid selection of L−R asymmetry? As the

mirrored larvae suggest, the reversed construction of the L−R axis seems not to cause a deleterious effect

on animals. Despite that, the L−R axis is rigidly determined. The molecules underlying L−R asymmetry

construction, such as Nodal and Pitx, show conserved patterns of left-biased expressions and functions
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throughout animals, with the exceptions seen in echinoderms [29, 30]. The simplicity of the Ciona larva, in

both morphological and behavioral aspects, provides an ideal system with which to uncover this question

by addressing how Ciona benefits by selecting, for example, a counterclockwise way of swimming in the

negative gravitaxis.

Technically, chemical dechorionation is useful and widely used among Ciona researchers to introduce

exogenous molecules, to simultaneously remove obstructive chorions before fixation for sampling of in situ

hybridization, and so on. We have empirically learned the deleterious effects of this treatment, particularly

on L−R axis formation. This study shows many concrete examples of how the L−R axis is disrupted by

dechorionation. This information is helpful for judging whether early dechorionation will be appropriate or

not in an experiment a researcher is planning to do. Moreover, this manuscript shows that dechorionation

after embryogenesis is possible without impairing the L−R axis. The hesitation toward chemical

dechorionation at a later stage exists because the dechorionation of ascidians uses a protease that breaks

cell−cell adhesions [31-33]. Kourakis and colleagues showed that this negative effect does not matter if we

follow their method appropriately. Now we have gained another option, that of later dechorionation, if this

timing is suitable for specific research; for example, sampling for in situ hybridization at a later

developmental stage before hatching.
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