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Abstract

In a paper published in the mainstream journal Physics of the Dark
Universe (C. Corda, Physics of the Dark Universe 32 (2021) 100834) we
have shown that, contrary to a longstanding conviction older than 160
years, the precession of planets’ orbits exists in Newtonian gravity if ones
correctly analyzes the situation without neglecting the mass of the planet.
In any case, the predicted Newtonian result was too large with respect to
the observational values, despite it was, coincidently, in good accordance
with the observational value of the precession of Mercury’s orbit. In this
new paper the situation is reanalyzed in Newtonian physics. It will be
indeed shown that, despite the orbit’s precession does not occur when the
reference frame of the Sun is approximated as being fixed with respect
to the fixed stars, it occurs, instead, in the real (in Newtonian sense)
non-inertial reference frame of the Sun and it is due to the well known
fact that, in a Newtonian framework, the distance which is travelled by a
body depends on the reference frame in which the motion of the body is
analyzed. After reviewing the solution of the problem which analyzes the
planet’s orbit as a harmonic oscillator, it will be shown that the precession
is due to the breakdown of the conservation of the Hamilton vector in
the non-inertial reference frame of the Sun. This approach will give a
value of the same order of magnitude of previous result, but larger than
that one and again without consistency with the observational values. In
other words, it will be shown that it is not correct that Newtonian theory
cannot predict an anomalous rate of precession of planets’ orbits. The
real problem is instead that a pure Newtonian prediction is too large to
be consistent with the observational values.
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1 Introduction

Via astronomical observations, in the early 1600s Kepler found that the orbit
described by a planet around the Sun is an ellipse, being the Sun one of its
foci. In the approximation in which the planet is subject only to the gravita-
tional attraction of the Sun, Kepler’s result can be obtained in the framework of
Newtonian gravity. As also the other planets gravitationally attract the planet
in question, one studies the effect of their presence. By realizing a calculation
which takes into account this complication, one finds that the gravitational at-
traction due to all the other planets of the solar system on the planet in question
generates a precession of the orbit. The precession of the Earth’s rotation axis
generates a similar effect too. In particular, Mercury’s perihelion advances of
5,600 arcseconds per century in the direction in which the planet rotates around
the Sun. If one removes the contribution of the Earth’s precession (5,025 arc-
seconds) the additional contribution due to the presence of the other planets,
calculated using Newtonian physics, cannot correctly predict the residual ob-
served value. One indeed finds that 43 arcseconds are missed. For more than 160
years various computations have shown that this residual advance of Mercury’s
orbit cannot be justified via Newtonian theory. This is the famous problem of
the anomalous rate of precession of the perihelion of Mercury’s orbit which was
originally recognized by the French Astronomer Urbain Le Verrier in 1859 in
terms of “an important astronomical problem” [1]. Le Verrier’s research on this
issue started in 1843 [2], when he reanalyzed various observations of the peri-
helion of Mercury’s orbit from 1697 to 1848. He obtained that the rate of the
advance of Mercury’s orbit was not consistent with the framework of Newtonian
gravity. He indeed found a residual of 38" arcseconds per tropical century. In
1882 the Canadian-American astronomer Simon Newcomb corrected the value
found by Le Verrier to 43" [3]. This residual appeared till now as being impossi-
ble to be achieved via Newtonian gravity. A certain number of ad hoc solutions
being all unsuccessful, have been proposed, with the sole result to introduce
more problems [4, 5|. In the 19th century, a famous approach was the introduc-
tion of a perturbing effect due to an unknown planet, Vulcan, hitherto escaped
observation. Vulcan should have been smaller than Mercury and closer than it
to the Sun [6, 7]. However, Vulcan has never been found by astronomers. Al-
bert Einstein solved the problem via his magnificent theory of general relativity
in 1916 [8]. A recent value of the advance of Mercury’s orbit resulting from
general relativity is about 42,98"” per tropical century [9]. By expressing the
perihelion’s advance in radians per revolution (polar coordinates will be used
hereafter), the general relativistic value is [10]
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being a is the semi-major axis of the orbit, Ty Mercury’s Newtonian orbital
period, ¢ the speed of light, r, the gravitational radius of the Sun and e the



orbital eccentricity. Then, the total angle swept per revolution by Mercury is
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being o = 27 the unperturbed (i.e. in absence of precession) total angle swept
by Mercury during a complete revolution around the Sun. If one inserts the
numerical values in Eq. (1) [11-13], one gets the well known value Ay ~ 5.02 %
1077 radians per revolution arising from general relativity, which corresponds
to about 0,1 arcseconds.

In our recent work [14], the precession of the perihelion of Mercury’s orbit
has been calculated in the Newtonian framework. Three different approaches
have been considered and the analysis has shown that the orbit of Mercury
behaves as required by Newton’s equations with a very high precision if one
correctly analyzes the situation without neglecting the mass of Mercury. General
relativity remains more precise than Newtonian physics, because the results in
[14] seem to be a mere coincidence. In fact, the Newtonian formula of the
advance of planets’ perihelion breaks down for the other planets [14]. The
predicted Newtonian result is indeed too large for Venus and Earth [14]. In fact,
in [14] it has been shown that corrections due to gravitational and rotational
time dilation are necessary. By adding such corrections, the same result of
general relativity is retrieved.

Hence, two interesting results have been obtained in [14]:

i) It is not correct that Newtonian theory cannot predict the anomalous rate
of precession of the perihelion of planets orbit. The real problem is instead that
Newtonian prediction is too large;

ii) Perihelion’s precession can be achieved with the same precision of general
relativity by extending Newtonian gravity through the inclusion of gravitational
and rotational time dilation effects. This second result is in agreement with the
recent interesting works [15, 16], but, differently from such works, in [14] the
importance of rotational time dilation has also been highlighted.

In this new paper the situation is reanalyzed in Newtonian physics. It will be
indeed shown that, despite the orbit’s precession does not occur if the reference
frame of the Sun is approximated as being fixed with respect to the fixed stars,
it occurs, instead, in the real (in Newtonian sense) non-inertial reference frame
of the Sun and it is due to the well known fact that, in a Newtonian framework,
the distance which is travelled by a body depends on the reference frame in
which the motion of the body is analyzed. After reviewing the exact solution of
the problem by analyzing the planet’s orbit as a harmonic oscillator, it will be
shown that the precession is due to the breakdown of the conservation of the
Hamilton vector in the non-inertial reference frame of the Sun.

The new approach in this paper permits to obtain a value of the same order
of magnitude of the Newtonian precession, but larger than the previous one in
[14] and again without consistency with the observational values. Thus, the
most important result of this paper is that it is not correct that Newtonian
theory cannot predict an anomalous rate of precession of planets’ orbits. The
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real problem is instead that a pure Newtonian prediction is too large to be
consistent with the observational values.

2 Distance travelled by a body in two different
Newtonian references frames

Suppose one has a highway where there is a straight line without curves for
hundreds of kilometers in the east-west direction and two cars, 1 and 2, driving
1 in an east-west direction and 2 in a west-east direction at speed, one says
40 km/h, and the same direction but the opposite direction with respect to a
fixed observer on the road. Compared to an observer in car 1 (a passenger from
car 1), car 2 will move at a speed of 80 km/h. Now, if one asks how many
kilometers car 2 will travel in an hour with respect to the observer fixed on the
road, the answer will obviously be 40km/h, but if one asks how many kilometers
car 2 will travel in an hour with respect to the observer in car 1, the answer it
will be 80km/h. Now, one cannot tell that the 80km/h answer is wrong and the
40 km/h answer is right, because in Newtonian physics there is no observer, or
preferential frame of reference. Both answers are correct. It will be shown that
a similar issue works also in the planet’s orbit problem. If viewed with respect
to the non-inertial reference frame of the Sun there is precession, if viewed with
respect to the reference frame of the Sun approximated as being fixed with
respect to the fixed stars there is no precession. The reason for this is similar
to the example of the two cars on the straight. Compared to the non-inertial
reference frame of the Sun, the planet moves faster than if the reference frame
of the Sun is approximated as being fixed with respect to the fixed stars.

3 Planet’s orbit as harmonic oscillator

One takes the origin of the frame of reference in the center of the Sun. In the
following G will be the gravitational constant, M the solar mass, m the mass of
the planet and r the distance between the Sun and planet. Following [14, 17], one
recalls that each central attractive force can produce an approximate circular
orbit that should not necessarily be closed. It is closed if the radial oscillation
period is a rational multiple of the orbit period. Now, let F.o(r) be the total
central force. The equation of motion for the planet is given by [14, 17]

Foo(r) =m (7 — wir) . (3)

The last term in Eq. (3) can be physically interpreted as a force centrifuge.
Since the angular momentum Jj is a constant of motion, one has that

Jo = mriwyg. (4)

Solving for wy and substituting in Eq. (3), one gets

Fd)(r):m(f_ Jo ) (5)

m2r3
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In the case of a circular orbit of radius rg, # = 0 and Eq. (5) reduces to

Feo(ro) = — J83~ (6)

mrgy

If the particle is now slightly perturbed in the plane of its orbit and perpen-
dicularly to its initial trajectory, it will oscillate around 7 [14, 17]. Then, one
introduces © = r — rg and expresses the radial equation of motion in terms of
x. Therefore [14, 17]
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Since ;= < 1, one can use series expansion for the term in parentheses, con-
sidering only the first order terms in Tm—o Expanding the member on the left in

Taylor series around the point r = ry one gets [14, 17]

. JE 3z
Foo (ro) + Fy (ro) & = mi — ,UT“S (1 — E) , (8)

where prime means derivative with respect to z. Inserting Eq. (6) in Eq. (8)
one obtains [14, 17]

O e AT o)
To
One notes that this equation describes a simple harmonic oscillator if the term
in parentheses is positive [14, 17|. If this term was negative, there would be an
exponential solution and the orbit would not be stable [14, 17]|. Thus, for stable
orbits, the period of oscillation around r = r¢ is equal to the corresponding of
circular motion [14, 17]
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One defines the apse angle % as the angle swept by the radial vector between
two consecutive points of the orbit where the radial vector itself takes on an
extremal value [14, 17]. The time that the planet needs to travel this angle is
%. Since the orbit can be considered approximately circular and being therefore
constant r and equal to rg, one solves Eq. (4) for wy and finds [14, 17]
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Furthermore, observing Eq. (6), one notes that the last factor of Eq. (11) can

be rewritten as [14, 17]
Jo Fu(ro)\?
— = (—07 ) (12)
mr§ Hro
Then, one gets [14, 17|
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and, by setting F.o = F in Eq. (13), where Fg is the Newtonian gravitational
force given by (4, is the versor in the radial direction)

Fo=-Mmy (14)
o
one finds ¢y = 27.

On the other hand, the above computation has been implicitly made in an
inertial reference frame where the Kepler problem of a central force works. But
we set the origin of the frame of reference in the center of the Sun and the
motion of the Sun with respect to the planet is not inertial, because the Sun
is subjected to the planet’s back reaction due to Newton’s third law. For an
external inertial Newtonian observer, the Newtonian equations of motion for
the Sun and the planet are

GMm Gm
MCLS'I/)‘T = 3 ﬂr — G/Sﬁr = Tﬁr (15)
0 o
and
. GMm . R GM .
mayily = ——5—1l, = aply = ——5 ", (16)
o 0

respectively, where a is the acceleration of the Sun and a,, is the acceleration of
the planet. Thus, the equation of the relative acceleration between the planet
and the Sun is

GM G G(M
0l = aply — Qylly = — ( i —T) PRSSCACL e 0 PR TS
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Then, the equation of motion for the planet becomes
G(M+m)m
Fatoom = f¥ur- (18)
o
Hence, one can consider the weak force
G
_ﬂﬁr (19)
o

due to the the non-inertial behavior of the Sun as a perturbation with respect
to the central force (14). Following [14], in order to take into account the



perturbation one has to make the following replacements in Eqs. from (3) to

(10):
Fuo(r) = Folr) = (14 17 ) Feo(r),
where now Fi(r) is given by the force defined in Eq. (18),
wo — W,
where now w is the corresponding perturbed angular velocity, and
2

Jo — J = mriw.

In particular, Eq. (10) is now replaced by
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One notes that it is

Fl(ro) = (14 32) Flo(ro),

and consequently by using (20) one obtains

Fl(r) _ Flo(r0)
F.(ro) Fel(ro)

Therefore, Eq, (23) becomes:
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Thus, by confronting Eqs. (26) and (10), one immediately finds
1
T=——-T,
(1+51)°

which implies

and

(23)
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in radians per revolution, where in the last step the first-order approximation in

1
47 has been used, that is (1 + %) ? =~ 1+ 537, because it is m < M. Then, in
each complete revolution around the Sun, the planet sweeps an angle larger than
the unperturbed angle ¢g = 27, and the difference, in radians per revolution, is

Tm
Ao = — ~
e i (30)

Thus, the precession of the planet’s orbit occurs in the non inertrial reference
frame of the Sun because, compared to the non-inertial reference frame of the
Sun, the planet moves faster than the inertial reference frame.

4 Breakdown of the conservation of the Hamilton
vector in the non-inertial reference frame of the
Sun

The key point is that, differently from what happens in an inertial reference

frame, in the non-inertial reference frame of the Sun the two planet and the Sun
does not interact only by the Newtonian central force of Eq. (14), which is

Fo=-SM0g (31)
T

Instead, one must consider also the additional inertial force of Eq. (19) which

18

Gmm, (32)

,
Then, the total force is given by the force of Eq. (18) which is

?M%m _ 7GMmaT - Gmmﬁr. (33)

r2 r2

This is the well known case in which an additional central force is present in
the interaction between the two bodies [18, 19|, but, in our knowledge, till
now nobody argued that this argument can be used in order to find planets’
precession in Newtonian theory. Following [18], we will use not the standard
Laplace-Runge-Lenz (LRL) vector which is traditionally used in this kind of
analyses [18]

A=7x L—GMmi,, (34)

where L is the angular momentum vector and ¥ is the relative velocity of the
planet with respect to the Sun, but its less known cousin, the Hamilton vector
[18, 20-23]

GMm i, (35)

U=7—

where ¢ is the polar angle in the orbit plane. In [18] the Authors stressed that
this very useful vector constant of motion of the Kepler problem was well known



in the past, but mysteriously disappeared from textbooks after the first decade
of the twentieth century [18, 20-23]. One has to recall that A and @ are not
independent constants of motion. There is indeed the following relation between
them [18]

A=uxL. (36)
The magnitude of the LRL vector is [18§]

A = GMme, (37)

where e is the eccentricity of the orbit. Thus, one gets the magnitude of the
Hamilton vector as [18]

u= 7. (38)

The total potential coresponding to the force of Eq. (33) is
GMm  Gmm

U(r) = — 39
() =-"—"" - (39)
which corresponds to the sum of the “traditional” Newtonian potential fGMTm
and the additional potential
Gmm
Vi) =-=" (0)

due to the inertial force acting on the planet. In other words, the total potential
U(r) contains a small central-force perturbation fGTm besides the Newtonian
binding potential [18]. In this case the Hamilton vector (as well as the LRL) is
no more conserved and begins to precess with the same rate as the LRL vector
[18]. Eq. (36) guarantees indeed that the two vectors must be perpendicular.
In order to calculate the precession rate of the Hamilton vector one starts to
find its time derivative as [18]

di _ 1dV(r)
dt — m dr

(8 (41)

and, in order to obtain Eq. (41), one uses the Newtonian equation of motion

for 97 and the equation [18]

dt
di,  dp.
e e 0 42
dt dt " (42)
Then, one finds the precession rate of the vector 4 as [18, 24]
= di
L ux
W= u2dt . (43)

Egs. (35), (41) and (43) imply that only the tangential component r”&—f of the
velocity vector

o, i,
e dt "

i=r (44)



contributes. Hence, one finds [18]

-1 de  GMm '\ dV(r) ~ N
W= ( dt L ) ar Ur X Uy
(45)
_ L? de  GMm'\ dV(r) -
 m(GMme)? dt L dr k2

where 4, is the versor in the z—direction. Thus, in each complete revolution
around the Sun, the Hamilton vector and, in turn, the perihelion of the orbit,
increases of an angle [18]

To o L? M
to= [ Cwar= [T (- G Dy g
0 o m(GMme) L% dr

where Ty and 27 are the unperturbed period and the unperturbed angle in each
revolution around the Sun. Setting [18]

LZ
P=E—
m (GMm)
one gets
2 27
D GMm \ dV(r)
Np=—— — dep. 47
@ GMm262/0 (r L‘i—f > ar 0P (47)
It is also L = mTQ’fo. Thus, one obtains [18]
GMm _ r?
d = —.
L p

As the perturbative potential is very weak with respect to the Sun’s central
field, one can use the unperturbed orbit equation

b_ 1+ ecosp. (48)
7

Thus,
2m cos ¢ v (r)

A<*0: G]&me 0 (l+ecosp)? dr d@:

™ 37
_ 3 . _ 4
= - [ 2. cospdp — 7= f%Q cos pdp = 7t

x
2

The reason of splitting the integral

p? /27T cos dV(T)d
GMme 0 (1 + e cos @)2 dr ¢

in Eq. (49) in the two parts

m %
]\4e/g cos pdp
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and
37

m 2 d
_]\46[2\- COS pap

is the following. The vector d‘;g) Uy, where 4, is the unit vector in the radial

direction, has the same direction of 4,. But the direction of 4, for —5 < < 3
is opposite with respect to the direction of 4, for § < ¢ < 37” This means that

d‘;ff) for

assume as being negative the sign of %ff) for § << 3777 One notes that the
result of Eq. (49) has the same order of magnitude of the result of Eq. (30),
and this cannot be a coincidence. The small difference between the two results
is due to the fact that two different approximations were used to obtain them.
The first in Section 1 was the circular orbit approximation. The second in this
Section is the use of the unperturbed orbit equation. In any case, the existence
of a precession of the planets’ orbits in Newtonian gravity is confirmed.
However, neither the first nor the second result agrees with the observations
in the Solar System. Let us apply Eq. (30) to Mercury. The NASA official
data are m ~ 3.3 % 1023Kg [12] and M = 1,99 * 103K g [11]. Thus, one finds
Ap ~ 521 % 10" "radians per revolution. This corresponds to about 0,107
arcseconds. The NASA official data also give the Mercury/Earth ratio of the
tropical orbit periods as being 0.241 [13]. Hence, one finds a value of 44.39” per
tropical century. This result shows a value of the contribution of Newtonian
gravity to the advance of the perihelion of Mercury per tropical century which
well approximates both the observational value of 43" per tropical century and
the value of about 42, 98" per tropical century of the general theory of relativity
[9]. This is a mere coincidence. Let us apply Eq. (30) to the trajectory of Venus.
The planet’s mass is my ~ 4.87 x 102K g in the NASA official data [25]. This
gives a value of Ay ~ 7.68107° radians per revolution corresponding to about
1.6 arcseconds. The Venus /Earth ratio of the tropical orbit periods results to
be 0,615 [25]. Then, one finds 258,16"” per tropical century. This results 30
times larger than the value of 8.62" which results from the observations [14, 26].
If one considers Earth’s data one finds analogous results. The Earth’s mass is
m ~ 5.97x10%* K g. This gives a value of Ay ~ 9.42x10~% radians per revolution
for the precession, corresponding to about 1.94 arcseconds. The value becomes
194" per tropical century, being about 50 times larger than the value of 3.83”
which results from the observations [14, 26]. On the other hand, one gets

if one assumes to be positive the sign of —5 <9 < 5, then one must

dm  mm 50
Me~ M (50)
for all the planets in the Solar System. This means that if the result of Eq. (30)
is not consistent with the observations in the Solar System also the result of Eq.
(49) cannot be consistent with the observations in the Solar System

Thus, one confirms the result in [14] that, differently from a longstanding
conviction which is older than 160 years, the real problem of the Newtonian
framework which concerns the anomalous rate of the precession of the perihelion
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of planets orbit is not the absence of a result. Instead, the real problem with
Newtonian gravity is that such a result is too large.

5 Conclusion remarks

The recent result in [14] showed that, contrary to a belief of over 160 years, the
precession of planets’ orbits exists in Newtonian gravity if ones correctly analyzes
the situation without neglecting the mass of the planet. On the other hand,
the predicted Newtonian result was too large with respect to the observational
values, despite it was, coincidently, in good accordance with the observational
value of the precession of Mercury’s orbit. In this new paper the situation
has been reanalyzed in Newtonian gravity. The result has been that, despite
the orbit’s precession does not occur when the reference frame of the Sun is
approximated as being fixed with respect to the fixed stars, it occurs, instead,
in the real (Newtonian) non-inertial reference frame of the Sun and it is due to
the well known fact that, in Newtonian theory, the distance which is travelled
by a body depends on the reference frame in which the motion of the body is
analyzed. The first step has been reviewing the solution of the problem which
analyzes the planet’s orbit as a harmonic oscillator. Then, it has been found
that the precession is due to the breakdown of the conservation of the Hamilton
vector in the non-inertial reference frame of the Sun. This approach gives a value
of the same order of magnitude of the result in [14], but larger than that one and
again without consistency with the observational values. In other words, the
main result in this paper is that it is not correct that Newtonian theory cannot
predict an anomalous rate of precession of planets’ orbits. The real problem is
instead that a pure Newtonian prediction is too large to be consistent with the
observational values.
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