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Abstract:		

It	is	sought	a	fundamental	reasoning	for	the	then	fore	contradictory	or	randomly	correct	outcomes.	

As	due	the	dilemma	borne	out	from	the	multiple	methods	for	the	Pontryagin	Chiral	Fermions	

density	anomalies	resolutions	and	their	either	zero	or	imaginary	results.	

Such	is	based	on	extracting	the	unitarity	from	a	unity-scale	diffeomorphic	transformation,	

which	resulted	in	the	being	of	a	𝛾!	regularization.		

	

§1-	Introduction	

	

Recalling	the	conventional	definition	of	trace	anomaly,	via	the	energy-momentum	tensor	in	field	

being	such	

𝑇"#(𝑥) = 2/UV𝑔V $%
$&!"

.	

That	would	follow	after	the	introduction	the	conformal	transformation	𝑔"# → 𝑒'((*)𝑔"#.	

For	its	inverse	with	an	infinitesimal	value	of	the	parameter	𝜎(𝑥): 𝑔"# → [1 − 2𝜎(𝑥)]𝑔"#	,		

𝛿𝑆 = ,
'∫𝑑

-𝑥 UV𝑔V𝑇"#𝛿𝑔"# = −∫𝑑-𝑥UV𝑔V𝜎(𝑥)𝑇"
"	 	 	 (1)	

Then,	and	for	an	arbitrary	𝜎(𝑥),	the	invariance	of	𝑆	under	the	above	conformal	transformation	

requires	that	the	trace	of	the	energy-momentum	tensor	to	be	𝑇"
" = 0.	
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This	so	far	classical	traceless	identity	is	broken	beyond	tree	and	on	shell	levels	by	quantum	

effects,	such	

	0 ≠ 〈𝑇"
"〉 ≡ 𝐴	 	 	 	 	 	 	 	 (1)’	

Where	the	defined	quantity	𝐴	is	called	the	trace	or	conformal	anomaly,	[1].	

On	dimensional	grounds	and	in	four-dimension,	the	most	general	form	for	the	trace	anomaly	was	

found	to	be,	[2],	

〈𝑇"
"〉 = 𝑎𝐺 + 𝑏𝑅' + 𝑏.⧠𝑅 + 𝑐𝐹 + 𝑒𝜖/01$𝑅/0"#𝑅1$

"#	 	 	 (2)	

Where	the	Gauss-Bonnet	term	𝐺 = 𝑅/01$𝑅/01$ + 4𝑅/0𝑅/0 + 𝑅'	yields	the	Euler	invariant.		

𝐹 = 𝑅/01$𝑅/01$ − 2𝑅/0𝑅/0 +
,
2
𝑅'	is	the	square	of	the	Weyl	tensor.	

The	last	term	is	the	Parity-odd	Pontryagin	density,	[3].	

In	the	case	of	chiral	fermions	being	added	to	the	system,	due	to	the	Parity	property	only	the	

Pontryagin	term	contributes	to	the	anomaly.	

	

§2-	A	Missing	Unitary	Mapping	

1-	A	Non-Anomalous	Diffeomorphic	Action	Leading	to	Unitarity	

It	is	proposed	here	a	resolution	to	that	anomaly	that	however	appears	to	encounter	a	dilemma	

which	originates	as	is	shown	below	from	the	degeneracy	of	its	eigenvalues	in	the	decomposition.	

One	is	then	looking	for	the	symmetries	which	contain	the	above	variation	that	caused	such	an	

anomaly.	And	if	the	action	is	gravitational,	one	has	to	distinguish	between	flat	and	curved	space-

time	metrics,	[4].	

For	Flat	space-time,	scale		𝑥 → 𝑥. = 𝑒(𝑥		

So	for	an	arbitrarly	chosen	wave	function	𝜙(𝑥) → 𝜙.(𝑥) = 𝑒(3𝜙(𝑥)	



With	Δ	being	a	canonical	mass	dimension,	plus	Conformal	⊐	Scale	+	Rotations	+	Boosts	

+Translations,	then,	one	gets	𝜎(𝑥)	as	a	function	of	the	quadri-norm	of	the	vector	𝑥.	

For	Curved	Space-time.	

Conformal:	Same	as	above	when	reduced	infinitesimally	into	flat	space-time	which	under	the	

existence	of	the	Killing	invariants.	

Weyl	:	Besides	the	functional	transformation,	there	should	be	a	metric	transformation	such	that	

𝑔"#
. (𝑥) = 𝑒'(𝑔"#(𝑥)	

Note	here	that	the	diffeormorphism	𝑥 → 𝑥.	map	will	not	cause	any	extra	anomaly	besides	

that	of	the	metric	as	well	as	those	of	the	Lorentzian,	since	it	remains	at	the	classical	level.	

However	since	at	the	quantum	level	they	may	pick	up	a	phase	which	can	be	eliminated	by	

remarking	that	such	phases	can	be	paired	up	as	opposite	with	a	degenerate	eigenvalue.	

Also	acting	by	the	derivative	on	both	the	left	and	the	right	sides	makes	it	in	need	of	regularization	

since	these	derivatives	have	to	pass	through	the	chiral	composition	which	is	known	to	be	made	

from	effective	operators	so	the	need	for	regularizations	starting	from	𝑔"#(𝑥) ≡
45!
4*"

		and	ending	

with	𝑇"#(𝑥) = 2/UV𝑔V $%
$&!"

.	

Due	that	the	result	is	

	0 ≠ 〈𝑇"
"〉 = 〈𝑔"#𝑇"#〉 ≠ 𝑔"#〈𝑇"#〉		 	 	 	 	 (2)’	

It	has	to	be	eliminated	the	common	eigenvalues	as	since	are	due	to	diffeomorphism.	

That	can	be	done	either	by	subtracting,	[5,	6],	following	what	was	adopted	by	[2],	as	

	𝑔"#〈𝑇"#〉 − 〈𝑔"#𝑇"#〉 ≡ 𝐴67& .	

Or	by	‘diagonalizing’	in	a	fully	non-degenerate	space.		



Which	is	simpler,	and	clarifies	its	subtleties.	So	that	what	is	done	and	for	that	purpose	the	

degeneracy	here	is	unconventionally	non-trivial.	

	

§3-	The	Regularization	of		𝜸𝟎		

a-	Saving	Chirality	and	Unitarity	

The	degeneracy	in	the	metric	space	is	treated	in	next,	see	also	Appendix.	

It	is	based	on	finding	the	bounding	condition	for	any	metric	to	be	unitary	and	non-degenerate.	That	

would	be	on	the	4-norm	of	a	rescaling	of	𝑔.	

What	is	needed	is	a	Jacobian	for	a	common	scaling	variation	to	both	of	x	and	y	in	

	𝑔"# =
45!
4*"

→ 𝑓�𝑦"�𝑓9,(𝑥#)
45!
4*"

= 𝑓'𝑔:; + 𝑓'�𝑔!; − 𝑔:!� − 𝑓'𝑔!!	 	 	 (3a)	

So	a	metric	with	𝐹 ≡ 𝑓',	while	being	fully	symmetric	can	be	deduced	for	two	sides	scaling	as	

𝑑𝑠.' = 𝐹𝑑𝑡' + 𝐹𝑑𝑥' = 𝐹𝑑𝑠'	 	 	 	 	 	 (3b)	

Now,	the	above	form	of	the	metric	is	encountered	as	a	solution	for	the	orbital	variation	along	a	

metric	in	a	Gauss-Bonnet	Gravity,	[7].	

Then,	in	the	case	the	eigenvalues	are	searched,	such	a	configuration	leads	merely	to	an	operator’s	

acting	change	along	a	modular	form	orbifold	(or	in	its	simplest	form	a	torus).	

Since	the	norm	of	𝑓	is	less	or	equal	to	one	to	keep	overall	infinitely	acting	operators	convergent.	

	 Plus,	since	in	the	above	map	only	the	zero	components	get	opposed	by	sign,	so	there	is	a	

temporal	twist	(or	a	negative	spatial	twist).	To	break	that	degeneracy	(of	the	metric),	it	is	sufficient	

to	vary,	here	a	rescaling	on	the	one	side-coordinate	supposed	to	be	the	zero	one.	

After	absorbing	𝐹	then	being	rescaled	by	a	negative	−𝜆	as	

	𝐹𝑑𝑠' → −𝜆𝑑𝑡.' + 𝑑𝑥'' → [(−𝜆 − 1) + 1]𝑑𝑡.' + 𝑑𝑥' → �−1+ 1
<=,

�𝑑𝑡′
'
+ 1

<=,
𝑑𝑥2	



As	𝐹 ≤ 1	was	arbitrary,	 ,
<=,

≤ 1	can	be	re-identified	with	F,	so	one	got	a	dispersive	map	as	

𝑑𝑠.' = 𝐹𝑑𝑠' + 𝐹𝑑𝑡' → 	𝑑𝑠"' = −(1 − 𝐹)𝑑𝑡' + 𝐹𝑑𝑥'			 	 	 (3b)’	

So,	as	was	already	used	above	as	a	property	of	elimination	for	the	redundant	eigenvalues	while	

with	the	supposed	broken	space,	one	has	to	use	the	Jacobian	not	of	𝑓,	but	of	

∆= �
�𝜀>�𝑓' − 1��

#
$ 0 0

0 𝑓 0
0 0 𝑓

� ≠ 0		 	 	 	 (4)	

	The	coefficient	𝜀> = ±	is	considered	to	express	in	the	case	of	correlations	between	two	space-time	

structures,	existent	in	close	neighborhoods	the	need	of	any	possible	extra	time	twists.	

As	proved	in	the	Appendix	the	case	∆= 1	is	the	case	of	Unitary	operators	however	with	𝜀> = −1.	

And	an	operator	T29?@ABC�F, F∗, 𝑔::� =
&%%
√2
.	

If	the	problem	is	considered	for	the	4-spinors	of	Dirac,	the	action	is	given	

𝑆 = ∫�𝑔Ψ�𝑖 𝐷⏞
∕

Ψ ⇒𝑊 = −𝑖𝑙𝑜𝑔 ∫𝒟Ψ�𝒟Ψ𝑒:% = −𝑖𝑙𝑜𝑔𝑑𝑒𝑡�𝑔𝑖 𝐷⏞
∕

			 (5a)	

Standard	diagonalization	in	compact	manifolds	or	any	unitarily	equivalent	manifold	

�𝑔𝑖 𝐷⏞
∕

ΨG = 𝜆GΨG ⇒ 𝑑𝑒𝑡�𝑔𝑖 𝐷⏞
∕

= ∏ 𝜆GG 	 	 	 	 (5a)’	 	 	

The	use	of	the	operator	T29?@ABC	will	have	the	impact	of	pairing	the	eigenvalues	between	F	and	

space-wise	inversion	F∗.		

So	if	Ψ → ¢
ΨH
ΨI
£.	The	2nd	space	is	that	of	the	right	chirality	however	with	opposite	eigenvalues.		

Then,	by	inverting	the	time,	the	Parity	becomes	odd	 	 	 	 (5b)	

Therefore,	the	procedure	conserves	the	Dirac	character	for	the	spinors	and	it	is	specifically	a	plain	

regularization	for	its	zero	index	Gamma	matrix.		



That	logic	can	be	confirmed	by	another	means	using	the	Atiyah-Singer	index	theorem	for	the	

Polyakov	strings	under	the	Liouville	action,	[8].	More	theoretical	justifications	and	also	their	direct	

implications	are	developed	in	the	next	subparagraph.		

One	can	proceed	into	any	of	the	usual	regularizations	and	so	the	result	of	deWitt	is	correct.	

That	refutes	the	claim	of	Ref.	[4],	that	the	regularization	of	the	Dirac	fermions	has	no	P-odd	terms.	

As	since	the	problem	in	their	case	originated	from	the	fact	that	𝑊	was	ill	defined	in	(1/2,	0)	spin	

space	as	it	goes	to	(0,1/2),	and	it	was	sufficient	to	regularize	ΨH	and	𝑊 = −𝑖𝑙𝑜𝑔𝑑𝑒𝑡𝑖𝜎. 𝐷	to	lead	

into	𝛿𝑊J75K 	.	

Then,	and	that	is	due	to	that	in	the	Weyl	representation	Ψ�	contains	𝛾! = �0 𝐼
𝐼 0�,	the	above	

diffeomorphic	rescaling	is	merely	a	regularization	of	𝛾!		in	Weyl	spaces.		

Also,	the	imposition	of	the	Unitarity	as	an	external	condition	is	not	necessary	as	claimed	by	[5].	

	

b-	Theoretical	Justifications	and	Consequences	

To	fully	justify	the	above	regularization,	which	in	fact	acts	on	the	Dirac	matrices,	one	has	to	find	if	

the	global	domain	of	definition	for	the	driven	from	Dirac	spinors	remains	well-behaved.	

What	is	concerned	here	and	are	seen	from	the	whole	spectrum:	

	Does	the	Hilbert	space	remain	well	defined?		

That	is	true	under	the	developed	down	conditions	and	in	the	Appendix.		

Plus	is	there	a	change	in	the	duality	property,	or	what	remains	self-dual	and	what	defies	it?	

Here,	the	trick	applies	as	low	in	dimension	as	the	1+1	string	models	which	was	found	to	be	self-	

dual	with	the	permutation	operator	𝜖:#…:&	is	becoming	complex,	[9],	which	under	the	canonical	



gauging,	[10],	claimed	to	be	associated	with	the	Color	charge	remains	self-dual,	except	however	not	

under	space	doubling	since	that	leads	to	the	pop	of	the	Real	Orthogonal	Flavor	group	indices,	[11].	

What	is	noticed	here	is	the	similarity	in	the	complex-real	transition	between	their	breaking	

self-duality	and	ours	in	breaking	the	corresponding	determinants.	Supposedly	then	from	unitary	

into	composite-symmetric	or	unitary	operators,	famously	eliminating	triangular	flavor	anomalies.		

More	clearly	while	remaining	in	the	complex	structure,	that	would	be,	and	since	the	base	space	of	

start	is	finite	and	that	has	led	to	the	self-duality,	then	(as	that	is	the	statement	negation)	for	its	

operators	being	made	as	adjoint	and	in	an	infinite	base	space	as	also	noticed	in	the	just	cited	

references,	so	any	iteration	would	be	redundant	and	odd	then	the	outcome	set	tends	to	be	fractal	as	

mentioned	in	the	Appendix.		

	

Appendix:	

Starting	from	the	most	elementary	change,	with	𝜆 ≡ ,9M
M
,	is	

𝑑𝑠"' = 𝑑𝑠.' − 𝑑𝑡' = ε(𝐹 − 1)𝑑𝜏' + 𝐹𝑑𝜒'		 	 	 	 	 (A1a)	

An	isotropifying	map	operation	with	the	time	component,	is	done	with	(3 − σ) −space-like	

directions.	Then,	that	mapping,	s(t, x) → s"�τ = εt", χ = x"�	is	rendered	a	(4 − σ)	dimensional	

vector,	but	with	any	an	additional	acting	as	by	an	inversion	operator	ε = ±	as	𝜀�t., xN?O
. �,	is	done	as	

true	all	along	on	one	side	of	the	scalar	product	so	via	a	vierbein	sandwiching	non-trivially	only	the	

anti-symmetric	permutations	in	the	spectral	representation	so	the	double	derivative	action	would	

be	proportional	to	the	representation	itself.	



Mathematically,	this	is	an	affine	form	for	the	Friedrichs	extension,	[12],	conserving	then	any	

Unitarity	if	proved	existent.	That	is	through	its	re-defined	Hilbert	spaces,	and	as	e.g.	those	implicitly	

dealt	with,	alike	the	module-kink-cusp	links	exposed	in	[13].		

By	kerneling	these	modular	forms	it	leads	into	a	Jacobian,	non-zero	positive	and	bounded	by	one.	

So	defining	F = f ',		

0 ≠ �

�𝜀>�𝑓' − 1��
#
$ 0

0 𝑓
0

0
… 0
0 𝑓

� = �𝜀>�𝑓' − 1��
#
$𝑓29( ≤ 1⟺ 0 ≠ 𝜀>�𝑓' − 1�𝑓'�𝑓'9(�

' ≤ 1	 			(A1b)	

In	solving	such	a	system,	there	should	exist	a	compact	set	where	that	isotropy	can	be	applied.	Also,	

0 ≠ 𝜀>�f ' − 1�f '�f'9P�
' ⇒ f ≠ 0	And	f ≠ 1		

While	f = 0	is	the	trivial	identity	transformation,	f = 1	generates	a	specific	co-dimension	where	the	

isotropy	is	broken.	

Resolving,	then,	for	transverse	isotropy,	i.e.	by	setting	σ = 2	so	x ≡ r	is	a	transverse	

symmetric	orbital	length,	

𝜀>(𝐹 − 1)𝐹 = 1 ⇔ 𝜀>𝐹' − 𝜀>𝐹 − 1 = 0 ⟺ 𝜔' = 1 + 4𝜀> ⟹ 𝐹 = ,±R,=-S'
'

	 (A2)	

The	case	𝜀> = 1	leads	to	the	solution	F = ,±RT
'
	which	is	the	Golden	Ratio	representing	the	

emergence	of	Fractals	within	the	system.	While	the	case	𝜀> = −1,	leads	to	the	solution	F = ,±N√2
'
	as	

it	is	associated	with	the	time	reversal.		

The	operation	of	orbital	skipping	can	be	applied	as	a	scaling	product	with	its	conjugate-like	such	

−𝐹𝐹′∗ = − ,92
-
= ,

'
		A	Counter	to	Pile-ups	 	 	 	 	 (A2)’	



This	upper	limit	result,	has	to	be	extracted	to	represent	an	eigenvalues’	transfer	from	an	3-space	

isotropic	2-disk	into	3-sphere	rolling,	view	it	is	normalized	such	that	𝒯29?@ABC(F, F∗) ∝ M&%%
√2

	𝑜𝑟	 U
∗&%%
√2
	.	

So	however	the	regularizations	impose	what	is	being	equivalent	to	a	time	ordering	𝑇	for	F	and	F∗	as		

𝒯�F:, F:
∗� ∝

VWM%,U%
∗Y

√2
= M

√2
	𝑖𝑓	𝑡 < 𝑡∗	𝑎𝑛𝑑	 M

∗

√2
	𝑖𝑓	𝑡 > 𝑡∗	 	 	 	 	 (A3a)	

And,	now,	whose	imaginary	satisfies	the	Unitarity	semi-equation	at	an	internal	loop	variable	time	

	−2𝐼𝑚𝒯 = 𝒯𝒯∗ ⇔ −2𝐼𝑚�∑ 𝒯�F: , F:
∗�2

:Z, � = ∑ 𝒯�F:, F:
∗�𝒯∗�F:, F:

∗�2
:Z, + ∑ 𝒯�F:, F:

∗�𝒯∗ �F; , F;
∗�2

:[; ,		

But,	𝑖 ≠ 𝑗	has	a	unique	ordering	so	the	minus	sign	showing	in	Eq.	(6a)	and	due	to	the	time	reversal	

does	not	show	again	so	𝒯�F: , F:
∗�𝒯∗ �F; , F;

∗� = −𝒯 �F; , F;
∗�𝒯∗�F: , F:

∗�.	Also,	

∑ 𝒯�F: , F:
∗�𝒯∗�F: , F:

∗�2
:Z, ∝ 3 U

√2
U.∗

√2
+ 3 U.

∗

√2
U
√2
= − ,

'
− ,

'
= −1		And	−2𝐼𝑚�∑ 𝒯�F: , F:

∗�2
:Z, � = −1				(A3b)	

The	sphere	map	acting	on	the	3-metric	via	F	and	F∗,	is	thus	proved	an	equality	

𝒯29?@ABC�F, F∗, 𝑔::� =
𝑇�𝐹: , F:

∗�𝑔::
�3

	

Therefore,	the	operation	is	Unitary.	
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