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Understanding the impact of neutrino masses on the evolution of Universe is a crucial aspect of

modern cosmology. Due to their large free streaming lengths, neutrinos signi�cantly in�uence the

formation of cosmic structures at non-linear scales. To maximize the information yield from current

and future galaxy surveys, it is essential to generate precise theoretical predictions of structure

formation. One approach to achieve this is by running large sets of cosmological numerical

simulations, which is a computationally intensive process. In this study, we propose a deep learning-

based generative adversarial network (GAN) model to emulate the Universe for a variety of neutrino

masses. Our model called  GAN (for neutrino GAN) is able to generate 2D cosmic webs of the Universe

for a number of neutrino masses ranging from 0.0 eV to 0.4 eV. The generated maps exhibit statistical

independence, lack correlations with training data, and very closely resemble the distribution of

matter in true maps. We assess the accuracy of our results both visually and through key statistics

used in cosmology and computer vision analyses. Our results indicate that samples generated by 

GAN are accurate within a 5% error on power spectrum between   to  . Although

this accuracy covers the mildly non-linear scales, consistent with other works and observations,

achieving higher accuracy at fully non-linear scales requires more sophisticated models, such as

diffusion models. Nevertheless, our work opens up new avenues for building emulators to generate

fast and massive neutrino simulations, potentially revolutionizing cosmological predictions and

analyses. This work serves as a proof-of-concept, paving the way for future extensions with higher-

resolution 3D data and advanced generative models.

Corresponding author: Neerav Kaushal, kaushal@mtu.edu

Qeios

ν

ν

k = 0.01 k = 0.5hMpc−1

qeios.com doi.org/10.32388/NP0Q0Y 1

mailto:kaushal@mtu.edu
https://www.qeios.com/
https://doi.org/10.32388/NP0Q0Y


1. Introduction

Neutrinos are among the most abundant particles in the Universe, with number densities only slightly

lower than those of photons. In the early Universe, neutrinos were relativistic, contributing to the

radiation energy density during that epoch. Unlike photons, neutrinos have now become non-relativistic

and possess rest mass, thereby contributing to the total matter density of the Universe. This indicates

that relic neutrinos can have signi�cant effects on cosmological observables, particularly in�uencing the

background evolution, the spectra of matter perturbations, and the anisotropies in the Cosmic

Microwave Background (CMB).

Next-generation large-scale structure (LSS) surveys, including Dark Energy Spectroscopic Instrument

(DESI)  [1], eROSITA  [2], Euclid  [3], Nancy Grace Roman Space Telescope (WFIRST)  [4], and Rubin

Observatory’s Legacy Survey of Space and Time (LSST)[5], will map vast cosmological volumes with high

precision, producing datasets that span a wide range of redshifts and cosmic epochs. These surveys are

expected to signi�cantly improve constraints on cosmological parameters, including the sum of neutrino

masses, thereby enhancing our understanding of the fundamental role neutrinos play in the evolution of

the Universe. Recent analyses from DESI and the Atacama Cosmology Telescope (ACT) [6][7] have already

re�ned cosmological constraints on  . Current upper bounds from joint analyses of CMB and LSS

data lie in the range  –   eV at the 95% con�dence level, assuming a minimal  CDM+

 framework.

Extracting the full scienti�c potential of these upcoming surveys requires theoretical predictions of

comparable precision. In particular, accurate comparison between observations and theory demands

rigorous modeling of the spatial distribution of matter and luminous tracers, especially in scenarios

involving massive neutrinos. Analytic tools such as perturbation theory  [8], can provide reliable

predictions on quasi-linear scales,[e.g. [9][10][11][12][13][14][15][16][17][18][19][20][21][22][23][24][25][26][27][28]], but

most of the cosmological information resides in the fully non-linear regime, which requires more

sophisticated approaches. In the absence of a comprehensive analytical model, numerical simulations

with massive neutrinos are crucial for studying these non-linear scales and validating observations. In

particular, N-body simulations are among the most crucial tools for evolving cosmological matter

�uctuations under gravity alone, allowing for direct comparisons with theoretical predictions. These

simulations are instrumental in generating mock galaxy catalogs, computing covariance matrices, and

optimizing observational strategies. Recent developments in N-body simulations incorporating massive
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neutrinos have signi�cantly advanced our understanding of their impact on clustering at fully non-linear

scales in real space[29][30][31][32][33], the clustering and abundance of halos and cosmic voids[34][35][36],

and matter clustering in real space[37][38]. However, a signi�cant drawback of cosmological N-body

simulations is their high computational cost. A single simulation demands extensive computational

resources and can take days or even weeks to complete. This computational bottleneck restricts the

amount of information that can be extracted from observational data and tested against theoretical

models. Consequently, there is a pressing need for faster methods to generate cosmological simulations

that maintain both accuracy and reliability, thereby accelerating the process and enhancing our ability to

extract and analyze cosmological information.

Over the past decade, deep learning has emerged as a powerful tool for emulating high-resolution

numerical simulations and accelerating cosmological predictions. Convolutional neural networks (CNNs)

have been widely used for parameter inference, weak lensing map generation, and super-resolution of N-

body simulations [39][40][41][42][43][44][45][46][47][48][49][50][51][52]. CNNs have also been successfully applied

to model the impact of massive neutrinos on structure formation  [53][54], demonstrating their

effectiveness in extracting cosmological information from complex datasets. These models can

ef�ciently learn to emulate the evolution of cosmic structures from high-�delity simulations,

signi�cantly reducing computational costs.

More recently, generative models such as Generative Adversarial Networks (GANs)  [40][55][56][57][58][59],

normalizing �ows[60][61], and diffusion models  [62][63][64][52]  have demonstrated remarkable success in

generating synthetic cosmological data that closely match high-�delity simulations. While CNNs and

generative models have been extensively applied to a range of cosmological tasks, GAN-based emulators

speci�cally tailored for massive neutrino cosmologies remain relatively unexplored. Our work aims to �ll

this gap by developing a GAN framework conditioned on neutrino mass, enabling rapid generation of

cosmic web realizations across different neutrino mass scenarios. This approach builds on the success of

generative models for cosmic structure emulation while addressing the unique challenges posed by

massive neutrino effects on non-linear structure formation.

In particular, we employ deep GANs to generate 2D cosmic web realizations of the Universe, conditioned

on a range of neutrino masses. We assume a scenario of three degenerate neutrinos, where the electron,

muon, and tau neutrino species share the same mass. The choice of GANs is motivated by their ability to

effectively learn the complex probability distributions underlying the data, enabling the generation of

new, random, statistically independent, and identically distributed samples after training on N-body
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simulations. These generated samples are uncorrelated with the training examples. Our model, named 

GAN, is speci�cally conditioned on neutrino masses, allowing it to produce dark matter cosmic webs for

any given neutrino mass after training. This approach substantially reduces the computational burden

associated with generating variable-mass neutrino simulations using traditional methods, as numerous

new samples can be generated within seconds.

To validate our results, we employ various summary statistics, including the power spectrum, transfer

function, pixel intensity histograms, peak statistics, and structural similarity tests.

This study serves as a proof of concept, demonstrating that generative models, such as GANs, are a

feasible and effective approach to emulate cosmological simulations with massive neutrinos. Building on

this foundation, future work will extend the framework to more advanced generative architectures,

including diffusion models and normalizing �ows, which promise improved accuracy, better coverage of

the data distribution, and greater �delity on non-linear scales.

This paper is organized as follows. Section 2 brie�y introduces and discusses conditional GAN and the

data we used for training our GAN model. Section 3 details the training process, model architecture, and

hyperparameters while section 4 presents the quantitative results. Finally, we draw our conclusions in

section 5.

2. Methods

2.1. Conditional GAN

A conditional Generative Adversarial Network or CGAN  [65]  is an extension of the traditional GAN

framework, designed to generate data samples with speci�c characteristics or attributes. In a standard

GAN, two neural networks, a generator and a discriminator, are employed. The generator produces

synthetic data that mimics real data, while the discriminator distinguishes between real and generated

data. These networks compete during training: the generator improves its ability to create realistic data,

and the discriminator enhances its skill in differentiating real from fake data. Both networks undergo

simultaneous training, and if the optimization process is executed effectively, the generator will acquire

the ability to generate data that matches the data distribution. In a CGAN, an additional conditional

element, often in the form of extra input data or labels, is introduced. This conditional information is

used to guide the generation process, enabling the model to generate data samples with speci�c

attributes or characteristics.

ν
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In this study, we condition both the generator ( ) and the discriminator ( ) on a parameter denoted as 

, representing the neutrino mass. By doing so, we ensure that the generated data samples are speci�cally

tailored to different neutrino masses.

The algorithm works as follows:

�. The input consists of a random noise vector, denoted as  , which can originate from various

distributions such as the Gaussian distribution (typically sampled from a unit-normal distribution, 

), a uniform distribution, or other structured inputs.

�. The generator  , which is parameterized by a neural network, takes the latent vector    and an

additional random variable   (serving as a conditioning factor), and produces the output  .

�. The discriminator  , also parameterized by a neural network, takes real data samples    and the

synthetic samples generated by  , named  . It then provides scores for both, denoted as 

  and    respectively. These scores represents the discriminator’s con�dence in

whether the samples are real, i.e. originating from the actual data distribution  . When scaled

to the range  , this score can also be loosely interpreted as an implicit likelihood of the data

given  , i.e.,  .

�. The predictions made by    are compared to the actual, true labels, and a loss is computed,

represented as  .

�. This loss is backpropagated through    and then through  , to update the weights and biases of

both networks.

�. These steps, from 1 to 5, are iteratively repeated over multiple epochs while processing the entire

dataset.

2.2. Data

In the following, we present a detailed description of the various steps involved in the generation and

preprocessing of data:

�. We run N-body simulations using the COLA (COmoving Lagrangian Acceleration)

approximation [66][67] with the MG-PICOLA code 1 [68]. COLA is an approximate simulation method

designed to ef�ciently evolve large-scale structure by combining Lagrangian perturbation theory

with N-body dynamics, achieving faster computation while preserving large-scale accuracy. We

used MG-PICOLA instead of full N-body simulations because it provides a computationally ef�cient
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compromise, retaining accuracy on large and mildly non-linear scales at a fraction of the

computational cost. The simulations track the evolution of   cold dark matter (CDM) particles

in the presence of neutrinos with masses  ,  , and   eV from a redshift of    to    in 

 timesteps in a simulation volume of size   Mpc/h. The cosmological parameters used for these

simulations are  ,  ,  ,  ,  , and 

 eV. We generate two realizations for each neutrino mass, resulting in a total

of six realizations. Each simulation provides the 3D spatial coordinates of   CDM particles.

�. Following Rodríguez et al.[40], for each realization, we take this 3D cube of particle positions and

divide the positions along the x-axis into 1000 equal segments. We then extract 2D slices of particle

positions in the y-z plane and select 500 non-consecutive 2D slices. We repeat this process along the

y and z axes, obtaining 1500 2D slices per realization, and a total of 9000 slices for the entire dataset

(i.e., six realizations).

�. These 2D slices are then pixelized into    images, where each pixel value represents the

number of particles within that pixel. This process effectively transforms the data into 2D grayscale

images of size  . The images are then smoothed using a Gaussian �lter with a standard

deviation of 1, resulting in �oating-point pixel values spanning a wide range of magnitudes, rather

than discrete integers. As part of data augmentation, each image is randomly �ipped horizontally,

vertically, or both, each with a 25% probability; the remaining 25% of the time, the image is left

unaltered.

�. The data is scaled to  , following [40], using the same scaling parameter   as in that work.

This scaling improves model performance and ensures compatibility with the generator’s �nal tanh

activation. The original data ( ) and the scaled data ( ) are related by the following

transformation:

This transformation is analogous to the logarithmic function. As the cosmic web of the Universe spans a

dynamic range of magnitudes, from nearly empty cosmic voids to super-massive galaxy clusters, this

transformation enhances the contrast of �laments, galaxy sheets, and dark matter halos. The parameter 

  in equation [eqn:scaling] controls the median value of the images. The choice    balances

compression of extreme densities while retaining suf�cient contrast in intermediate regions, ensuring

the transformed data are centered around zero and compatible with the generator’s tanh activation,

promoting stable learning.
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3. Implementation

Learning the optimal parameters for the discriminator and generator networks, and effectively

optimizing a GAN, are challenging tasks. To address these challenges, we employed a CGAN based on the

Wasserstein GAN (WGAN) framework [69].

Unlike the discriminator in a conventional GAN, which outputs a probability value indicating the

con�dence in the realness of the sample, the discriminator in a WGAN assigns a score based on the

Wasserstein distance (also known as the Earth Mover’s distance) between the real and fake distributions.

This distance measures the divergence between two probability distributions. Consequently, the

discriminator in a WGAN is referred to as a critic.

Our WGAN model, named  GAN, consists of a generator and a critic. The generator includes one linear

layer and six transposed convolutional layers. The neutrino mass    is concatenated to the latent

vector    of size 200 at the beginning and processed by a linear layer. This is followed by upsampling

through six transposed convolutional layers with �lter sizes of 5 and 3, and strides of 2 and 1,

respectively. Each upsampling operation is followed by batch normalization and a ReLU activation,

except for the �nal layer, which uses a tanh activation without batch normalization. The architecture of

the generator is detailed in Table 1.

Layer Operations Filter Dimension

linear + identity

deconv + BatchNorm + ReLU

deconv + BatchNorm + ReLU

deconv + BatchNorm + ReLU

deconv + BatchNorm + ReLU

deconv + BatchNorm + ReLU

deconv + Tanh

Table 1. Generator architecture of our  GAN. bs refers to the batch size.

ν

∑mν

z

z bs × 200

h0 bs × 512 × 16 × 16

h1 5 × 5 bs × 256 × 32 × 32

h2 5 × 5 bs × 128 × 64 × 64

h3 3 × 3 bs × 128 × 64 × 64

h4 5 × 5 bs × 64 × 128 × 128

h5 3 × 3 bs × 64 × 128 × 128

h6 5 × 5 bs × 1 × 256 × 256

ν
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The discriminator in our model is composed of four convolutional layers followed by one linear layer.

Each convolutional layer uses a �lter of size 5 and a stride of 2, doubling the number of channels and

halving the feature size with each operation. These layers are followed by batch normalization and a

leaky ReLU activation function with a parameter of 0.2. After the convolutional operations, the data is

�attened, and the neutrino mass is concatenated to it. Finally, a linear layer is applied to produce the

desired output. The detailed architecture of the discriminator is presented in Table 2.

Layer Operations Filter Dimension

conv + BatchNorm + Leaky ReLU

conv + BatchNorm + Leaky ReLU

conv + BatchNorm + Leaky ReLU

conv + BatchNorm + Leaky ReLU

linear + identity

Table 2. Discriminator architecture of our  GAN. bs refers to the batch size.

The networks were trained until convergence, de�ned by a stable distance between the generated and

real images, was achieved. The hyperparameters used for training are detailed in Table 3.

X bs × 1 × 256 × 256

h0 5 × 5 bs × 64 × 128 × 128

h1 5 × 5 bs × 128 × 64 × 64

h2 5 × 5 bs × 256 × 32 × 32

h3 5 × 5 bs × 512 × 16 × 16

h4 bs × 1

ν
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Hyperparameter Value

Learning rate (G, D)

Batch size

Latent vector size

Latent vector distribution Standard Normal

Optimizer ADAM

Gradient Penalty

Augmentation True

Epochs 300

Table 3. Hyperparameters used for model training.

4. Results

In this section, we evaluate the performance of our model through both qualitative and quantitative

diagnostics. We quantitatively assess the results using a range of summary statistics: power spectrum

and transfer function, pixel intensity histogram, pixel peak histogram, and the Multi-Scale Structural

Similarity Index to evaluate mode collapse. We also present a visual comparison between the synthetic

and real images.

4.1. Power Spectrum and Transfer Function

Figure 1 (top panels) presents the average 2D power spectra computed over 500 realizations, comparing

MG-PICOLA simulations (black curve) with the  GAN model (red curve) for different neutrino masses.

The power spectrum analysis provides a quantitative assessment of how well  GAN captures the

statistical properties of large-scale structure formation across various scales. The results demonstrate

that the density distribution from  GAN closely matches the N-body simulations in both amplitude and

shape across nearly all scales, particularly at large scales where the agreement is strongest.
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Figure 1. Power spectrum and transfer function comparison. The top panel shows the average 2D power

spectra of the N-body images (black curves) and the ones generated by  GAN (red curves) for various

neutrino masses. The difference in power spectra is very small (within 5%) at linear and mildly non-linear

scales.

To better quantify the agreement between the two datasets, the bottom panels of Figure 1 display the

transfer function, which compares the relative clustering amplitude of  GAN-generated maps and N-

body simulation as a function of the wavenumber. 2 The transfer function should ideally be equal to one

if the emulator perfectly reproduces the simulation data. Between   and  ,  GAN achieves

an accuracy within 5%. However, for larger    ( ), deviations become more pronounced.

The transfer function shows increasing �uctuations and variance at these smaller scales, indicating the

model’s limited ability to capture non-linear clustering due to the lower resolution of the MG-PICOLA

training data.

Nevertheless, these preliminary results demonstrate that the  GAN model outperforms the previous

work of Giusarma et al.[70] on mildly non-linear scales ( ), achieving an improved

accuracy of 5% compared to the 7% reported in our previous study, despite being trained on lower-

resolution MG-PICOLA simulations with 2D data. Given that our earlier work used high-resolution 3D

simulations  [9], this suggests that incorporating high-resolution 3D data in future work could further

enhance the model’s accuracy and reliability.
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We note that the power spectrum and transfer function results are averaged over 500 realizations,

providing a robust statistical estimate and reducing sample variance.

A key advantage of this approach is that, once trained, the model can generate new cosmic web

realizations for different neutrino masses within seconds on a modern Graphics Processing Unit (GPU).

This represents a substantial improvement over traditional N-body simulations, which require several

hundred to thousands of core-hours per neutrino mass case. As a result, our method provides a gain of

several orders of magnitude in computational ef�ciency, enabling rapid and scalable cosmological

emulation.

4.2. Visual Comparison

The top two panels display 10 cosmic web images from N-body simulations, while the bottom two panels

show images generated by  GAN. Each bright spot in the images represents the average number of dark

matter particles or the density contrast at that pixel location. It is important to note that the pixel values

are scaled to the range of [-1,1].

Figure 2 presents    original images of the cosmic web from standard N-body simulations (top) and 

 synthesized samples generated by  GAN without neutrinos (bottom) over a scale of   Mpc/h. It is

evident that  GAN effectively captures the prominent visual features of the data. The structures of

�laments and halos are well reproduced, demonstrating the capability of GANs to accurately replicate the

cosmic web. In particular, the cosmic web structures produced by the our model are visually

indistinguishable from the originals.

To validate the parameterization of our model on neutrino masses, we generate images using the same

latent vector space but with different neutrino masses. Figure 3 displays images from N-body

simulations (top) and  GAN (bottom) using various neutrino masses. The latent vector in  GAN and the

random seed in the simulations are kept constant to facilitate a direct visual comparison of the images

under the same �xed conditions. Figure 3 appears visually very similar across different neutrino masses,

re�ecting that the impact of neutrino mass on small-scale clustering is too subtle to be visually

discernible in 2D cosmic web images, even though the model encodes this dependence in its statistical

structure.
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Figure 2. The top panel displays the cosmic webs from our simulations, while the bottom panel shows those

generated by  GAN. In the top images, the random seed was �xed during the simulations, and in the bottom

images, the latent vector was �xed. As a result, the images in the top row appear similar to each other, and the

same consistency is observed in the bottom row.

4.3. Pixel Intensity Histogram

We analyze pixel intensity histograms as complementary diagnostics for assessing  GAN’s ability to

replicate cosmic structure. Speci�cally, we generate mass map histograms, which represent the

distribution of mass densities in cosmic web images. Since pixel values in these images correspond to

mass density, mass map histograms are also referred to as pixel intensity histograms  [71][72]. By

comparing these histograms for  GAN-generated images and N-body simulations, we assess how

ν

ν

ν
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accurately our model reproduces the true mass distribution of the Universe. Figure 4 illustrates the

distribution of mass map pixels ( ) for both N-body and  GAN-generated maps. The top panel

shows the mass histograms, while the bottom panel presents the fractional difference between the

predictions and the actual values. The comparison reveals a generally good agreement between the truth

(black curve) and the  GAN prediction (red curve). However, for higher pixel intensity values (between 

  and  ),  GAN predicts a slightly lower number of pixels than the actual N-body samples. The

bottom panel indicates that the largest deviations occur at these higher intensity values, with

discrepancies of approximately  . While these deviations are moderate, their potential impact

on cosmological parameter inference should be assessed in future work to determine whether additional

corrections or improved training are necessary for precision analyses. Similar trends have been observed

in previous works of [55] and [73].

Figure 4. A comparison of pixel intensity histogram of the samples generated from the N-body simulations

and our  GAN model. The curves are averaged over   samples. The major difference is at lower pixel

intensity values.
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4.4. Pixel Peak Histogram

While the power spectrum provides a complete statistical description of a Gaussian random �eld, the

cosmic web exhibits signi�cant non-Gaussian features that require higher-order statistics for a more

detailed characterization. Traditional higher-order statistics, such as the bispectrum and three-point

correlation function, provide valuable insights into non-linear structure formation but are

computationally expensive to evaluate  [74][75][76][77][78][79]. To address these challenges, an alternative

approach known as “peak statistics” is widely used to extract non-Gaussian features from cosmic web

data. Peak statistics have been particularly effective in analyzing weak lensing convergence maps and

large-scale structure distributions [72][80].

In this context, a peak is de�ned as a pixel in the mass map that has a greater intensity than all of its

surrounding pixels. Speci�cally, a pixel is classi�ed as a peak if its value exceeds that of all 24

neighboring pixels within a   region. By identifying and quantifying these peaks, we gain additional

insight into the clustering of matter, as peaks often correspond to high-density regions such as galaxy

clusters.

Figure 5 presents the distribution of peaks (denoted as  ) in the mass map, capturing the local

maxima across the dataset. To ensure statistical robustness, this process is applied to    independent

simulated images, from which we compute the median histogram of peak counts along with the  th

and  th percentile intervals, capturing the spread of peak values.

The top panel of Figure 5 displays the histograms of peak counts, while the bottom panel illustrates the

fractional difference in peak distributions between the  GAN-generated images and the N-body

simulation results. The overall close agreement between the two datasets demonstrates that  GAN

accurately reproduces the number and distribution of peaks. However, small deviations at the highest

peak values suggest that the model may slightly underestimate the frequency of the most massive

structures, potentially indicating limitations in capturing the extreme non-linear regime of structure

formation.
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Figure 5. A comparison of pixel peaks. The solid lines represent the median histogram derived from 500

samples generated by  GAN and N-body simulations. The shaded areas around each line indicate the  th

and  th percentiles of the distribution. Note that pixel values have been scaled to the range [-1, 1].

4.5. Multi-Scale Structural Similarity Index (MS-SSIM)

A common challenge with GANs is that, if poorly trained, the generator may repeatedly produce a limited

subset of the data distribution, failing to capture the full data variance. This phenomenon, known as

mode collapse, results in outputs that represent only a narrow range of the target data3. Our  GAN avoids

mode collapse by using a larger latent vector ( ) of size 200 from a standard gaussian distribution.

Evidence of this can be seen in Figure 2, where each generated image is distinctly different, indicating

that the model captures a wide range of data features.

To further assess mode collapse, we employ the Multi-scale Structural Similarity Index (MS-SSIM), a

widely used metric in image analysis. MS-SSIM helps detect mode collapse, especially relevant in

cosmology, where summary statistics may still match true data distributions even when mode collapse is

present, potentially concealing the issue.
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The MS-SSIM score between two images ranges from    to  , where    indicates identical images and 

 represents completely different images. As the mass maps are stochastic and only statistically similar,

we are not interested in similarity between speci�c maps. Following Perraudin et al.[56], we calculate the

MS-SSIM between a large ensemble of   images from N-body simulations and generated by  GAN.

This approach allows us to evaluate overall similarity across an image set rather than focusing on

pairwise comparisons. Table 4 reports MS-SSIM scores between N-body and  GAN-generated maps for

different neutrino masses. The scores range from 0.41 to 0.58, indicating moderate structural similarity

between the generated and real samples. This level of similarity re�ects that  GAN does not replicate

individual maps pixel-by-pixel (as expected for stochastic realizations), but rather captures the overall

statistical structure of the cosmic web. Importantly, the MS-SSIM values remain suf�ciently low to avoid

mode collapse, con�rming that the model generates diverse samples across the data distribution.

Neutrino mass (in eV) MS-SSIM score

Table 4. MS-SSIM scores for  GAN for each neutrino mass

5. Conclusions

In this work, we demonstrated how GANs can be employed to model the dark matter cosmic web of the

Universe, incorporating the effects of neutrinos. We developed a deep Wasserstein GAN, termed  GAN,

which conditions on neutrino masses to generate statistically independent and uncorrelated samples of

the 2D cosmic web. By using a larger latent dimension,  GAN effectively avoids mode collapse, as

con�rmed by the multi-scale structural similarity (MS-SSIM) scores between generated and real

samples. Our model converges ef�ciently, producing samples that are visually indistinguishable from N-

body simulation data.

To validate  GAN’s accuracy, we evaluated various cosmological and computer vision statistics, including

the power spectrum, transfer function, pixel intensity histogram, peak statistics, and MS-SSIM scores, all
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of which show strong agreement between  GAN-generated samples and N-body simulations up to

mildly non-linear scales. This indicates that  GAN produces genuinely novel data, rather than simply

replicating the training set, as observed in previous studies[40][55][56][65][73][81].

A key advantage of this approach is that, once trained, the model can generate new cosmic web

realizations for different neutrino masses within seconds on a modern Graphics Processing Unit (GPU).

This represents a substantial improvement over traditional N-body simulations, which require several

hundred to thousands of core-hours per neutrino mass case. As a result, our method provides a gain of

several orders of magnitude in computational ef�ciency, enabling rapid and scalable cosmological

emulation. Given the data demands of upcoming large-scale cosmological surveys, ef�cient methods

like  GAN will be crucial for generating theoretical predictions, facilitating advanced analyses using deep

learning[82] and sophisticated statistical methods[83].

This work represents a proof-of-concept toward developing rapid, differentiable emulators of the neutrino

cosmic web, demonstrating the feasibility and potential of GAN-based approaches for accelerating cosmological

simulation pipelines. Beyond technical validation, the cosmological implications of our results warrant

discussion. The  5% accuracy achieved in the power spectrum on linear and mildly nonlinear scales

suggests that  GAN can already serve as a fast emulator for summary statistics relevant to upcoming

surveys such as DESI, Euclid, and LSST, especially for large-scale analyses targeting BAO and growth

rates. However, the observed deviations of  20–30% in peak statistics at high intensities indicate that

caution is required when using  GAN outputs to infer cosmological parameters sensitive to small-scale

nonlinearities, such as   or  . Future work should quantify how these discrepancies propagate into

parameter uncertainties via forward modeling pipelines or likelihood analyses. Nevertheless, this proof-

of-concept highlights the potential of generative models to accelerate cosmological inference while

retaining acceptable accuracy for many applications.

6. Future Works

While our results demonstrate that  GAN effectively captures the large-scale statistical properties of the

cosmic web, several avenues remain for improvement. One key limitation of the current model is its

restriction to 2D projections of the cosmic web. Expanding the framework to generate full 3D density

�elds is a natural next step, enabling more direct comparisons with state-of-the-art numerical

simulations and observational datasets. This will require adapting 3D generative architectures and

optimizing their scalability for high-dimensional data.

ν

ν
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Additionally, while GANs provide fast sample generation, they suffer from inherent drawbacks such as

mode collapse and dif�culties in learning the true probability distribution of the data. To address these

issues, our ongoing research explores the integration of normalizing �ows [84] and diffusion models [85].

Normalizing �ows explicitly learn the data probability distribution and provide exact likelihood

estimates, making them well-suited for cosmological emulation  [60][86][87]. Diffusion models, on the

other hand, have demonstrated superior performance in high-resolution image generation and improved

mode coverage compared to  GAN  [62][64][52]. Implementing diffusion-based emulators for cosmology

could further enhance the accuracy and reliability of deep generative methods in structure formation

modeling.

Future work will focus on improving accuracy at non-linear scales by incorporating high-resolution 3D

simulations and leveraging diffusion-based models, thereby extending the applicability of generative emulators

to precision cosmology. While our approach shows promising results, it represents an initial step toward

developing more sophisticated generative models, such as diffusion models and normalizing �ows,

which have the potential to further improve accuracy at non-linear scales.

Furthermore, given that the current approach is trained on low-resolution MG-PCOLA simulations, we

plan to incorporate high-resolution N-body simulations such as QUIJOTE  [9]  to improve small-scale

accuracy and reduce discrepancies in peak statistics. Extending  GAN to generate simulations across a

broader range of cosmological parameters, including baryonic effects, will further increase its

applicability to next-generation surveys.
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Footnotes

1 https://github.com/HAWinther/MG-PICOLA-PUBLIC

2 The transfer function   is de�ned as the square root of the ratio of the power spectra of the density

�eld predicted by the  GAN and the target respectively, 

ν

ν

T (k)

ν T (k) = (k)/ (k)Ppred Ptarget

− −−−−−−−−−−−−−
√
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3 For example, a GAN trained on a dataset of digits from 0 to 9 might only produce a few digits (e.g., 2, 4,

and 9) if it suffers from mode collapse.

References

�. ^Aghamousa, Amir et al. The DESI Experiment Part I: Science,Targeting, and Survey Design. 2016. Available

from: https://arxiv.org/abs/1611.00036

�. ^A. Merloni, P. Predehl, W. Becker, H. Böhringer, T. Boller, et al. (2012). eROSITA Science Book: Mapping the S

tructure of the Energetic Universe. arXiv e-prints. :arXiv:1209.3114. doi:10.48550/arXiv.1209.3114

�. ^Luca Amendola, Stephen Appleby, Anastasios Avgoustidis, David Bacon, Tessa Baker, et al. (2018). Cosmolo

gy and fundamental physics with the Euclid satellite. Living Reviews in Relativity. 21(1):2. doi:10.1007/s41114

-017-0010-3

�. ^D. Spergel, N. Gehrels, J. Breckinridge, M. Donahue, A. Dressler, et al. (2013). WFIRST-2.4: What Every Astron

omer Should Know. arXiv e-prints. :arXiv:1305.5425. doi:10.48550/arXiv.1305.5425

�. ^Mandelbaum R, Ei�er T, Hložek R, et al. (2018). "The LSST Dark Energy Science Collaboration (DESC) Scie

nce Requirements Document." arXiv e-prints. arXiv:1809.01669. https://arxiv.org/abs/1809.01669.

�. ^M. Abdul Karim, et al. DESI DR2 Results II: Measurements of Baryon Acoustic Oscillations and Cosmologic

al Constraints. 2025. Available from: https://arxiv.org/abs/2503.14738

�. ^Calabrese, Erminia and others. The Atacama Cosmology Telescope: DR6 Constraints on Extended Cosmol

ogical Models. 2025. Available from: https://arxiv.org/abs/2503.14454

�. ^F. Bernardeau, S. Colombi, E. Gaztañaga, R. Scoccimarro. (2002). Large-scale structure of the Universe and

cosmological perturbation theory. 367(1-3):1–248. doi:10.1016/S0370-1573(02)00135-7

�. a, b, cFrancisco Villaescusa-Navarro, ChangHoon Hahn, Elena Massara, Arka Banerjee, Ana Maria Delgado,

et al. (2020). The Quijote Simulations. 250(1):2. doi:10.3847/1538-4365/ab9d82

��. ^Lado Samushia, Zachary Slepian, Francisco Villaescusa-Navarro. (2021). Information Content of Higher-O

rder Galaxy Correlation Functions. arXiv e-prints. :arXiv:2102.01696. Available from: https://arxiv.org/abs/21

02.01696

��. ^Davide Gualdi, Hector Gil-Marin, Licia Verde. (2021). Joint analysis of anisotropic power spectrum, bispectr

um and trispectrum: application to N-body simulations. arXiv e-prints. :arXiv:2104.03976. Available from: ht

tps://arxiv.org/abs/2104.03976

qeios.com doi.org/10.32388/NP0Q0Y 19

https://www.qeios.com/
https://doi.org/10.32388/NP0Q0Y


��. ^Joseph Kuruvilla, Nabila Aghanim. (2021). Information content in mean pairwise velocity and mean relati

ve velocity between pairs in a triplet. arXiv e-prints. :arXiv:2102.06709. Available from: https://arxiv.org/abs/

2102.06709

��. ^Adrian E. Bayer, Francisco Villaescusa-Navarro, Elena Massara, Jia Liu, David N. Spergel, et al. Detecting ne

utrino mass by combining matter clustering, halos, and voids. 2021. Available from: https://arxiv.org/abs/21

02.05049

��. ^Arka Banerjee, Emanuele Castorina, Francisco Villaescusa-Navarro, Travis Court, Matteo Viel. (2020). Wei

ghing neutrinos with the halo environment. 2020(6):032. doi:10.1088/1475-7516/2020/06/032

��. ^ChangHoon Hahn, Francisco Villaescusa-Navarro, Emanuele Castorina, Roman Scoccimarro. (2020). Cons

training Mν with the bispectrum. Part I. Breaking parameter degeneracies. 2020(3):040. doi:10.1088/1475-75

16/2020/03/040

��. ^Cora Uhlemann, Oliver Friedrich, Francisco Villaescusa-Navarro, Arka Banerjee, Sandrine Codis. (2020). Fi

sher for complements: extracting cosmology and neutrino mass from the counts-in-cells PDF. 495(4):4006–

4027. doi:10.1093/mnras/staa1155

��. ^Oliver Friedrich, Cora Uhlemann, Francisco Villaescusa-Navarro, Tobias Baldauf, Marc Manera, et al. (202

0). Primordial non-Gaussianity without tails - how to measure fNL with the bulk of the density PDF. 498(1):

464–483. doi:10.1093/mnras/staa2160

��. ^Elena Massara, Francisco Villaescusa-Navarro, Shirley Ho, Neal Dalal, David N. Spergel. (2021). Using the

Marked Power Spectrum to Detect the Signature of Neutrinos in Large-Scale Structure. 126(1):011301. doi:10.

1103/PhysRevLett.126.011301

��. ^Ji-Ping Dai, Licia Verde, Jun-Qing Xia. (2020). What can we learn by combining the skew spectrum and the

power spectrum? 2020(8):007. doi:10.1088/1475-7516/2020/08/007

��. ^E. Allys, T. Marchand, J.-F. Cardoso, F. Villaescusa-Navarro, S. Ho, et al. (2020). New interpretable statistics f

or large-scale structure analysis and generation. 102(10):103506. doi:10.1103/PhysRevD.102.103506

��. ^Arka Banerjee, Tom Abel. (2021). Nearest neighbour distributions: New statistical measures for cosmologic

al clustering. 500(4):5479–5499. doi:10.1093/mnras/staa3604

��. ^Arka Banerjee, Tom Abel. (2021). Cosmological cross-correlations and nearest neighbour distributions. 50

4(2):2911–2923. doi:10.1093/mnras/stab961

��. ^Davide Gualdi, Sergi Novell, Héctor Gil-Marı́n, Licia Verde. (2021). Matter trispectrum: theoretical modellin

g and comparison to N-body simulations. 2021(1):015. doi:10.1088/1475-7516/2021/01/015

qeios.com doi.org/10.32388/NP0Q0Y 20

https://www.qeios.com/
https://doi.org/10.32388/NP0Q0Y


��. ^Utkarsh Giri, Kendrick M. Smith. (2020). Exploring KSZ velocity reconstruction with N-body simulations a

nd the halo model. arXiv e-prints. :arXiv:2010.07193. Available from: https://arxiv.org/abs/2010.07193

��. ^Lucia F. de la Bella, Nicolas Tessore, Sarah Bridle. (2020). The unequal-time matter power spectrum: impa

ct on weak lensing observables. arXiv e-prints. :arXiv:2011.06185. Available from: https://arxiv.org/abs/2011.0

6185

��. ^ChangHoon Hahn, Francisco Villaescusa-Navarro. (2021). Constraining Mv with the bispectrum. Part II. T

he information content of the galaxy bispectrum monopole. 2021(4):029. doi:10.1088/1475-7516/2021/04/02

9

��. ^Georgios Valogiannis, Cora Dvorkin. (2021). Towards an Optimal Estimation of Cosmological Parameters

with the Wavelet Scattering Transform. arXiv e-prints. :arXiv:2108.07821. Available from: https://arxiv.org/a

bs/2108.07821

��. ^Joseph Kuruvilla. (2021). Cosmology with the kinetic Sunyaev-Zeldovich effect: Independent of the optical

depth and σ8. arXiv e-prints. :arXiv:2109.13938. Available from: https://arxiv.org/abs/2109.13938

��. ^Simeon Bird, Matteo Viel, Martin G. Haehnelt. (2012). Massive neutrinos and the non-linear matter power

spectrum. Monthly Notices of the Royal Astronomical Society. 420(3):2551–2561. doi:10.1111/j.1365-2966.201

1.20222.x

��. ^Julien Lesgourgues, Sergio Pastor. (2012). Neutrino mass from Cosmology. arXiv e-prints. :arXiv:1212.6154.

Available from: https://arxiv.org/abs/1212.6154

��. ^F. Villaescusa-Navarro, M. Vogelsberger, M. Viel, A. Loeb. (2013). Neutrino signatures on the high-transmiss

ion regions of the Lyman α forest. 431:3670–3677. doi:10.1093/mnras/stt452

��. ^F. Villaescusa-Navarro, F. Marulli, M. Viel, E. Branchini, E. Castorina, et al. (2014). Cosmology with massive

neutrinos I: towards a realistic modeling of the relation between matter, haloes and galaxies. 3:011. doi:10.10

88/1475-7516/2014/03/011

��. ^Marco Peloso, Massimo Pietroni, Matteo Viel, Francisco Villaescusa-Navarro. The effect of massive neutrin

os on the BAO peak. arXiv 2015. doi:10.48550/ARXIV.1505.07477

��. ^E. Castorina, E. Sefusatti, R. K. Sheth, F. Villaescusa-Navarro, M. Viel. (2014). Cosmology with massive neut

rinos II: on the universality of the halo mass function and bias. 2:049. doi:10.1088/1475-7516/2014/02/049

��. ^E. Castorina, C. Carbone, J. Bel, E. Sefusatti, K. Dolag. (2015). DEMNUni: the clustering of large-scale structu

res in the presence of massive neutrinos. 7:043. doi:10.1088/1475-7516/2015/07/043

��. ^Massara E, Villaescusa-Navarro F, Viel M, Sutter PM (2015). "Voids in massive neutrino cosmologies." JCAP.

11:018. doi: 10.1088/1475-7516/2015/11/018.

qeios.com doi.org/10.32388/NP0Q0Y 21

https://www.qeios.com/
https://doi.org/10.32388/NP0Q0Y


��. ^Francisco Villaescusa-Navarro, Arka Banerjee, Neal Dalal, Emanuele Castorina, Roman Scoccimarro, et al.

(2018). The imprint of neutrinos on clustering in redshift space. The Astrophysical Journal. 861(1):53. doi:10.3

847/1538-4357/aac6bf

��. ^J. Bel, A. Pezzotta, C. Carbone, E. Sefusatti, L. Guzzo. (2019). Accurate �tting functions for peculiar velocity s

pectra in standard and massive-neutrino cosmologies. Astronomy & Astrophysics. 622:A109. doi:10.1051/00

04-6361/201834513

��. ^Nayantara Mudur, Carolina Cuesta-Lazaro, Douglas P. Finkbeiner. (2023). Cosmological Field Emulation a

nd Parameter Inference with Diffusion Models. arXiv e-prints. :arXiv:2312.07534. doi:10.48550/arXiv.2312.07

534

��. a, b, c, d, eAndres C. Rodrı́guez, Tomasz Kacprzak, Aurelien Lucchi, Adam Amara, Raphaël Sgier, et al. (2018).

Fast cosmic web simulations with generative adversarial networks. Computational Astrophysics and Cosm

ology. 5(1):4. doi:10.1186/s40668-018-0026-4

��. ^Siyu He, Yin Li, Yu Feng, Shirley Ho, Siamak Ravanbakhsh, et al. (2019). Learning to predict the cosmologic

al structure formation. Proceedings of the National Academy of Science. 116(28):13825–13832. doi:10.1073/p

nas.1821458116

��. ^Renan Alves de Oliveira, Yin Li, Francisco Villaescusa-Navarro, Shirley Ho, David N. Spergel. (2020). Fast an

d Accurate Non-Linear Predictions of Universes with Deep Learning. arXiv e-prints. :arXiv:2012.00240. Avail

able from: https://arxiv.org/abs/2012.00240

��. ^Neerav Kaushal, Francisco Villaescusa-Navarro, Elena Giusarma, Yin Li, Conner Hawry, et al. (2022). NEC

OLA: Toward a Universal Field-level Cosmological Emulator. 930(2):115. doi:10.3847/1538-4357/ac5c4a

��. ^Victoria Ono, Core Francisco Park, Nayantara Mudur, Yueying Ni, Carolina Cuesta-Lazaro, et al. (2024). De

biasing with Diffusion: Probabilistic Reconstruction of Dark Matter Fields from Galaxies with CAMELS. 970

(2):174. doi:10.3847/1538-4357/ad5957

��. ^Core Francisco Park, Victoria Ono, Nayantara Mudur, Yueying Ni, Carolina Cuesta-Lazaro. (2023). Probabil

istic reconstruction of Dark Matter �elds from biased tracers using diffusion models. arXiv e-prints. :arXiv:2

311.08558. doi:10.48550/arXiv.2311.08558

��. ^Yin Li, Yueying Ni, Rupert A. C. Croft, Tiziana Di Matteo, Simeon Bird, et al. (2021). AI-assisted superresolut

ion cosmological simulations. Proceedings of the National Academy of Sciences. 118(19). doi:10.1073/pnas.20

22038118

��. ^Yueying Ni, Yin Li, Patrick Lachance, Rupert A. C. Croft, Tiziana Di Matteo, et al. (2021). AI-assisted superre

solution cosmological simulations – II. Halo substructures, velocities, and higher order statistics. Monthly N

qeios.com doi.org/10.32388/NP0Q0Y 22

https://www.qeios.com/
https://doi.org/10.32388/NP0Q0Y


otices of the Royal Astronomical Society. 507(1):1021–1033. doi:10.1093/mnras/stab2113

��. ^Xiaowen Zhang, Patrick Lachance, Yueying Ni, Yin Li, Rupert A. C. Croft, et al. (2024). AI-assisted super-res

olution cosmological simulations III: time evolution. 528(1):281–293. doi:10.1093/mnras/stad3940

��. ^Xiaowen Zhang, Patrick Lachance, Ankita Dasgupta, Rupert A. C. Croft, Tiziana Di Matteo, et al. (2024). AI

-assisted super-resolution cosmological simulations IV: An emulator for deterministic realizations. arXiv e-

prints. :arXiv:2408.09051. doi:10.48550/arXiv.2408.09051

��. ^Andreas Schanz, Florian List, Oliver Hahn. (2023). Stochastic Super-resolution of Cosmological Simulation

s with Denoising Diffusion Models. arXiv e-prints. :arXiv:2310.06929. doi:10.48550/arXiv.2310.06929

��. ^Adam Rouhiainen, Moritz Münchmeyer, Gary Shiu, Michael Gira, Kangwook Lee. (2024). Superresolution

emulation of large cosmological �elds with a 3D conditional diffusion model. 109(12):123536. doi:10.1103/Ph

ysRevD.109.123536

��. a, b, cMudur N, Finkbeiner DP (2022). "Can denoising diffusion probabilistic models generate realistic astrop

hysical �elds?" In: 36th Conference on Neural Information Processing Systems: Workshop on Machine Lear

ning and the Physical Sciences. https://arxiv.org/abs/2211.12444.

��. ^Elena Giusarma, Mauricio Reyes, Francisco Villaescusa-Navarro, Siyu He, Shirley Ho. (2019). Predicting cos

mological massive neutrino simulation with convolutional neural networks. In: 33th conference on Neural I

nformation Processing Systems. Available from: https://arxiv.org/abs/1910.04255v2

��. ^Elena Giusarma, Mauricio Reyes, Francisco Villaescusa-Navarro, Siyu He, Shirley Ho, et al. (2023). Learnin

g neutrino effects in cosmology with convolutional neural network. The Astrophysical Journal. 950(1):70. do

i:10.3847/1538-4357/accd61

��. a, b, cAndrius Tamosiunas, Hans A. Winther, Kazuya Koyama, David J. Bacon, Robert C. Nichol, et al. (2021). I

nvestigating cosmological GAN emulators using latent space interpolation. 506(2):3049–3067. doi:10.1093/

mnras/stab1879

��. a, b, cNathanaël Perraudin, Sandro Marcon, Aurelien Lucchi, Tomasz Kacprzak. (2020). Emulation of cosmol

ogical mass maps with conditional generative adversarial networks. arXiv e-prints. :arXiv:2004.08139. Avai

lable from: https://arxiv.org/abs/2004.08139

��. ^Sambatra Andrianomena, Francisco Villaescusa-Navarro, Sultan Hassan. (2022). Emulating cosmological

multi�elds with generative adversarial networks. In: 36th Conference on Neural Information Processing Sys

tems: Workshop on Machine Learning and the Physical Sciences. Available from: https://arxiv.org/abs/2211.

05000

qeios.com doi.org/10.32388/NP0Q0Y 23

https://www.qeios.com/
https://doi.org/10.32388/NP0Q0Y


��. ^Prabh Bhambra, Benjamin Joachimi, Ofer Lahav, Davide Piras. psi-GAN: A power-spectrum-informed gen

erative adversarial network for the emulation of large-scale structure maps across cosmologies and redshif

ts. Monthly Notices of the Royal Astronomical Society.: Oxford University Press (OUP) 2024. pp. 3138–3157. d

oi:10.1093/mnras/stae2810

��. ^Davide Piras, Benjamin Joachimi, Francisco Villaescusa-Navarro. Fast and realistic large-scale structure fr

om machine-learning-augmented random �eld simulations. Monthly Notices of the Royal Astronomical So

ciety.: Oxford University Press (OUP) 2023. pp. 668–683. doi:10.1093/mnras/stad052

��. a, bRoy Friedman, Sultan Hassan. (2022). HIGlow: Conditional Normalizing Flows for High-Fidelity HI Map

Modeling. arXiv e-prints. :arXiv:2211.12724. doi:10.48550/arXiv.2211.12724

��. ^Christopher C. Lovell, Stephen M. Wilkins, Peter A. Thomas, Matthieu Schaller, Carlton M. Baugh, et al. (20

21). A machine learning approach to mapping baryons on to dark matter haloes using the EAGLE and C-EA

GLE simulations. doi:10.1093/mnras/stab3221

��. a, bNayantara Mudur, Carolina Cuesta-Lázaro, Douglas P. Finkbeiner. (2023). Cosmological �eld emulation

and parameter inference with diffusion models. ArXiv. abs/2312.07534. Available from: https://api.semantics

cholar.org/CorpusID:266174439

��. ^Nayantara Mudur, Carolina Cuesta-Lazaro, Douglas P. Finkbeiner. (2024). Diffusion-HMC: Parameter infer

ence with diffusion-model-driven hamiltonian monte carlo. The Astrophysical Journal. 978(1):64. doi:10.384

7/1538-4357/ad8bc3

��. a, bTanner Sether, Elena Giusarma, Mauricio Reyes-Hurtado. (2024). Probabilistic Galaxy Field Generation

with Diffusion Models. In: 38th conference on Neural Information Processing Systems. Available from: http

s://arxiv.org/abs/2412.05131

��. a, bIan J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, et al. Generative adve

rsarial networks. arXiv 2014. doi:10.48550/ARXIV.1406.2661

��. ^Svetlin Tassev, Matias Zaldarriaga, Daniel J. Eisenstein. (2013). Solving large scale structure in ten easy ste

ps with COLA. Journal of Cosmology and Astroparticle Physics. 2013(06):036–036. doi:10.1088/1475-7516/20

13/06/036

��. ^Svetlin Tassev, Daniel J. Eisenstein, Benjamin D. Wandelt, Matias Zaldarriaga. sCOLA: The n-body COLA m

ethod extended to the spatial domain. 2015. Available from: https://arxiv.org/abs/1502.07751

��. ^Bill S. Wright, Hans A. Winther, Kazuya Koyama. (2017). COLA with massive neutrinos. 2017(10):054. doi:1

0.1088/1475-7516/2017/10/054

qeios.com doi.org/10.32388/NP0Q0Y 24

https://www.qeios.com/
https://doi.org/10.32388/NP0Q0Y


��. ^Martin Arjovsky, Soumith Chintala, Léon Bottou. Wasserstein GAN. arXiv 2017. doi:10.48550/ARXIV.1701.07

875

��. ^Elena Giusarma, Mauricio Reyes, Francisco Villaescusa-Navarro, Siyu He, Shirley Ho, et al. (2023). Learnin

g Neutrino Effects in Cosmology with Convolutional Neural Network. 950(1):70. doi:10.3847/1538-4357/accd

61

��. ^M. Gatti, C. Chang, O. Friedrich, B. Jain, D. Bacon, et al. (2020). Dark Energy Survey Year 3 results: cosmolog

y with moments of weak lensing mass maps - validation on simulations. 498(3):4060–4087. doi:10.1093/m

nras/staa2680

��. a, bT. Kacprzak, D. Kirk, O. Friedrich, A. Amara, A. Refregier, et al. (2016). Cosmology constraints from shear p

eak statistics in Dark Energy Survey Science Veri�cation data. 463(4):3653–3673. doi:10.1093/mnras/stw207

0

��. a, bMustafa Mustafa, Deborah Bard, Wahid Bhimji, Zarija Lukić, Rami Al-Rfou, et al. (2019). CosmoGAN: cre

ating high-�delity weak lensing convergence maps using Generative Adversarial Networks. Computational

Astrophysics and Cosmology. 6(1):1. doi:10.1186/s40668-019-0029-9

��. ^Zachary Slepian, Daniel J. Eisenstein. (2016). Accelerating the two-point and three-point galaxy correlatio

n functions using Fourier transforms. 455(1):L31–L35. doi:10.1093/mnrasl/slv133

��. ^Zachary Slepian, Daniel J. Eisenstein. (2015). Computing the three-point correlation function of galaxies in

O(N2̂) time. 454(4):4142–4158. doi:10.1093/mnras/stv2119

��. ^Zachary Slepian, Daniel J. Eisenstein. (2018). A practical computational method for the anisotropic redshift

-space three-point correlation function. 478(2):1468–1483. doi:10.1093/mnras/sty1063

��. ^Oliver H. E. Philcox, Zachary Slepian, Jiamin Hou, Craig Warner, Robert N. Cahn, et al. (2022). ENCORE: an

O (Ng2) estimator for galaxy N-point correlation functions. 509(2):2457–2481. doi:10.1093/mnras/stab3025

��. ^Oliver H. E. Philcox, Zachary Slepian. (2022). Ef�cient computation of N-point correlation functions in D di

mensions. Proceedings of the National Academy of Science. 119(33):e2111366119. doi:10.1073/pnas.2111366119

��. ^Lado Samushia, Zachary Slepian, Francisco Villaescusa-Navarro. (2021). Information content of higher or

der galaxy correlation functions. 505(1):628–641. doi:10.1093/mnras/stab1199

��. ^Nicolas Martinet, Peter Schneider, Hendrik Hildebrandt, HuanYuan Shan, Marika Asgari, et al. (2017). KiDS

-450: Cosmological constraints from weak-lensing peak statistics II: Inference from shear peaks using n-bo

dy simulations. Monthly Notices of the Royal Astronomical Society. 474(1):712–730. doi:10.1093/mnras/stx27

93

qeios.com doi.org/10.32388/NP0Q0Y 25

https://www.qeios.com/
https://doi.org/10.32388/NP0Q0Y


��. ^Richard M. Feder, Philippe Berger, George Stein. (2020). Nonlinear 3D cosmic web simulation with heavy-t

ailed generative adversarial networks. Physical Review D. 102(10). doi:10.1103/physrevd.102.103504

��. ^Jorit Schmelzle, Aurelien Lucchi, Tomasz Kacprzak, Adam Amara, Raphael Sgier, et al. Cosmological mode

l discrimination with deep learning. arXiv 2017. doi:10.48550/ARXIV.1707.05167

��. ^Andrea Petri, Zoltán Haiman, Lam Hui, Morgan May, Jan M. Kratochvil. (2013). Cosmology with minkows

ki functionals and moments of the weak lensing convergence �eld. Phys Rev D. 88:123002. doi:10.1103/Phys

RevD.88.123002

��. ^George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, Balaji Lakshminarayan

an. (2019). Normalizing Flows for Probabilistic Modeling and Inference. arXiv e-prints. :arXiv:1912.02762. do

i:10.48550/arXiv.1912.02762

��. ^Jonathan Ho, Ajay Jain, Pieter Abbeel. (2020). Denoising Diffusion Probabilistic Models. arXiv e-prints. :arX

iv:2006.11239. doi:10.48550/arXiv.2006.11239

��. ^Sultan Hassan, Sambatra Andrianomena, Caitlin Doughty. (2020). Constraining the astrophysics and cos

mology from 21 cm tomography using deep learning with the SKA. 494(4):5761–5774. doi:10.1093/mnras/sta

a1151

��. ^Christopher C. Lovell, Sultan Hassan, Francisco Villaescusa-Navarro, Shy Genel, ChangHoon Hahn, et al. (2

023). A Hierarchy of Normalizing Flows for Modelling the Galaxy-Halo Relationship. In: Machine learning f

or astrophysics. p. 21. doi:10.48550/arXiv.2307.06967

Declarations

Funding: No speci�c funding was received for this work.

Potential competing interests: No potential competing interests to declare.

qeios.com doi.org/10.32388/NP0Q0Y 26

https://www.qeios.com/
https://doi.org/10.32388/NP0Q0Y

