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Abstract	

The	lack	of	Unitarity	is	sought	after,	and	is	first	resolved	by	an	extraction	from	a	unite-scale	

diffeomorphic	transformation.	The	same	result	can	second	be	found	independently	and	is	based	on	

an	orbital-wise	Pfaffian	differential	satisfying	a	Conformal	geodesic.		

Such	a	fundamental	reason	is	borne	out	in	the	multiple	methods	for	the	Pontryagin	Chiral	Fermions	

density	anomalies	resolutions	being	either	zero	or	imaginary	results,	were,	then	fore,	contradictory	

or	randomly	correct	outcomes	due	to	the	eigenvalue	non-separable	sorting.		

Confirming	then	an	equivalent	(1st	as	necessary	and	2nd	as	sufficient)	condition	for	Unitarity	is	via	a	

regularization	for	the	zero	component	of	the	Dirac	Matrix	𝛾!,	and	a	generalization	of	the	Wick	

rotation,	whilst	both	above	hypotheses	(may	directly)	be	contouring	around	the	Einstein	

Gravity.	

	

§1-	Introduction	

The	existence	of	an	imposition	for	Unitarity	and	the	separation	of	the	eigenvalues	were	the	crucial	

requirements	for	the	proofs	concerning	the	Gravitational	Trace	Anomaly	Chiral	Pontryagin	term	

calculation.	Neither	is	seen	problematic	if	a	sort	of	a	regularization	of		𝛾!	is	involved	under	a	unit	

module	diffeomorphism,	which	confirms	through	a	generalized	Wick	rotation	as	derived	from	a	

Pfaffian	orbital	under	Conformal	metric.	
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That	necessitated	the	need	for	both	the	“volume”	and	the	“surface”	terms,	that	both	can	be	explicit	

functions	of	time,	to	be	resolved	and	also	sufficiently	to	get	down	by	one	more	dimension.		

Since	any	external	line	does	not	have	anomaly	(as	easily	countered	by	direct	duality),	there	remains	

the	non-trivial	(containing	the	integration	weighting	metric)	task	of	internal	lines	propagators,	

which	are	mere	description	of	an	internal	wave	propagation.		

By	an	effective	and	local	Hamiltonian,	under	the	Fourier	Transform,	they	may	be	acting	under	

interferences	and	more	precisely	coherence	should	be	well-defined	such	that	the	Hilbert	space	

needs	so	a	justification	of	existence	and	independence,	under	these	arbitrary	waves.	

That	either	at	the	periphery	of	time,	as	an	infinity,	whose	duality	matching	is	proven	as	necessity	be	

chosen	at	the	surface	terms.	Or	at	the	decaying	mixed	structures	which,	since	sufficiently	existent	as	

chiral	under	a	combined	flavor	freedom,	are	(Wick)	decaying	at	various	rotated	space-time	orbitals.	

One	has	to	note	that	even	though	the	Einstein-Hilbert	Gravity	could	be	implicitly	embedded	in	the	

metric	of	the	generalized	Weyl	term,	all	the	derivation	down	did	not	use	in	any	way	such	a	Gravity,	

except	in	the	case	when	the	proved	Wick	operation	occurred	in	the	time-transverse	isotropy.	

However,	it	was	able	always	to	provide	either	a	diffeomorphism	that	assures,	if	imposed,	Unitarity,	

or	a	Wick	rotated	decay	(from	a	form	of	a	Bianchi	identity)	whose	Hermiticity	processes	that	entity	

into	being	physical	then	unitary.		

As	a	conclusion	Quantum	non-anomalous	Gravity	can	be	warrantied	if	followed	the	cited	

conditions.	

	

§2-	From	a	Missing	Unitary	Mapping	into	a	Conventional	Re-definition	

1-	A	Reminder	

Recalling	the	conventional	definition	of	the	trace	anomaly,	via	functional	derivatives	of	the	energy-

momentum	tensor	in	a	field	with	respect	to	the	metric,	being	such	

𝑇"#(𝑥) = 2/_|𝑔| $%
$&!"

.	



That	would	follow	after	the	introduction	of	the	conformal	transformation	𝑔"# → 𝑒'((*)𝑔"# .	

For	its	inverse,	with	an	infinitesimal	value	of	the	parameter	𝜎(𝑥): 𝑔"# → [1 − 2𝜎(𝑥)]𝑔"#	,		

𝛿𝑆 = ,
'∫𝑑

-𝑥 _|𝑔|𝑇"#𝛿𝑔"# = −∫𝑑-𝑥 _|𝑔|𝜎(𝑥)𝑇"
" 		 	 	 	 	 (1)			

Then,	and	for	an	arbitrary	𝜎(𝑥),	the	invariance	of	𝑆	under	the	above	conformal	transformation	

requires	that	the	trace	of	the	energy-momentum	tensor	has	to	be	𝑇"
" = 0.	

This	so	far	classical	traceless	identity	is	broken	by	quantum	effects	beyond	tree	and	on	shell	

levels,	such	

	0 ≠ 〈𝑇"
"〉 ≡ 𝐴	 	 	 	 	 	 	 	 	 	 (1)’	

Where	the	defined	quantity	𝐴	is	called	the	trace	or	conformal	anomaly,	[1].	

On	dimensional	grounds	and	in	four-dimension,	the	most	general	form	for	the	trace	anomaly	was	

found	to	be,	[2],	

〈𝑇"
"〉 = 𝑎𝐺 + 𝑏𝑅' + 𝑏.⧠𝑅 + 𝑐𝐹 + 𝑒𝜖/012𝑅/0"#𝑅12

"#	 	 	 	 	 (2)	

Where	the	Gauss-Bonnet	term	𝐺 = 𝑅/012𝑅/012 + 4𝑅/0𝑅/0 + 𝑅'	yields	the	Euler	invariant,	and		

𝐹 = 𝑅/012𝑅/012 − 2𝑅/0𝑅/0 +
,
3
𝑅'	is	the	square	of	the	Weyl	tensor.	

The	last	term	is	the	Parity-odd	Pontryagin	density,	[3].	

In	the	case	of	chiral	fermions	being	added	to	the	system,	due	to	its	Parity-odd	symmetry	

properties,	and	at	that	lowest	composition	level,	only	the	Pontryagin	term	contributes	to	the	

anomaly	that	is	then	why	it	is	labeled	as	of	type	I.	

	

2-	A	Non-Anomalous	Diffeomorphic	Action	Leading	to	Unitarity	

It	is	proposed	here	a	resolution	to	that	anomaly	that	however	appears	to	encounter	a	dilemma	

which	originates	as	is	shown	below	from	the	degeneracy	of	its	eigenvalues	in	the	decomposition.	



One	is	then	looking	for	the	symmetries	which	contain	the	above	variation	that	caused	such	an	

anomaly.	And	as	the	considered	action	is	gravitational,	one	has	to	distinguish	between	flat	and	

curved	space-time	metrics,	[4].	

For	Flat	space-time,	with	a	scaling	𝑥 → 𝑥4 = 𝑒(𝑥,	so	then	for	an	arbitrarly	chosen	wave	function	

	𝜙(𝑥) → 𝜙4(𝑥) = 𝑒(5𝜙(𝑥),	with	Δ	being	a	canonical	mass	dimension	brought	by			

	Conformal	⊐	Scale	+	Rotations	+	Boosts	+Translations		

That	gets	𝜎(𝑥)	as	a	function	of	the	quadri-norm	of	the	vector	𝑥.	

For	Curved	Space-time.	

Conformal:	Same	as	above	when	reduced	infinitesimally	into	flat	space-time	which	under	the	

existence	of	the	Killing	invariants.	

Weyl	:	Besides	the	functional	transformation,	there	should	be	a	metric	transformation	such	that	

𝑔"#4 (𝑥) = 𝑒'(𝑔"#(𝑥)		

Note	here	that	the	above	diffeormorphism	𝑥 → 𝑥4 	map	will	not	cause	any	anomaly	since	it	remains	

at	the	classical	level,	and	that	is	easily	seen	from	its	exact	Lorentzian	pairing	up	with	the	metric.	

But	at	the	quantum	level,	it	may	be	picked	up	some	phases	which	may	be	too	eliminated	by	

remarking	that	such	phases	can	be	paired	up	as	opposite	under	degenerate	eigenvalues.	

However	now,	acting	in	plus	by	the	derivative	on	both	the	left	and	the	right	sides	makes	it	in	need	

of	regularization	since	these	derivatives	have	to	pass	through	the	chiral	composition	which	is	

known	to	be	made	from	effective	operators	so	the	need	for	regularizations	starting	from	𝑔"#(𝑥) ≡

67!
6*"

		and	ending	with	𝑇"#(𝑥) = 2/_|𝑔| 2%
2&!"

.	

Due	that	the	result	is	

	0 ≠ 〈𝑇"
"〉 = 〈𝑔"#𝑇"#〉 ≠ 𝑔"#〈𝑇"#〉		 	 	 	 	 	 	 (2)’	

It	has	to	be	eliminated	the	common	eigenvalues	as	since	are	due	to	diffeomorphism.	

That	can	be	done	either	by	subtracting,	[5,	6],	following	what	was	adopted	by	[2],	as	



	𝑔"#〈𝑇"#〉 − 〈𝑔"#𝑇"#〉 ≡ 𝐴89&.	

Or	by	‘diagonalizing’	in	a	fully	non-degenerate	space.		

Which	is	simpler,	and	clarifies	its	subtilities.	So	that	what	is	done	and	for	that	purpose	the	

degeneracy	here	is	unconventionally	non-trivial.	

	

3-	The	Regularization	of		𝜸𝟎		

a-	Saving	Chirality	and	Unitarity	

The	degeneracy	in	the	metric	space	is	treated	in	next,	see	also	Appendix	I.	

It	is	based	on	finding	the	binding	condition	for	any	metric	to	be	unitary	and	non-degenerate.	That	

would	be	on	the	4-norm	of	a	rescaling	of	𝑔.	

What,	is	such	needed,	is	a	Jacobian	for	a	common	scaling	variation	to	both	of	x	and	y	in	

	𝑔"# =
67!
6*"

→ 𝑓�𝑦"�𝑓;,(𝑥#)
67!
6*"

= 𝑓'𝑔<= + 𝑓'�𝑔!= − 𝑔<!� − 𝑓'𝑔!!	 	 (3a)	

So	a	metric	with	𝐹 ≡ 𝑓',	while	being	fully	symmetric	can	be	deduced	for	two	sides	scaling	as	

𝑑𝑠.' = 𝐹𝑑𝑡' + 𝐹𝑑𝑥' = 𝐹𝑑𝑠'	 	 	 	 	 	 	 (3b)	

Now,	the	above	form	of	the	metric	is	encountered	as	a	solution	for	the	orbital	variation	along	a	

metric	in	a	Gauss-Bonnet	Gravity,	[7].	

Then,	in	the	case	the	eigenvalues	are	searched,	such	a	configuration	leads	merely	to	an	operator’s	

acting	change	along	a	modular	form	orbifold	(or	in	its	simplest	form	a	torus).	

Since	the	norm	of	𝑓	is	less	or	equal	to	one	that	keeps	overall	infinitely	acting	operators	convergent.	

	 Plus,	since	in	the	above	map	only	the	zero	components	get	opposed	by	sign,	so	there	is	a	

temporal	twist	(or	a	negative	spatial	twist).	To	break	that	degeneracy	(of	the	metric),	it	is	sufficient	

to	vary,	here	a	rescaling	on	the	one	side-coordinate	supposed	to	be	the	zero	one.	

After	absorbing	𝐹	then	being	rescaled	by	a	negative	−𝜆	as	

	𝐹𝑑𝑠' → −𝜆𝑑𝑡.' + 𝑑𝑥'' → [(−𝜆 − 1) + 1]𝑑𝑡.' + 𝑑𝑥' → �−1 + ,
>?,

� 𝑑𝑡.' + ,
>?,

𝑑𝑥'	



As	|𝐹| ≤ 1	was	arbitrary,	� ,
>?,

� ≤ 1	can	be	re-identified	with	F,	so	one	got	a	dispersive	map	as	

𝑑𝑠.' = 𝐹𝑑𝑠' + 𝐹𝑑𝑡' → 	𝑑𝑠"' = −(1 − 𝐹)𝑑𝑡' + 𝐹𝑑𝑥'			 	 	 (3b)’	

So,	as	was	already	used	above	as	a	property	of	elimination	for	the	redundant	eigenvalues,	but	with	

the	supposed	broken	space,	one	has	then	to	use	the	Jacobian	not	of	𝑓,	but	of	

∆= �
[𝜀@(𝑓' − 1)]

#
$ 0 0

0 𝑓 0
0 0 𝑓

� ≠ 0		 	 	 	 	 	 (4)	

	The	coefficient	𝜀@ = ±	is	considered	to	express	in	the	case	of	correlations	between	two	space-time	

structures,	existent	in	close	neighborhoods	the	need	of	any	possible	extra	time	twists.	

As	proved	in	the	Appendix	I	the	case	∆= 1	is	the	case	of	Unitary	operators	however	with	𝜀@ = −1.	

And	an	operator	𝒯3;ABCDE(F, F∗, 𝑔<<) ↦
,±H√3
'

&%%
√3
.	

If	the	problem	is	considered	for	the	4-spinors	of	Dirac,	the	action	is	given	

𝑆 = ∫_𝑔Ψ�𝑖 𝐷⏞
∕

Ψ ⇒𝑊 = −𝑖𝑙𝑜𝑔 ∫𝒟Ψ�𝒟Ψ𝑒<% = −𝑖𝑙𝑜𝑔𝑑𝑒𝑡_𝑔𝑖 𝐷⏞
∕

			 	 	 (5a)	

Standard	diagonalization	in	compact	manifolds	or	any	unitarily	equivalent	manifold	

_𝑔𝑖 𝐷⏞
∕

ΨK = 𝜆KΨK ⇒ 𝑑𝑒𝑡_𝑔𝑖 𝐷⏞
∕

= ∏ 𝜆KK 	 	 	 	 	 	 (5a)’	 	 	

The	use	of	the	operator	T3;ABCDE	will	have	the	impact	of	pairing	the	eigenvalues	between	F	and	

space-wise	inversion	F∗.		

So	if	Ψ → ¦
ΨL
ΨM
§.	The	2nd	space	is	that	of	the	right	chirality	however	with	opposite	eigenvalues.		

Then,	by	Inverting	the	Time,	the	Parity	Becomes	Odd	 	 	 (5b)	

Therefore,	the	procedure	conserves	the	Dirac	character	for	the	spinors	and	it	is	specifically	a	plain	

regularization	for	its	zero	index	Gamma	matrix.		

That	logic	can	be	confirmed	by	another	means	using	the	Atiyah-Singer	index	theorem	for	the	

Polyakov	strings	under	the	Liouville	action,	[11,17].	More	theoretical	justifications	and	also	their	

direct	implications	are	developed	in	the	next	subparagraph.		



One	can	proceed	into	any	of	the	usual	regularizations	and	whose	original	result	was	advent	by,	[8].	

That	refutes	the	claim	of	Ref.	[4],	that	the	regularization	of	the	Dirac	fermions	has	no	P-odd	terms.	

As	since	the	problem	in	their	case	originated	from	the	fact	that	𝑊	was	ill	defined	in	(1/2,	0)	spin	

space	as	it	goes	to	(0,1/2),	and	it	was	sufficient	to	regularize	ΨL	and	𝑊 = −𝑖 log det 𝑖𝜎. 𝐷				to	lead	

into	𝛿𝑊N97O .	

Also,	the	imposition	of	the	Unitarity	as	an	external	condition	is	not	necessary	as	claimed	by	[5],	

what	is	necessary,	however,	is	providing	the	conditions	of	its	diffeomorphic	variations	in	such	way	

to	verify	the	above	entities,	or	sufficiently	looking	for	a	down	completed	generalized	Wick	rotation.	

b-		𝜸𝟎	Regularization	

Then,	as	due	to	that	in	the	Weyl	representation	Ψ�	contains	𝛾! = �0 𝐼
𝐼 0�,	the	above	diffeomorphic	

rescaling	is	merely	a	regularization	of	𝛾!		in	Weyl	spaces,	as	can	be	verified.		

In	fact,	when	changing	the	representation	from	the	Weyl	to	the	Dirac-Pauli	one,	𝛾!	changes	

into	�𝐼 0
0 −𝐼�	which	has	spontaneously	the	minus	sign	for	the	adjoint	spinors.	

However,	any	dimensional	operator	including	the	non-chiral	Dirac-Pauli	in	the	Lagrangian	has	its	

space	as	doubled	as	well	its	added	Hermitian	conjugate,	so	the	definite	regularizing	diffeomorphism	

will	have	being	acted	by	twice,	then	only	and	only	one	minus	sign	remains.		

Note	about	the	regularization	in	non-gravity	environment	as	it	uses	the	Ward	identity,	[12],	that	

instead	involves	functional	integral	forms	with	matrix	elements	so	can	be	handled	also	as	path	

integrals.	The	matrices	can	act	on	vertices	and	propagators.		

The	vertices	if	spinorial	contain	their	spin	polarizations	which	are	acted	on	then	trivially.		

The	propagators	are	non-trivial	when	neither	Lorentzian	nor	Euclidean;	a	way	which	was	

suggested	in	the	Wicked	path	integral,	[13],	as	they	are		

∆(𝑃) = <
P$;Q$;R$?<S

≅ <
P$(,?<S);Q$;R$		



With	the	not	quite	Minkowskian	metric	is	𝜂S = (1 + 𝑖𝜖, 1,1,1),	whose	determinant	is	_−𝑑𝑒𝑡𝜂S =

√1 + 𝑖𝜖.	That	becomes	for,	𝜖 = 0,	𝜂S → 𝜂L	as	Lorentzian	and		𝜖 = 2𝑖,	𝜂S → 𝜂P 	as	Euclidean.	

This	method	dealing	with	operators	defined	on	metrics	with	signatures	somewhere	between	𝜂P	

and	𝜂L ,	can	be	well	extended	after	a	trivial	rescaling	into	either	𝜂𝐸	or	𝜂L.	If	not	by	the	generalized	

Wick	rotation	described	below	which	turned	out	as	a	regularization	by	the	unitary	operator	𝒯,	too.	

c-	Theoretical	Justifications	and	Consequences	

To	fully	justify	the	above	regularization,	one	has	to	find	if	the	global	domain	of	definition	for	the	

driven	from	Dirac	spinors	remains	well-behaved.	

What	is	concerned	here	and	are	seen	from	the	whole	spectrum:	

Does	the	Hilbert	space	remain	well	defined.		

That	is	true	under	the	developed	down	conditions	and	in	the	Appendix	I.		

Plus	is	there	a	change	in	the	duality	property,	or	what	remains	self-dual	and	what	defies	it.	

Here,	the	trick	applies	as	low	in	dimension	as	the	1+1	string	models	which	was	found	to	be	self	

dual	with	the	permutation	operator	𝜖<#…<&	is	becoming	complex,	[14],	which	under	the	canonical	

gauging,	[15],	claimed	to	be	associated	with	the	Color	charge	remains	self-dual,	except	however	not	

under	space	doubling	since	that	leads	to	the	pop	of	the	Real	Orthogonal	Flavor	group	indices,	[16].	

What	is	noticed	here	is	the	similarity	in	the	complex-real	transition	between	their	breaking	

self-duality	and	ours	in	breaking	the	corresponding	determinants.	Supposedly	then	from	unitary	

into	composite-symmetric	or	-unitary	operators,	famously	eliminating	triangular	flavor	anomalies.		

More	clearly	while	remaining	in	the	complex	structure,	that	would	be,	and	since	the	base	space	of	

start	is	finite	and	that	has	led	to	the	self-duality,	then	(as	that	is	the	statement	negation)	that	would	

be	for	its	operators	being	made	as	adjoint	and	in	an	infinite	base	space	as	also	noticed	in	the	cited	

references,	so	any	iteration	would	be	redundant	and	odd	then	the	outcome	set	tends	to	be	fractal	as	

mentioned	in	the	Appendix	I.			

	



§3.	Solving	a	Classical	Chiral	Orbit	Moving	up	to	the	Surface		

1-	Working	what-ever	Connection	with	a	Pfaffian	Differential	Element	

An	orbital	variation	under	e.g.	a	fixed	3+1	space-time	(in	fact,	that	is	a	lift	along	the	3rd	or	z-	

direction,	is	supposed	to	be	a	moving	away	axis	from	a	projected	(x-y)	-	plane),	is	as	

θV ≡ ∑ eVV'dxV'V' = ∑ �ηVV' + hVV'�dxV'V' 	 	 	 	 	 	 (6)	

Where	the	tensor	ηVV' 	k = 0,1,2,3	is	the	usual	Minkowskian	4-metric,	while	h	is	supposed	to	be	a	

variation	(most	probably	remaining	small)	from	η.	

Despite	that	θV	is	the	same	as	the	Vielbein	(a	generalization	of	the	4-dimensional	Vierbein	to	an	

arbitrary	dimension,	here	it	could	be	very	well	three),	to	which	associates	a	connection	such	ωVV
' =

ωVW
V'dxW	(which	we	choose	the	notation	for	dimensional	generality),	the	following	resolution	goes	

without	the	need	of	the	latest	except	at	verifying	end	conditions.		

The	condition	for	θ	to	be	integrable	requires	in	its	definition,	if	the	surface	term	being	localized	at	

the	end	region	of	x3	is	yet	to	be	folded,	as	since	it	is	a	matrix	form	made	from	two-space	vectors	or	

some	constraint	tensor,	so	following	the	form’s	equations	

dθV = ∑ XE(("

XY*
dxV"V",W ∧ dxW = ∑ X\(("

XY*V",W dxV" ∧ dxW		

⟹ 0 = θV ∧ dθV = ∑ �ηVV' + hVV'� X\
(("

XY*
dxV' ∧ dxV" ∧ dxWV',V",W 	 	 	 	 (6)’	

One	remarks	that	the	above	equation	remains	true	even	without	the	k.	and	k"	summations,	so	

⟹
∑⬚
( X

XY*
�hV'V" + ,

'
∑ hVV'hVV"V � dxV' ∧ dxV" ∧ dxW ⟼ d_

('("(W)				
'

∧ dxV' ∧ dxV" = 0		 	 (6)”	

Which	leads	to	the	definition	of	HV'V"(l),	but	restricted	to	two	variables	considered	as	the	surface	

terms,	so	that	in	plus	it	satisfies	

HV'V"(l) ≡ 2hV'V" + ∑ hVV'hVV"V = cWxW + cW'xW' 	 	 l,	l’	are	different	from	k., k"	 (7)	

This	equation’s	solution	has	the	look	of	an	orbit	including	the	remaining	variable	is	then	confirming	

the	surface	term	under	correlations,	required	in	the	App.	II-a.	



Therefore,	the	metric	defines	as	

gVV' = eVV"eV"V' = �ηVV' + hVV"ηV"V' + ηVV'hV"V' + hVV"hV"V.	�		

= ηVV' + hVV' + hV'V + hVV"hV"V' = ηVV' +HVV'		

And	vice	versa	since	the	vierbein	is	invertible	that	leads	also	it	being	a	square-root	of	the	metric,	

which	is	clearly	sorted	out	under	the	(co-)Homological	Fiber	Bundle	diagrams	description,	[17].		

In	the	product	inside	θ ∧ dθ,	due	completeness	it	can	be	assumed	that	the	tensor	h	is	either	

symmetric	or	anti-symmetric.		

Anti-symmetric	h	with	hVV' + hV'V = 0	will	make	the	metric	a	second	order	in	|h| ≪ 1	can	be	

rendered	however	diagonal,	but	being	parts	of	the	orbits	the	particles	will	still	pop	up	after	an	

integration	is	manifested,	however	shifted	non-commutatively	by	parallel	transports	despite	being	

absorbed	in	the	curvature.	

The	case	of	symmetric	with	

	X\
('("

XY*
dxV' ∧ dxV" = 0		

Has	a	resolvable	equation	at	the	boundary	similar	to	(7),	then	

∑ ϵV.V"W
Xa\('(\(("b

XY*c = 0		 ⟹ VdV
' . �∇ ∧ VWV"� = 0 ⟺ ∇. �VdV

' ∧ VWV"� = 0 ⟹	Two	solutions:	

VWV" ∥ and	 ≠ VdV
' 	for	k. ≠ k"	 	 	 	 	 	 	 	 (7-a)	

Where	each	of	the	three	vectors	is	such	that	if	it	has	its	row	and	line	associated	according	to	

VdV
'¼¼¼¼¼¼⃗ �
V
= hV'V	Or	VWV"

¼¼¼¼¼¼⃗ �
V
= hVV"	 	 	 	 	 	 	 	

Then,	under	the	duality	needed	to	eliminate	anomalies,	described	above,	a	necessary	and	sufficient	

condition	is	to	have	instead	of	the	inclusive	Or	is	to	have	a	Decisive	And.		

That	is,	a	minimal	solution	is	

k. = k	And	VWV" = 0,	no	off-diagonal	elements	hV'V" = 0	 	 		 	 (7-a)’	



The	solution,	with	hV'V ≡ h,V
'V(x),	since	h'

V$' V$(y)δyV$' δyV$ = h,V
'V(x)δxV#' δxV# ,	as	

eY(#'

eY(#
	becomes	

different	from	
ef($'

ef($
	so,	is	a	distortion	for	the	motion.		

More,	using	what	was	obtained,	[7	1st],	as	such	

Rgh = ,
'
�⎕Hgh − ∂g ∂g'Hg'h − ∂h ∂g'Hg'g + ∂g ∂hHii�		

= ,
'
(⎕Hgh − ∂g ∂hHhh	) + ,

'
(∂g ∂hHii − ∂h ∂gHgg) = R,

gh + R'
gh		

Where	the	repetitive	index	sum	is	valid	for	non-triple	ones	only,	plus	of	noting	the	addition	of	two	

Ricci	tensors	R,
gh ≡ ,

'
(⎕Hgh − ∂g ∂hHhh)	and	R'

gh ≡ ,
'
(∂g ∂hHii − ∂h ∂gHgg)	

From	the	freedom	over	the	surface	orbits,	the	metric	variation	is	picked	such	whose	off-diagonal	

elements	are	µ ≠ ν; Hgh = 0 ⇒ ggh = 0.	

However,	Rgh	is	still	be	getting	off-diagonal	elements	as	

µ ≠ ν	→ Rgh = ,
'
∂g ∂h�∑ Hiii −Hhh −Hgg� = ,

'
∂g ∂h ¦∑ Hiiijg

jh
§	

µ = ν → Rgg = R,
gg + R'

gg		

R,!! = − ,
'
∂H ∂HH!!		 And											R,HH =

,
'
�∂! ∂! −∑ ∂k ∂kkjH − 2∂H ∂H�HHH	 	 	 	

R'!! =
,
'
∂! ∂! ∑ Hkkk 	 	And	R'HH =

,
'
∂H ∂H(H!! −∑ Hkk)kjH 		 	 	 	 (7-b)	

So,	it	can	be	written	to	leading	order	in	H,	as	ggh~ηgh	in	the	presence	of× Rgh		

R = ggh�R,
gh + R'

gh� = g!!R,!! + gHHR,HH + g!!R'!! + gHHR'HH			

�g!!R,!! + gHHR,HH� = R,!! − R,HH		 	 =
_→! ,

'
�−∂H ∂HH!!� − ,

'
Å∂! ∂!HHH − ∂k ∂kHHHÆ	 	 	

�g!!R'!! + gHHR'HH� 	= R'!! − R'HH		 	 =
_→! ,

'
∂! ∂! ∑ Hkkk − ,

'
Å∂H ∂H�H!! −∑ HkkkjH �Æ	 	 (7-b)’	

⟹ R' = R,' + R'' + 2R,R' =		

�R,!! − R,HH�
' + �R'!! − R'HH�

' + 2(R,!! − R,HH)(R'!! − R'H
'H')		 	 	 	 	 (7-c)	

RghRgh = R,!!	R,!! + R,HHR,HH + 2R,!!R'!! + 	2R,HHR'HH + R'!!	R'!! + R'HHR'HH		 	 	



+ ,
-
∂g ∂h ¦∑ Hiiijg

jh
§ ∂g ∂h ¦∑ Hiiijg

jh
§		 	 	 	 	 	 	 (7-c)’	

1Am 	line	of	RghRgh = (R,!! +	R'!!)' + �R,HH +	R'HH�
' = R!!' + RHH' 		

One	can	note	the	appearances	of	perfect	squares	which	is	even	more	apparent	when	using	

R' − 2RghRgh = �R,!! − R,HH�
' − 2R,!!	R,!! − 2R,HHR,HH + �R'!! − R'HH�

' − 2R'!!	R'!! − 2R'HHR'HH		

+2�R,!! − R,HH��R'!! − R'HH� − 4R,!!R'!! − 4R,HHR'HH −
,
'
∂g ∂h ¦∑ Hiiijg

jh
§ ∂g ∂h ¦∑ Hiiijg

jh
§		

↔ −�R,!! + R,HH�
' − �R'!! + R'HH�

' − 2�R,!! + R,HH��R'!! + R'HH�		

+∑ ,
'
∂! ∂H(∑ Hiiij!

jH
) ∂! ∂H(∑ Hiiij!

jH
)H − ∑ ,

'
∂H ∂k(∑ HiiijH

jk
) ∂H ∂k(∑ HiiijH

jk
)Hjk 			

What	is	resolvable	as	it	leads	to	the	already	manifested	conformal	equation	R' − 3RghRgh = 0			

0 = R' − 3RghRgh = −�R!! + RHH�' − (R!!' + RHH' 	)		

− 3
-
∑ ∂H ∂k(∑ HiiijH

jk
) ∂H ∂k(∑ HiiijH

jk
)Hjk + 3

-
∑ ∂! ∂H(∑ Hiiij!

jH
) ∂! ∂H(∑ Hiiij!

jH
)H 		 (8)		

That	is	to	be	expected	due	to	the	ratio	of	isotropic	2-surfaces	out	of	3-spaces	in	eq.	(7)	above.	

And	that	is	essential	for	the	shuffle	of	the	eigen-frequencies	if	needed	there.	

Then	if	it	has	been	defined	the	surface	terms	and	found	be	different	from	the	time	coordinate	say	

then	xH$and	xH+ 	so	they	follow	linear	equation	(7).		

In	the	search	for	a	minimal	solution	set	of	functions,	eq.	(8)	is	separated	into	two	identities	as		

𝑇, ≡ −È�R!! + RHH�' + (R!!' + RHH' 	)É	 	 	 	 	 	 	 	 (8)’	

T' ≡ − 3
-
∑ ∂H ∂k(∑ HiiijH

jk
) ∂H ∂k(∑ HiiijH

jk
)Hjk + 3

-
∑ ∂! ∂H(∑ Hiiij!

jH
) ∂! ∂H(∑ Hiiij!

jH
)H 	 	 (8)”	

Where	each	identity	is	invariant	under	the	Lorentz	transformation,	6	rotations	+3	boosts.	

One	is	concerned	mainly	with	the	second	term.	

	

2-	The	Generalized	Wick	Rotation	

To	be	written	in	the	frequency	space,	a	factor	of	the	above	equation	can	be	rewritten	as	



T' ∝ −∂, ∂,H!! − ∂' ∂'H!! − ∂3 ∂3H!! + ∂! ∂!	(H,, + H'' + H33) = −∂, ∂,H!! + ∂! ∂!H,,		(8-a)”	

So	now	internally	a	generalized	Wick	rotation	can	be	working	by	picking	an	internal	SU(3)	

invariance	under	a	rescaling	of	the	above	orbital	definitions	using	the	freedom	over	xW = l = 1,2	

in	(h,,, h'')	.	Now	one	has	to	choose	the	left	and	the	right	unitary	variations	such	as	

(dt, dx,) → �dtn = ,
'
dt + i √3

'
dx,, dx,'3n = ,

'
dx, −

H√3
'
dt�			 	 	 	 (8-a)’”	

(dt, dx,) → (dto = ,
'
dt − i √3

'
dx,, dx,'3o = ,

'
dx, + (i√3)/2	dt)		 	 	 (8-b)’”	

So	one	can	proceed,	also	in	the	Fourier	projection	space,	as	

0 = −	�k,!nk,!o − 3ω!nω!o�H!! 		+ �ω,nω,o − 3k,,nk,,o�H,,				 	 	 	 (9)	 	

Which	is	the	side	correlated	identity	advertised	above.	

To	deduce	from	the	above	duality	the	new	expression	for	the	generalized	Wick’s	frequencies	(or	

Hamiltonian)	squared	 	

0 = −	�k,!
' − 3ω!'�H!! + �ω,' − 3k,,

'�H,,		 	 		 	 	 	 (9)’	

One	confirms	the	above	result	in	view	of	the	factors	since	also	they	meet	the	used	3-isotropy.	Since	

it	has	been	proved	that	multiplying	a	differential	element	by	the	unit	modular	factors	F	or	F*	will	

not	change	its	unitarity	properties.	

Note:		

Under	σ = 1,	see	Appendix	I	for	notation,	it	is	clear	from	the	Pfaffian	resolution	that	the	surface	

term	can	extend	to	one	more	dimension	so	the	anomaly	is	resolved	by	changing	the	Wick	to	the	two	

equivalent	spatial	directions	plus	time,	while	leaving	the	longitudinal	direction	as	real.		

To	deduce	that	such	case	in	eq.	(8)	spreads	over	all	of	the	4-d	space-time	so	verifies	an	Einsteinian	

Gravity		otherwise	the	appearing	conformal	property	is	very	superficial,	recalling	so	a	sub-

conformal	holography.			

	

Appendices:	



I-	An	Eikonal	Mapping	for	Metrics	

Starting	from	the	most	elementary	change,	with	𝜆 ≡ ,;p
p
,	that	is	

𝑑𝑠"' = 𝑑𝑠.' − 𝑑𝑡' = ε(𝐹 − 1)𝑑𝜏' + 𝐹𝑑𝜒'		 	 	 	 	 	 (I-1a)	

An	isotropifying	map	operation	with	the	time	component,	is	done	with	(3 − σ) −space-like	

directions.	Then,	that	mapping,	s(t, x) → s"(τ = εt", χ = x")	is	rendered	a	(4 − σ)	dimensional	

vector,	but	with	any	an	additional	acting	as	by	an	inversion	operator	ε = ±	as	𝜀(t., xHAq. ),	is	done	as	

true	all	along	on	one	side	of	the	scalar	product	so	via	a	vierbein	sandwiching	non-trivially	only	the	

anti-symmetric	permutations	in	the	spectral	representation	so	the	double	derivative	action	would	

be	proportional	to	the	representation	itself.	

Mathematically,	this	is	an	affine	form	for	the	Friedrichs	extension,	[9],	conserving	then	any	

Unitarity	if	proved	existent.	That	is	through	its	re-defined	Hilbert	spaces,	and	as	e.g.	those	implicitly	

dealt	with,	alike	for	the	module-kink-cusp	links	exposed	in	[10],	rescaling	it	convex-wisely.		

By	kerneling	these	modular	forms	it	leads	into	a	Jacobian,	non-zero	positive	and	bounded	by	one.	

So	defining	F = f ',		

0 ≠ Ó

[𝜀@(𝑓' − 1)]
#
$ 0

0 𝑓
0

0 … 0
0 𝑓

Ó = [𝜀@(𝑓' − 1)]
#
$𝑓3;( ≤ 1⟺ 0 ≠ 𝜀@(𝑓' − 1)𝑓'(𝑓';()' ≤ 1	 			(I-1b)	

In	solving	such	a	system,	there	should	exist	a	simply	connected	set	where	that	isotropy	can	be	

applied.	Then,	σ	represents	the	reduction	in	spatial	degree	of	freedom	under	the	kind	of	isotropy	as	

compared	to	the	surface	term.	Also,	

0 ≠ 𝜀@(f' − 1)f '(f';r)' ⇒ f ≠ 0	And	f ≠ 1		

While	f = 0	is	the	trivial	identity	transformation,	f = 1	generates	a	specific	co-dimension	where	the	

the	time	isotropy	is	broken.		

Resolving,	then,	for	orbital	symmetric	length	isotropy,	i.e.	by	setting	σ = 2	so	x ≡ r,	

𝜀@(𝐹 − 1)𝐹 = 1 ⇔ 𝜀@𝐹' − 𝜀@𝐹 − 1 = 0 ⟺ 𝜔' = 1 + 4𝜀@ ⟹ 𝐹 = ,±s,?-t,
'

	 	 (I-2)	



The	case	𝜀@ = 1	leads	to	the	solution	F = ,±√u
'
	which	is	the	Golden	Ratio	representing	the	

emergence	of	Fractals	within	the	system.	While	the	case	𝜀@ = −1,	leads	to	the	solution	F = ,±H√3
'
	as	

it	is	associated	with	the	time	reversal.		

The	operation	of	orbital	skipping	can	be	applied	as	a	scaling	product	with	its	conjugate-like	such	

−𝐹𝐹′∗ = − ,;3
-
= ,

'
		A	Counter	to	Pile-ups	 	 	 	 	 (I-2)’	

This	upper	limit	result,	has	to	be	extracted	to	represent	an	eigenvalues’	transfer	from	a	3-space	

isotropic	2-disk	into	a	3-sphere	rolling,	view	it	is	normalized	such	that	

	𝒯3;ABCDE(F, F∗) ∝ p&%%
√3

	𝑜𝑟	 v
∗&%%
√3
	.	

So	however	the	regularizations	impose	what	is	being	equivalent	to	a	time	ordering	𝑇	for	F	and	F∗	as		

𝒯(F< , F<∗) ∝
wxp%,v%

∗y
√3

= p
√3
	𝑖𝑓	𝑡 < 𝑡∗	𝑎𝑛𝑑	 p

∗

√3
	𝑖𝑓	𝑡 > 𝑡∗	 	 	 	 	 (I-3a)	

And,	now,	whose	imaginary	satisfies	the	Unitarity	semi-equation	at	an	internal	loop	variable	time	

	−2𝐼𝑚𝒯 = 𝒯𝒯∗ ⇔ −2𝐼𝑚Å∑ 𝒯(F< , F<∗)3
<z, Æ = ∑ 𝒯(F< , F<∗)𝒯∗(F<, F<∗)3

<z, + ∑ 𝒯(F<, F<∗)𝒯∗�F=, F=∗�3
<j= ,		

But,	𝑖 ≠ 𝑗	has	a	unique	ordering	so	the	minus	sign	showing	in	Eq.	(6a)	and	due	to	the	time	reversal	

does	not	show	again	so	𝒯(F< , F<∗)𝒯∗�F=, F=∗� = −𝒯�F= , F=∗�𝒯∗(F< , F<∗).	Also,	

∑ 𝒯(F<, F<∗)𝒯∗(F< , F<∗)3
<z, ∝ 3 v

√3
v.∗

√3
+ 3 v.

∗

√3
v
√3
= − ,

'
− ,

'
= −1		And	−2𝐼𝑚Å∑ 𝒯(F<, F<∗)3

<z, Æ = −1				(I-3b)	

The	sphere	map	acting	on	the	3-metric	via	F	and	F∗,	is	thus	proved	an	equality	

𝒯3;ABCDE(F, F∗, 𝑔<<) =
wxp%,v%

∗y&%%
√3

		

Therefore,	the	operation	satisfy	the	Optical	Theorem	and	is	Unitary.	

The	case	of		𝜎 = 1	is	discussed	end	of	§3.	

	

II.	a-	The	Necessary	Lorentzian	Surface	Term	

The	simplest	commonly	example	is	the	Dirac	equation	on	a	covariant	Curved	Space,	whose	details	

were	worked	in	[18].	



So	one	can	deduce	a	convenient	representation	for	γg(x) = bC
g(x)γC	where	bC

g		is	the	vierbein	as	

the	metric	is	ggh ≡ bC
gb{

hηC{,	while	γgγh + γhγg = 2ηgh.	More,	the	connection	is	

Γg = − ,
-
γCγ{bChgh|b|;g

C 	+ iqA			

A	can	be	set	to	zero,	since	arbitrary	in	this	context.		

The	equation,	with	a	covariant	derivatives	∇g≡ ∂g − Γg	via	Γg	the	Spinor	affine	connection,	is	

	�γg(x)∇g +m�ψ(x) = 0	 	 	 	 	 	 	 	 (II-a1)	

Where	γg(x)	is	the	coordinate	dependent	Dirac	matrices	whose	covariant	derivative	is	given	by	

∇gγh(x) = ∂gγh(x) − Γgh| γ|(x) −	Γgγh	(x) + 	γh	(x)Γg = 0		

Where	here	Γgh| 	is	the	Christopher	symbol,	it	differs	from	the	Gauge	invariance	correction	Γg,	noted	

also	ωg		as	it	deals	with	tensor	with	tensors.	

The	Hamiltonian	defined	as	i X
Xm
ψ = Hψ	should	be	regulated	as	

H
' ¦

X
Xm
¼¼⃑ − X

Xm
¼⃐¼§ψ = HdE~ψ ⇒ 2HdE~ = ¦2H + i � XXm�

¼⃐¼¼¼¼¼¼§	 	 	 	 	 (II-a2)	

To	include	the	time	twist	in	it.	One	can	see	this	equation	in	the	Hilbert	Space	of	ψ’s	as	

�ψk, HdE~ψH� =
H
'∫d

3x < ψk�(x, t)[γ!(x)];,
X
Xm
[γ!(x)ψH(x, t)]		

− X
Xm
ãψk�(x, t)[γ!(x)];,äγ!(x)ψH(x, t) >				 	 	 	 	 	 (II-a2)’	

One	can	deduce	that	the	Hamiltonian	becomes	Hermitian,	since	in	the	space	of	frequencies	the	time	

derivative	transforms	into	frequencies	while	[γ!(x)];,	γ!(x) = 1.	

However,	it	has	been	dropped	above	the	surface	term∫d3x ∂/ ∂tÅψk�(x, t)ψH(x, t)Æ.	

b-	The	Expansion’	al	Popping	up	of	an	Independent	Neutrino	Flavor	Wave	Vector			

One	can	proceed	by	a	simplifying	illustration	but	that	a	physical	implication	on	the	Flavor	Physics.	

Recalling	that	the	amplitude	of	one	neutrino	generation	say	c	out	of	νC	a = e, µ, τ	is	given	to	first	

order,	by	an	expression	aåDD = ∑ (MDD)C{(an)C{C{ 	when	expanded,	[19],	as	such	

aæDD = ∑ (MDD)C{(an)C{CjD
{jD

+ (MDD)ED(an)ED + (MDD)gD(an)gD + (MDD)D�(an)D�			 (II-b1)	



While	using	in	plus	of	∑ UC'C
∗ UC'{C' = δC{,	

	(MDD)C{ = ∑ τC'{'C'{' UC'D
∗ UC'CU{'{

∗ U{'D	 	 	 	 	 	 	 	

	Where	the	matrix	amplitude	τ	derives	from	the	plane	waves	of	oscillations	taken	at	the	

boundary	t → 0	or	t ≪ ,
�./0*1

.		

Since	in	the	above	it	was	derived	that	the	boundary	should	contain	at	least	a	relation	between	two	

boundary	variables,	which	leads	that	the	radial	distance	can	be	parameterized	in	terms	of	time.	So				

	τC'{' = ç
exp(−iE{'t)							EC' = E{'

EYBx;H�0'my;EYBx;H�2'my
;Hx�0';�2'ym

										EC' ≠ E{'
		 	 	 	 	 	 	 (II-b2)	

Since,	a	kink	in	the	region	subject	to	an	energy	EC' = E{' ,	eliminates.		

We	are	interested	in	EC' ≠ E{' .	

The	fact	of	arbitrariness	of	the	difference	of	energy	in	the	case	of	the	oscillation	leads	to	take	one	of	

the	energies	to	be	zero,	say	E{' ≡ 0.		

Plus,	due	a	doubling	that	can	occur	in	the	cusp	case	only,	which	and	so	EC't ≪ 1.	One	has	then,	

τC'{' →
,
'H
(EC' + E{')t ⇒		

	(MDD)C{ ≈ ∑ �1 + ,
'H
EC't�C'{' UC'D

∗ UC'CU{'{
∗ U{'D = ∑ �1 + ,

'H
EC't�C' UC'D

∗ UC'Cδ{D	 	 (II-b1)’	

One	sees	that	the	summation	over	b.	is	totally	decoupled	and	it	cannot	be	reduced	(to	a	

Kronicker	δ),	unless	the	orthonormal	eigen	proper	basis	indexed	by	b	has	no	mixing	to	the	

orthonormal	eigen	proper	basis	indexed	by	b..	

Therefore,	the	flavor	indexing	is	independent	from	any	external	currents	that	may	link	it	then	

through	Color	or	Charge,	as	seen	in	§2.	

With	the	existence	of	Wave	Vector	under	that	the	radial	parameterization	is	directly	related	to	the	

time	through	a	linear	relation	leads	to	that	the	velocity	is	well-defined	and	is	independent	therefore	

its	Helicity	is	non-zero	and	unique,	then	its	Chiral	nature.	
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