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1. Introduction

The world of arti�cial intelligence AI is increasingly penetrating all aspects of our personal and

professional lives. This proliferation of AI tools and applications are being met with a mixture of

excitement, scepticism and even dread[1]. Excitement at the seemingly endless potential of AI

applications such as LLMs, especially when they are integrated “within broader systems”[2],

scepticism as the realisation dawns that LLMs are in fact fallible as evidenced by hallucinations and

hence not the golden bullet that can solve all problems[3][4], and a feeling of dread for those who

believe that LLMs and AI have the potential to detrimentally impact our lives and make people

redundant[1].

The ability of some LLMs to pass Theory of Mind (ToM) [5][6] and Turing Tests [7][8] suggests support

for the Computational Theory of Mind (CTM), that cognition may be substrate independent. These

�ndings challenge biological essentialism and open new avenues for creating sophisticated AI systems

capable of human-like reasoning and interaction. Viewed another way, these studies could be taken to
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provide evidence for those critical of both the Turing Test and Theory of Mind tests in assessing

cognition in humans and animals.

However, it should be noted that LLMs by themselves have no self monitoring (also called

phenomenal consciousness or subjective experience) or internal, updatable model of their external

environment (that is, a model of itself as a being in a world). Both of these conditions are required in

some reasonable theories consciousness[9]. Those omissions alone may be taken as evidence against

LLMs having any form of consciousness as that term is currently understood.

We begin this paper by providing an overview covering the basics of LLM in Section 2: An Overview of

LLMs, in order to provide a common understanding and vocabulary for these natural language

modelling approaches.

In Section 3: LLMs Orchestrated with Other Technologies, we note that LLMs may be combined with

other, more traditional, information retrieval technologies to create full-featured systems that can

adapt LLMs to their own use cases.

In Section 4: Risks and Mitigations we identify a series of common risks when working with LLMs.

LLMs, like any technology, are tools to be used with awareness and even caution. They may produce

content that we wish they would not. Language models pre-trained on large text corpora that are

highly likely to contain toxic and inappropriate content, are known to pass these biases on, or worse

amplify them, when generating query responses and text[10]. The bias can present itself in various

forms such as discrimination based on race, gender, disability, nationality or religion[11][12]. To this

end researchers developed a challenge dataset, CrowS-Pairs, crowd sourced using Amazon Mechanical

Turk (MTurk), to measure the extent of biasin masked language modelling (MLM)[11]. More recent

approaches to address such biases were collected by Gallegos et al in[10].

Similar to the problems of socially inappropriate content are problems related to the accessibility of

legally inappropriate content in training data. Most foundational LLMs are pre-trained to avoid

assisting criminal activities such as composing blackmail letters or providing instructions on how to

commit crimes, but prompt engineering may be used to work around these built-in checks and

balances. We address these issues and various approaches to their resolution in Section 4.3: Jailbreak

Attacks.

Finally, we conclude by summarising the key points related to LLMs and their usage.
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2. An Overview of LLMs

The emergence of LLMs is preceded by an extensive body of research in language modelling[13] where

word sequences were scored with the aid of a probabilistic model possibly dating back to 1976[14][13].

Natural language processing (NLP) modelling further evolved over time with recurrent neural

networks (RNNs) becoming the model of choice for autoregressive language modelling tasks such as

translation. However, RNNs typically process one token at a time because they are designed for

sequential processing, making parallel processing hard to achieve and limiting the capture of long

range sequences. The latter is often referred to as the “vanishing gradient problem”[15][16].

RNNs are further constrained due to their heavy use of computing resources. Although more

computing power is available these days, relieving some of the constraints, the key change maker was

the publication of the seminal paper “Attention Is All You Need”[17]. The authors introduced a model

called the Transformer, signalling the arrival of what is commonly known as ‘transformer

architecture’, which revolutionised NLP. As the title implies the researchers discovered that it was

possible to rely solely on self-attention and feedforward layers without recurrent connections as in

RNNs[17]. Moreover, with the introduction of Reformer, a revised version of Transformer, the same

performance was obtained in a far more memory-e�cient way and on much longer sequences of

words[18].

Several LLMs are based on this architecture, such as bidirectional encoder representations from

transformers (BERT)[19]  and variations of BERT: a lite BERT (ALBERT), Robustly optimised BERT

approach (RoBERTa) developed by researchers at Google; Large Language Model Meta AI (LLaMA)

developed by Meta[12] and the Generative Pre-trained Transformer (GPT) models from OpenAI such as

GPT-3, GPT-4, GPT-4o, GPT-1o preview and GPT-1o mini. The proliferation of large models over

time are captured in Figure 1 (page 3), for the period 2019 to early 2024[20]. Moreover, the diagram

distinguishes between open- and closed-source models with the former above the timeline and the

latter below the timeline, showing a clear trend towards open-source models[20].

Despite the increasing number of open-source models compared to closed-source models, real

concerns exist for the integration of LLMs into predominantly open source systems. Bloomberg

notes[21], “To deliver viable alternatives that compete with centralized, closed-source solutions,

decentralized AI teams will need to innovate on model architectures and leverage model coordination
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platforms. In practice, this will enable ML researchers and engineers to broadly experiment with a

wide variety of models aimed at di�erent application verticals. This largely re�ects how crypto

networks can accelerate AI development.”

Figure 1. Timeline of LLM releases: blue rounded rectangles are ‘pre-trained’ models, while orange

rectangles are ‘instruction-tuned’ models. Models above the line indicate open-source availability, and

those below the line are closed-source (image from Naveed, H., et al.[20])

2.1. AI Project Development utilising LLMs

The hype around AI and particularly LLMs sparked the realisation that there are real bene�ts to be had

if this technology can be integrated in every day personal activities and in businesses and

organisations to improve productivity through automation of repetitive trivial tasks, and

consequently enable employees, students and researchers to dedicate more time on interesting and

complex tasks.

When embarking on an AI/LLM project to harness the power of this technology, we observe that the

life cycle of such a project consists mainly of four distinct phases[22]:

1. Project scoping

2. Model selection

3. Model adaption and alignment

4. Application integration
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De�ning a detailed and accurate description of the use case is the �rst and crucial step in the project

life cycle, ensuring a clear and concise scope of the project at hand.

Figure 2. Generative AI use case categorisation

When de�ning the use cases, we �nd that they require di�erent degrees of precision and recall to

satisfy the main task or objective. Project objectives and use cases may be viewed as roughly falling in

one of the quadrants in Figure 2, page 4, indicating the combination of precision and recall required

for the project tasks. High precision is crucial when the output needs to be highly accurate and errors

may have major consequences. Whereas high recall is essential when capturing as much relevant

information as possible is the primary focus. Most use cases are likely to require at least moderate

recall and precision.

Quadrant 1: Low recall, low precision

Use cases in this category are typically of a creative nature, where the goal is not to get high quality

or exhaustive content but simply to spark ideas and inspire. In a creative environment, generated

completions may even be incomplete, vague, or somewhat nonsensical, but they can still serve as

useful prompts for creative thinking. Researchers recently explored the concept of enhancing

secondary school students’ creative writing skills by leveraging AI in the language classroom[23]. In

another study researchers experimented with AI to aid song composition, including the song’s

structure, harmony, lyrics, and hook melody[24].
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Quadrant 2: High recall, low precision

Use cases in this quadrant are similar to the way we use search engines, e.g. searching for product

support or services. Instead products such as MetaMask or Linea could integrate AI into customer

support. Here high recall is necessary to ensure that as many customer issues as possible are

addressed, while precision needs to be only moderate to low, since some responses could be

reasonably generic, such as suggesting appropriate next steps for investigation or resolution. The

extent to which generic advice can be given would depend on the product and the support

requests[25].

Quadrant 3: Low recall, high precision

Language translation falls into this quadrant, in the moderate to high precision and moderate

recall area. In some situations it is important that the translation is accurate and precise rather

than exhaustive in capturing all nuances of the source text. On the other hand, although precision

is important for �uency and accuracy in certain instances, some variations in wording may be

acceptable[26].

Quadrant 4: High recall, high precision

For use cases in healthcare and medical diagnosis it is critical to have both high precision and high

recall[27]. Similarly, legal tasks require high precision and moderate to high recall, depending on

the task, e.g. in legal reasoning, “generating arguments for and against particular outcomes”

would need accurate references to relevant cases and judgements, but the formulation of

arguments can accomodate some creativity[28]. Nonetheless in both instances the results need be

reviewed by relevant experts, before implementing any generated advice or diagnosis. These types

of use cases would ultimately bene�t from more complex solutions that combine LLMs with

retrieval augmented generation (RAG) via orchestration. We can think of use cases in this quadrant

as more analogous to the way we previously heavily relied on relational databases to achieve the

same ends.

2.2. Choosing a Foundational LLM

The choice of which LLM to use in an AI project for a given task or functionality may appear daunting

due to the sheer number of LLMs currently available, and the emergence of a seemingly endless

stream of new LLMs, including updated versions of existing LLMs, each purporting to improve on the
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previous version (Figure 3, page 5)[29]. Moreover, pre-training and �ne tuning techniques for models

di�er depending on the desired capabilities of the language model[30].

Figure 3. Technical evolution of the OpenAI GPT-series models[29]

LLMs have evolved from relatively simple language tasks such as text generation to models capable of

performing more complex tasks, such as those illustrated in Figure 4, page 6[29].

When weighing up the options, we need to take several aspects into consideration. The number of

parameters in models vary widely and can limit the range of devices it can run on, as well as the task

objectives and applications that are best suited to a particular LLM. Smaller models do not necessarily

perform worse than large models, especially if the model is being optimised to perform a speci�c task

well, rather than aiming to cater for multiple use cases. Determining model size is just one

consideration when choosing an existing LLM, adapting an existing model, or building a new �t-for-

purpose model from scratch.

Figure 4. Task solving[29]
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It is helpful to keep the Transformer LLM framework Figure  5(a) and high level architecture

Figure 5(b), page 6, in mind when choosing a suitable foundational LLM model.

The encoder component encodes the model input, entered as a “prompt”, with contextual

understanding and produces one vector per input token. The decoder processes the input tokens and

uses the contextual understanding from the encoder to produce new tokens.1 Prompt engineering is

described in Section 2.6.1 on page 18.

Figure 5. (a) Attention framework (image by Vaswani, A., et al.[17]) (b) Encoder Decoder

components of transformer architecture (image by DeepLearning.AI[22])

We can categorise foundational Transformer LLM models as essentially one of three types: decoder-

only, encoder-only, or encoder decoder models.

2.2.1. Decoder-only models

Decoder-only models are autoregressive models pre-trained to predict the next token based on

previous tokens, making them well suited to text generation (e.g. for creative writing or content

qeios.com doi.org/10.32388/NHJYVS 8

https://www.qeios.com/
https://doi.org/10.32388/NHJYVS


generation), autocompletion (e.g. autocompletion of sentences or lines of code), language translation,

and text summarisation.

There are several well known decoder-only LLMs, such as the GPT series of models from OpenAI,

LLaMA and open pretrained transformer (OPT) from Meta, Claude from Anthropic, peer-to-peer

(p2p) from Google and Gopher from DeepMind.

Causal language modelling (CLM), a self-supervised learning approach, is the preferred method for

training decoder-only LLMs. CLMs apply autoregressive modelling to input data to predict future

tokens based on past tokens, an approach that is common in time series prediction and recurrent

neural networks. Decoder LLMs leverage their uni-directional, autoregressive nature to learn

language patterns (Figure 6, page 7). CLM token prediction is uni-directional because only the past

tokens are used to predict the next tokens.

Figure 6. Causal language modelling (CLM) for decoder-only models (image by Clark, K.,et al.[31])

2.2.2. Encoder-only models

Encoder-only models are auto-encoding models, well suited to tasks that involve understanding and

extracting meaning from text, such as word classi�cation, named entity recognition, question

answering and sentiment analysis.

Key foundational encoder-only models include BERT[19], variant RoBERTa, and ELECTRA[32].
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MLM, most frequently used to pre-train encoder models[19][26], is a self-supervised learning

technique that randomly masks tokens in an input sequence with the aim of learning the masked

tokens based on the surrounding context provided by the unmasked tokens[11][31]. Hence MLM di�ers

from CLM by using unmasked tokens both before and after masked tokens, providing a bi-directional

understanding of context instead of being limited to the words that precede it (Figure 7, page 8).

Alternatively, techniques such as replaced token detection (RTD), which was used to train ELECTRA,

may be used[32]. With RTD instead of masking tokens as in MLM, a small generator model replaces

some tokens with plausible alternatives and the encoder (discriminator) is then trained to detect the

tokens that have been replaced[31].

Figure 7. Masked language modelling (MLM) for encoder-only models (image by Clark, K.,et al.[31])

2.2.3. Encoder Decoder models

Encoder-decoder models are sequence-to-sequence models, and suited to tasks that require both

understanding and generation of text, such as translation, summarisation, question answering and

dialogue systems.

Two notable sequence-to-sequence LLMs are T5[33]  and BART[34]  with both aiming to denoise

corrupted inputs, via slightly di�erent pre-training approaches.

For T5 the encoder is pre-trained using span corruption, where random sequences of tokens are

masked and replaced with unique Sentinel tokens ( ) that are added to the vocabulary. The

decoder then reconstructs the masked token sequences in an autoregressive manner (Figure  8,

page  8). On the other hand BART uses more varied forms of corruption, including sentence

permutation. Another interesting encoder-decoder model is the multilingual variant of T5, mT5[35].

< x >
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Figure 8. Encoder-decoder model (image by DeepLearning.AI[22])

2.3. Pre-training Foundational LLMs

LLMs are pre-trained on vasts amounts of textual data using a variety of strategies and techniques,

which is often followed by more speci�c �ne-tuning of the model to suit its intended use[36].

Interestingly, LLaMA was trained exclusively on publicly available data sources[12] (Figure 9).
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Figure 9. Overview of research work on LLaMA showing data sources, pre-training, �ne-tuning and

instruction tuning (image from[29])

The general trend has been to train ever larger models because large pre-trained Transformer models

were found to be capable of performing tasks for which they had not been speci�cally trained on[30].

Conversely, Ho�man et al.[37] found that training a smaller model on more data for a given compute

budget is more performant than only increasing model size while keeping the size of the training data

unchanged. However, focussing on the optimal combination of model size and training dataset size

does not take into account the importance of the speed of inference[12]. Instead Touvron et al.

[12] concluded that training smaller models for longer results in faster inference.

qeios.com doi.org/10.32388/NHJYVS 12

https://www.qeios.com/
https://doi.org/10.32388/NHJYVS


Figure 10. Model architecture and pre-training objectives (image by DeepLearning.AI[22])

Pre-training of LLMs is performed using data labels. Adding labels to data prior to training

(supervised learning) typically requires human annotation which is infeasible when training on very

large corpora. Supervised learning for LLMs is more typically used when training a model for a speci�c

task, such as �ne-tuning a model. Unsupervised learning on the other hand is a well known machine

learning technique to learn patterns and structure from unlabelled data through methods like

clustering and dimensionality reduction. self-supervised learning (SSL) may be viewed as a ‘blend’ of

supervised and unsupervised learning. During SSL the unlabelled data itself provides the supervision

by generating labels from the input data and this can be done in several ways, as discussed below[38].
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Figure 11. Pre-training and �ne-tuning Large Language Models (LLMs), illustrating the seven essential

stages (image from[39])

2.3.1. Self-supervised learning

SSL is the most popular machine learning technique for LLMs. This approach is often referred to as the

“dark matter of intelligence”[38]  and includes learning methods such as CLM, MLM, Span-Level

Masking, and Contrastive Learning, where models learn without the need to explicitly apply external

labels to the data.

ELECTRA, also an encoder-only mode like BERT uses an alternative pre-training method to MLM

called “replaced token detection”[32].

Various SSL approaches have been used in training foundational LLMs (Table 1 on page 11). Moreover,

as can be seen from summary table 1, page 11, some notable LLMs combine multiple self-supervised

approaches to leverage the strengths of each method, e.g. BART, BERT and T5[33][34].
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Approach Description Notable Models

Masked Language Modeling (MLM) -

Figs. 7 & 10

Predict masked tokens in input sequence (bi-

directional) [31]

BERT, RoBERTa,

ALBERT

Causal Language Modeling (CLM) -

Figs. 6 & 10

Predict next token from previous tokens (uni-

directional)

GPT series,

Transformer-XL

Permuted Language Modeling Predict tokens in random order [31] XLNet

Next Sentence Prediction (NSP) Predict if one sentence follows another BERT

Sentence Order Prediction (SOP) Predict correct order of sentence pairs ALBERT

Span-Based Masking - Fig. 10 Predict missing spans of tokens T5, BART

Denoising Autoencoders
Reconstruct original text from corrupted

input
T5, BART

Contrastive Learning Di�erentiate similar and dissimilar inputs SimCSE

Table 1. Summary of self-supervised learning (SSL) approaches

2.4. Adapting LLMs for Speci�c Use Cases

Large pre-trained Transformer models were found to be capable of performing tasks for which they

had not been speci�cally trained on[30]. This is known as “zero-shot” inference[30]. However, when

the output from the LLM for a certain task is less than satisfactory, there are two main techniques to

achieve better results: in-context learning and �ne-tuning.

2.4.1. In-context learning

In-context learning (ICL) refers to the capability of pre-trained LLMs to perform new tasks by

leveraging information provided within the context window, without any explicit parameter updates

or �ne-tuning[36].

Instead of adjusting weights through gradient descent, the model adapts its behaviour based on

examples, instructions, or demonstrations included in the prompt[40]. Figure  12 (page  12) shows
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prompting with none, one and two examples in the context window. This strategy allows LLMs to

generalise to a wide range of tasks using natural language interactions[36].

Figure 12. Example of in-context learning (ICL) (image by DeepLearning.AI[41])

In few-shot prompting the model uses the examples provided in the context window to infer the

task’s structure and apply it to new inputs. The study by[36]  (Figure  13, page  13) shows in-context

learning curves with few-shot learning of a simple task. We can observe that model performance

improves with increases in both model size and number of examples in the context window[36].
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Figure 13. In-context learning performance with di�erent model sizes and number of

examples[36]

Chain-of thought-prompting[40]  is another e�ective ICL technique to help LLMs perform complex

reasoning required for tasks such as arithmetic computations that LLMs have been known to struggle

with. In chain-of-thought reasoning, the user provides an example with the steps a human would take

to achieve the desired outcome or calculation (Figure 14, page 14). This technique can also be used for

commonsense and symbolic reasoning tasks[40].

Figure 14. Chain-of-thought prompting example[40]
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2.4.2. Fine-tuning

Fine-tuning is the process of updating pre-trained LLM weights by training on speci�c datasets for

chosen tasks[36][33]. Supervised �ne-tuning (SFT)[19], reinforcement learning with human feedback

(RLHF)[42], and parameter e�cient �ne-tuning (PEFT)[43] are three of the most popular �ne-tuning

approaches for LLMs.

However, there are several other �ne-tuning approaches that can be employed. They can broadly be

categorised as full model �ne-tuning (e.g. SFT[19]  and RLHF[42]), PEFT (e.g. low-rank adoption

(LoRA)[44]), and model compression and deployment optimisation (e.g. quantisation-aware �ne-

tuning as used for Q8BERT LLM[45]). A visualisation of this grouping and associated �ne-tuning

techniques in each category are shown as a mind map in Figure 15 on page 14.

Sometimes a single technique may be insu�cient in delivering the desired outcomes, and instead we

can combine multiple �ne-tuning strategies, leveraging the strengths of each technique in order to

address shortcomings, such as solving multiple constraints simultaneously or the need to optimise for

performance, e�ciency, and alignment. For example, combining RLHF with LoRA would yield models

that are both aligned with human preferences and parameter-e�cient.
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Figure 15. LLM �ne-tuning categories

To complement the visual representation of �ne-tuning strategies in Figure 15 on page 14,

Table  LABEL:tbl:�netune on page  LABEL:tbl:�netune provides a bit more detail for each of the

strategies in the diagram.
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Fine-Tuning Approach Description When to Use

Supervised Fine-Tuning

(SFT)

Updating all pre-trained model parameters on

labeled data for a speci�c task[36].

Substantial amount of labelled

data available.

Well-de�ned tasks requiring

high accuracy.

Instruction Fine-

Tuning

Using instruction-response pairs to enhance the

model’s ability to follow human

instructions[46].

Improving the model’s ability

to understand and execute

human instructions.

Developing assistant-like

applications.

Reinforcement Learning

from Human Feedback

(RLHF)

Using human feedback to train a reward model

to guide models via reinforcement learning to

align with human preferences[42] .

Aligning model outputs with

human values and preferences.

Improving response quality

and safety.

Multi-Task Fine-

Tuning

Simultaneously �ne-tuning for multiple tasks

to achieve better generalisation[47].

Models that perform well on

multiple tasks.

To improve generalisation.

Continual Learning
Sequentially �ne-tuning the model on new

tasks while preserving previous knowledge[48].

Model needs to adapt over

time, e.g. evolving data

distributions.

To prevent catastrophic

forgetting.

Fine-Tuning with

Frozen Layers

Freezing certain layers and updating only the

top layers to reduce computation and retain

general knowledge[49] .

Limited computational

resources.

Limited �ne-tuning data

available.

To prevent over�tting.
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Fine-Tuning Approach Description When to Use

Sparse Fine-Tuning
Updating only a subset of model parameters

relevant to the new tasks[50].

For computational e�ciency.

Limited �ne-tuning data

available.

To prevent over�tting.

Pre�x Tuning and

Prompt Tuning

Adding trainable continuous prompts or pre�x

tokens to inputs to adapt model with minimal

changes to original parameters[51][52].

For parameter-e�cient �ne-

tuning.

Adapting to multiple tasks with

minimum alteration to core

weights.

Low-Rank Adaptation

(LoRA)

LoRA freezes model weights and inserts

trainable low-rank matrices in the model layers

which reduces the number of trainable

parameters[44].

Limited computational

resources.

Rapid experimentation

required.

Adapter Layers

Inserting lightweight adapter modules in model

layers to adapt to new tasks, only updating

adapter parameters[43][53] .

Limited computational

resources.

For multi-task learning with a

shared base model .

Avoiding catastrophic

forgetting because base model

is unchanged.

Federated Learning for

LLMs

Fine-tuning across decentralised data sources

while preserving privacy[54].

Data privacy is a concern.

Well suited for sensitive or

proprietary data.

Progressive Training
Trains models in stages, starting with smaller

models and gradually increasing complexity[55].

Large datasets or models.

Improve generalisation over

progressive complexity.
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Fine-Tuning Approach Description When to Use

Quantisation-Aware

Fine-Tuning

Simulating quantisation e�ects to ensure

robustness and maintain performance on low-

precision hardware (e.g., 8-bit systems)[45].

Deploying on devices with

limited computational power.

Reducing model size and

increasing inference speed.

Knowledge Distillation

Training a smaller model to mimic a larger

model for deployment in resource-constrained

environments[56].

A lightweight model is

required.

Ideal for real-time inference.

To compress models without

signi�cant performance loss.

Table 2. Summary of �ne-tuning strategies

2.5. Creating a bespoke LLM

In some instances it may be preferable to develop a bespoke LLM instead of �ne-tuning one of the

popular foundational models. To do this, the following steps provide a general approach:

1. Data Selection and Preparation

Data gathering: The foundation of any LLM is the data it learns from. Therefore, identifying

the appropriate and relevant data sources is an important �rst step in developing a bespoke

LLM and requires a clear understanding of the key objectives of the LLM. The data gathering

exercise typically involves obtaining extensive text data from various sources such as books,

websites, and articles, but in other cases the inclusion of a highly diverse corpus of text data

may be less relevant and attention is instead focussed on sourcing only a few, but high quality

datasets to train the model on. Nonetheless, some additional re�nements may be achieved at a

later stage by employing a variety of learning approaches as discussed in Section 2.4 Adapting

LLMs for Speci�c Use Cases.

Preprocessing: The data typically needs some degree of preprocessing, such as data cleansing

to remove noise and irrelevant content, normalisation to standardise text formats, and

tokenisation to convert text into a format that the model can understand.
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Annotation: If supervised learning is involved, this stage may also include annotating the data

with labels.

Training data: Finally, the dataset is split into training, validation, and test datasets to enable

e�ective learning and unbiased evaluation. The training data allocation is usually set around

15%.

2. Model Design and Con�guration

Choosing the right model architecture is critical to achieving the desired performance. For LLMs,

Transformer-based architectures are commonly used due to their ability to capture long-range

dependencies in text. This step involves con�guring the model’s parameters, such as the number

of layers, hidden units, and attention heads, to balance performance with computational

feasibility. Hyperparameter tuning is conducted to �nd optimal settings for learning rate, batch

size, and regularisation techniques, which can signi�cantly impact the e�ciency and

e�ectiveness of the training process.

3. Training the model

Once the data has been sourced and cleaned, and the model architecture chosen, the training

environment needs to be set up. This includes selecting appropriate loss functions (like cross-

entropy loss) and optimisers (such as Adamor Adafactor  [57]). The model learns by minimising

the loss function over the training data, adjusting its internal parameters to improve predictions.

Throughout training, it is important to monitor metrics like loss and accuracy, and to validate

the model on the validation set to prevent over�tting, a problem inherent in machine learning

techniques.

4. Fine-tuning and Deployment

Once a model is trained we need to evaluate it against expected behaviour and through

approaches such as �ne-tuning and prompt engineering to ensure that the model performs as

desired. Using the prior technique will adjust model weights, whereas the latter leaves the

original weights in tact. Further actions such as developing APIs to access the trained LLM may

then be undertaken and deployed in production. Post deployment it is crucial to be cognisant of

ethical implications and legal considerations, including assessment of unintended biases.

Ultimately LLM development is an iterative process and by leveraging information such as user

feedback, metrics of loss and accuracy, changes to task requirements and/or current data, and
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compliance with the validation set to prevent over�tting, we can ensure that the LLM remains

relevant throughout its life.

2.6. Interacting with LLMs

There is a myriad of ways in which we can interact with LLMs, depending on the desired end goal(s).

Some interactions such as �ne-tuning (See Section 2.4.2, page 13) adjust the base model while others

focus on the most e�ective way to perform tasks and extract information without adjusting the

underlying model. Figure 15, page 14 visually summarises the various approaches.

Figure 16. Ways of interacting with an LLM

Table  3, page  19, gives a brief overview of these methods, but arguably the most common and well

known way of interacting with LLMs is through a chat bot such as ChatGPT (by OpenAI), BARD (by

Google), Claude (by Anthropic) and Bing Chat (by Microsoft, powered by OpenAI) [7][58][59].

qeios.com doi.org/10.32388/NHJYVS 24

https://chat.openai.com/
https://bard.google.com/
https://bard.google.com/
https://www.anthropic.com/
https://www.bing.com/chat
https://www.qeios.com/
https://doi.org/10.32388/NHJYVS


Method Explanation

Chat Interfaces User-friendly platforms for real-time conversational interaction with LLMs.

Voice Assistants Use of speech to interact with LLMs in voice-enabled applications.

Graphical User Interfaces

(GUIs)
GUI-based applications enabling interaction with LLMs without coding.

Command-Line Interfaces

(CLIs)

Interaction with LLMs via command-line tools for scripting and automation

tasks.

APIs & Wrappers
Programmatic access to LLMs and associated libraries for ease of integration into

applications and services.

Fine-Tuning and Training
Adjusting model parameters to perform specialised tasks using machine learning

tools.

Prompt Engineering The art of crafting speci�c prompts to elicit desired outputs by LLMs.

Educational and Research

Tools

Using platforms such as Jupyter and Colab for experimenting and learning with

LLMs.

Embedded Systems Integration of LLMs into hardware devices for natural language understanding.

Table 3. Methods to Interact with LLMs

In Section 2.6.1, page 18, we discuss prompt engineering in more detail, a simple and e�ective way for

most users to harness the knowledge, and explore the functionality, of an LLM. However, a �exible,

powerful and e�ective way of interacting with LLMs is through application program interfaces (APIs),

but that requires a higher level of technical expertise. Several of the well known pre-trained LLMs

provide APIs, some are open source and others not. The more popular APIs are: Hugging Face’s

Transformers Library and Inference API, Google Cloud’s Natural Language API, IBM Watson Language

Translator API, APIs to access BERT can be obtained via Google Research BERT repository or through

Hugging Face’s BERT model webpage, and APIs for OpenAI GPT-4o and GPT-4o mini.
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2.6.1. Prompt Engineering

Prompt engineering is a technique used to maximise the e�ectiveness of an existing LLM without

altering its internal structure. The process comprises three parts: the prompt itself is the model input,

model inference is the generation of text in response to the prompt, and lastly completion is the

resulting output text. The context window is the all the text and memory that is available.

By carefully crafted prompts, users can harness these models more e�ectively, leading to better

outcomes in tasks ranging from simple queries to complex problem solving, but it has limitations. One

e�ective strategy to improve model outcomes is by including examples inside the context window

(Figure 12, page 12). This process is called in-context learning and the variations of in-context learning

are: [36]:

zero-shot inference - no examples provided

one-shot inference - one example provided

few-shot inference - more than one example provided

We can also view prompt engineering as a complementary technique to �ne-tuning by using it to

generate training data or as an interim solution to improve the model’s performance. A general guide

for progressing on to �ne-tuning is when the number of examples (few shot learning) is growing to

more than 5 or 6, with diminishing improvements in LLM output. Nonetheless, the research study by

Brown, T.B., et al. [36] used a few dozen examples in their few-shot settings (Figure 13, page 12).

2.6.2. Summary of LLM Overview

This overview of LLMs is visually captured in Figure 17 on page 20 depicting the di�erent phases and

characteristics of LLMs.
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Figure 17. Overview of the various characteristics, activities and strategies of LLMs : 1. Pre-Training 2.

Fine-Tuning 3. E�cient 4. Inference 5. Evaluation 6. Applications 7. Challenges (image by Naveed, H., et

al.[20])

3. LLMs Orchestrated with Other Technologies

Orchestration of LLMs with traditional information retrieval systems has been explored since the

early stages of this technology. Google researchers developed a platform in 2017 to speed up the

creation and maintenance of production platforms when combining components of their TensorFlow
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machine learning system[60]. Some of those same techniques are present in more modern systems

today. In 2018 medical informatics researchers combined image caption-generation engines with

structured data stores to yield better captions[61]. By 2020, Google and collaborators were retrieving

textual data from a textual knowledge corpus based on Wikipedia documents to augment pre-training

of LLMs.

Starting in 2022, LangChain2 was released as an open source software project to assist software

developers with the integration of LLMs into software applications. A venture-funded company was

later built around the project. Many other orchestration platforms have since appeared, including

close competitor n8n3, Haystack4 and LlamaIndex5. Many of these systems are released under open

source licenses.

The sub�eld of Knowledge Representation (KR) provides the intellectual foundation and practical

tooling to represent data in ways that serve as input to other AI or data management system (DMS)

systems. KR systems include ontologies, metadata, and other forms of structured information that

enable meaningful representation of domain-speci�c knowledge. The orchestration of structured KR

and unstructured LLM systems can result in an LLM �ne-tuned for a speci�c domain by runtime

reference to a speci�c ontology[62][63]. For example, application of such an orchestrated system in an

engineering domain can output engineering intention artefacts[63]. Another example is orchestration

in a medical domain where it is highly desirable to have explainable AI (XAI) so that the LLM can

explain the reasoning leading to the conclusions and output making it veri�able by humans. This is

especially important given the sensitive and critical nature of medical advice and the potential

harmful implications of mis-diagnoses[62].

Alternatively, RAG may be orchestrated with LLMs to create custom chatbots or agents, document

summarisation systems using specialist vocabularies and provide data integration with existing

systems[64].

Figure 18 illustrates the emerging architecture of systems orchestrated with LLMs in 2024. That �gure

is courtesy of Andreessen Horowitz Enterprise6.

qeios.com doi.org/10.32388/NHJYVS 28

https://www.qeios.com/
https://doi.org/10.32388/NHJYVS


Figure 18. Emerging LLM application stack (provided by Andreessen Horowitz Enterprise)

4. Risks and Mitigations

4.1. Catastrophic Forgetting

Catastrophic forgetting, or catastrophic interference, is when neural networks, including LLMs,

become less performant on tasks that they previously excelled at[65][66][67]. In other words, they

essentially “forget” previously learned information[65]. This behaviour is typically observed when

LLMs are �ne-tuned sequentially on di�erent tasks or datasets, a process known as continual

learning[48]. The underlying cause is that the �ne-tuning exercise updates the model’s weights to

optimise performance on the new task. Several strategies have been proposed to prevent catastrophic

forgetting, such as:

Regularisation-based method: Adding regularisation terms to penalise signi�cant changes to

important weights. For example elastic weight consolidation (EWC) adds a regularisation term to

the loss function for changes to important weights[48].
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Replay-based method: Retraining the model on a mix of old and new data, or using synthetic data

generated from the model’s memory of previous tasks[68][69].

Architectural methods: Using separate subnetworks for di�erent tasks, or dynamically expanding

the network. For example, progressive neural networks that create new subnetworks for each task

while keeping the original �xed[70], and adapter modules that can be inserted into the network and

�ne-tuned separately for each task[71].

4.2. Model Collapse

LLMs are trained on many public data sources as described in Section 2 An Overview of LLMs. Since

many users are using LLMs to generate content that is being put onto those same public fora, future

versions of those LLMs are very likely to ingest content generated by earlier versions of themselves. It

is not di�cult to envision a future in which LLMs become trained on an ever-increasing amount of

machine-generated content and a decreasing amount of human-generated content. The rami�cations

are intriguing; without a change in the way the models are trained their weights will be increasingly

in�uenced by machine-generated content. Human-generated content could even become a minority

input for some models.

The unintended or unrecognised prevalence of machine-generated content in training data coupled

with the failure of LLMs to di�erentiate human- and machine-generated content is known as model

collapse[72]. An LLM in model collapse would not treat human-generated content in a preferred

manner. Instead, a positive feedback loop would be set up whereby new LLMs will learn to write like

old LLMs.

Possible mitigations for model collapse include the use of data provenance techniques to label

human- and/or machine-generated content[73]. Such approaches are limited to mitigating, not

solving, the problem of model collapse because many systems and users may simply fail to provide or

choose to ignore data provenance hints.

Other mitigations may be possible via governmental AI strategies and subsequent regulation[74]. A

common analysis technique for such frameworks is the PESTEL analysis technique. PESTEL is an

acronym standing for political, economic, social, technological, environmental, and legal factors in an

environment external to an organisation[75]. Tjondronegoro notes that a PESTEL analysis of AI

adoption barriers and themes suggests that “Data availability, quality, and structure” fall under the
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technology rubric[74]. Governments may choose to selectively regulate some data availability to

reduce negative consequences of model collapse.

None of the currently-identi�ed mitigations to model collapse appear to be su�cient to prevent the

phenomenon from occurring. More research into this area is urgently needed.

4.3. Jailbreak Attacks

A jailbreak is an adversarial attack in which users craft speci�c prompts designed to bypass the

model’s ethical safeguards. These jailbreak prompts trick the model into generating harmful or

unethical responses, circumventing its alignment with moral guidelines[76][39]. Users may craft

jailbreak prompts for various reasons, including:

Bypassing restrictions: Some users may want to elicit responses that are blocked by default, such as

unethical or illegal content that the LLM would typically refuse to generate.

Malicious intent: Jailbreaks can be used to manipulate the LLM into generating content for harmful

purposes, such as misinformation, hate speech, or instructions for illegal activities like fraud or

cybercrime.

(An example of tricking a chatbot to generate a blackmail letter is shown in Figure 19, page 24).

Security and Research: Researchers or security personnel might craft jailbreaks to gain a thorough

understanding of the vulnerabilities in the AI system, which they can then guard against.

Entertainment: Others might use jailbreaks for humour or entertainment, pushing the LLM to say

things it wouldn’t normally say.

Xie et al.[76]  propose several strategies to defend against jailbreaks. AI models can employ “self-

regulation techniques” like system-mode self-reminders, which wrap user queries in prompts that

remind the model to behave ethically. This method signi�cantly reduces the success rate of jailbreak

attacks by reinforcing the model’s ethical guidelines. Other safeguards include RLHF to continually

align the model with moral values, and content �ltering systems that automatically detect and block

adversarial prompts[76].

Additionally, watermarking and classi�ers can help identify when a model’s behaviour deviates from

its ethical programming, enabling automatic interventions. Prompt optimisation and testing to study

and enhance the model’s resistance to jailbreaks, can also better inform strategies to combat

jailbreaking[76].
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Figure 19. Example of jailbreaking and the use of a system-mode self-reminder to defend this attack

(image by[76])

4.4. Hallucinations and their Impacts

As anyone who has played, however brie�y, with LLMs and multimodal AI models knows, they can

sometimes produce output that goes very rapidly from amazing to badly wrong. These forays into

fantasy are generally known as hallucinations. We argue that the term “hallucinations” is misleading

and has, in fact, been the cause of much misunderstanding about the limitations of LLMs.

LLMs do not hallucinate, they produce bullshit, in that word’s technical sense.

Naturally, we recognise that language changes over time. The Cambridge Dictionary has already added

a second de�nition to “hallucinate” speci�cally related to AI systems7. Nevertheless, the semantics

seems worthy to us of pursuit because it increases the explanatory power of our ability to

conceptualise LLMs.
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In the seminal paper, On bullshit, by philosopher Harry Frankfurt[77] “bullshit” is described as a form

of communication where the speaker is indi�erent to the truth. This indi�erence to the truth means

that bullshit doesn’t necessarily involve untrue statements; rather, it involves a total disregard for the

truth. He argues that this makes bullshit a greater threat to truth than outright lying because it

undermines the very value of truth in discourse. Inspired by this concept, Hannigan et al.[3] and Hicks

et al.[4] note that because LLMs do not comprehend the meaning of the responses they generate, “the

activity they are engaged in is bullshitting, in the Frankfurtian sense” (quoted from Hicks). Hannigan

et al. have termed the speci�c creation of Frankfurtian bullshit by chatbots “botshit”.

To guard against botshit from LLMs there are a few simple strategies that a user can follow: for critical

tasks all information provided by the chatbot should be veri�ed through trusted sources, cross-

checked and not relied on blindly. Much can be done by training users to craft clear prompts and have

a sound understanding of the chatbot’s limitations, such as outdated data or areas prone to

hallucinations. Within an organisation it is good practice to establish guidelines on when and how to

use chatbot content. In general users are advised to simply maintain a critical mindset, using chatbot

outputs as a starting point, rather than the �nal answer, especially for non-critical tasks where the

LLM output may be treated as creative input instead of the truth.

As an example, we asked ChatGPT 4, 4o and o1-preview to identify the canonical academic references

for LLM orchestration. Most of the resulting academic paper suggested by the LLMs did not exist, the

links to the papers did not resolve, and the conferences and journals cited do not list the papers. They

were bullshit, appearing plausible but untrue.

But are they really hallucinating? We would argue that they are not, at least not in the �rst sense given

by the Cambridge Dictionary (“to see or hear something that does not exist”). The decoder portions of

language models have been designed to produce content based on their input. In important ways, that

is “all” they are in spite of their complexity. We should property view them as language generators.

LLMs thus share one critical thing in common with people (although on a di�erent scale and at

radically di�erent levels of complexity): They learn what is normal based primarily on their inputs

mediated only by their architecture.

The problem with calling any LLM output a “hallucination” is that it is a post-facto subjective

judgement by a human who is judging the truth or falsity of the output. That is, is a value judgement.
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One cannot separate one language generation output from another in a meaningful way because there

is no algorithm for truth.

The best that LLM designers or trainers can do is to adjust the systems to produce “better” content as

judged by humans. We doubt that this approach will ever lead to a hallucination-free design.

We along with some of our colleagues had an intuition that multiple LLMs would be very unlikely to

hallucinate in similar ways. That turns out not to be so. We were able to generate quite similar

hallucinations from ChatGPT 4, ChatGPT 4o, Llama 3, Claude and Gemini using the same prompts.

This was probably due to the similarities in both their architectures and their training data.

Galileo produces a “Hallucination Index” to evaluate the extent to which well known LLMs

hallucinate. They published an evaluation of the hallucination without additional RAG in 20238, and

recently published a RAG version9 testing LLMs with varying lengths of text. Claude 3.5 Sonnet was

the overall winner, and most models performed best when retrieving information from medium-

length documents.

4.5. Areas of Less-Than-Human Performance

One of the now-classic ways to trick an LLM into giving a bad answer, or to show how the technology

fails, is the prompt, “How many times does the letter r occur in the word ’strawberry’?”

Most LLMs will answer “2”, which is incorrect. The correct answer should be “3”. The LLMs get this

wrong because they never see the word “strawberry” in their input. Instead, they only see a number

representing a token for that word. That is, they cannot reason over the word because they only

receive a number.

There are ways to work around this problem. For example,

1. Can you list all letters in the word ”strawberry” in the order that they appear?

2. How many times does the letter r appear in the list that you generated?

ChatGPT 4 or 4o will correctly answer “3”.

New approaches to reasoning in LLMs are addressing these limitations while at the same time

introducing new performance penalties. ChatGPT o1-preview (intentionally code-named

“Strawberry”) will correctly answer “3” to the initial question because it does parse the word and then
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double check itself. However, as of this writing the process takes around 22 seconds. No doubt

additional research will improve that performance.

5. Conclusions

Based on the LLM literature we reviewed, we endeavoured to describe the technology, and the

potential of these language models when used “out of the box” (e.g. foundational models) or adapted

for speci�c use cases or tasks, or as part of an orchestrated system. We highlighted potential positive

and negative impacts of LLMs and strategies used to mitigate the latter. The paper is aimed at

providing students, practitioners, researchers, and decision makers an overview and insight into the

various aspects this technology and its potential with some caveats.

A prudent strategy to minimise unexpected consequences of misbehaving AI tools including LLMs is

continual evaluation of the accuracy and correctness of the output[39]. There are several tools that

assess the relative performance of LLMs which can aid in choosing an LLM that is well suited for

speci�c tasks and scenarios. The rate of development of AI, and LLMs speci�cally, is rapid and hence it

is important to check regularly whether the current tool is still �t for purpose[39], and this rate of

progress and innovation of LLMs continues unabated. Since we started our background research into

LLMs and their applications, we have seen the emergence of an exciting new suite of models and

architectures in software and hardware.

Most notably the recent announcement of the arrival of Liquid Foundation Models (LFMs)10 in

September 2024 by Liquid AI Inc, a spin-o� startup of MIT. In contrast to traditional transformer

foundational models, LFMs utilise a di�erent architecture, known as liquid neural networks[78]. These

neural networks are typically smaller, highly e�cient, and adept at adjusting dynamically to changes

in input data. These models are also generally much smaller than the traditional transformer models

with a simpler structure which should make them easier to understand compared to conventional

neural networks.

In the sphere of hardware advances we have seen Groq11 design the language processing unit (LPU),

which is optimised for high-speed and low-latency machine learning tasks, especially inference. This

hardware design emphasises e�cient parallel processing and is tailored for workloads in data centers

requiring rapid computation.
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We envision that the evolving landscape will greatly bene�t end-users by making this powerful

technology more accessible and available on every day devices with improved accuracy and

performance.

Footnotes

1 From DeepLearning.AI ‘Generative AI and LLMs’ course.

2 https://www.langchain.com/

3 https://n8n.io/

4 https://haystack.deepset.ai/

5 https://www.llamaindex.ai/

6 https://a16z.com/enterprise/

7 https://dictionary.cambridge.org/us/dictionary/english/hallucinate

8 https://www.rungalileo.io/hallucinationindex-2023

9 https://www.rungalileo.io/hallucinationindex

10 https://www.liquid.ai/liquid-foundation-models

11 https://groq.com/resources/
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