
3 April 2025, Preprint v1 · CC-BY 4.0 PREPRINT

Research Article

MixLLM: Dynamic Routing in Mixed Large

Language Models

Xinyuan Wang1,2, Yanchi Liu3, Wei Cheng3, Xujiang Zhao3, Zhengzhang Chen3, Wenchao Yu3, Yanjie Fu1,

Haifeng Chen3

1. Arizona State University, United States; 2. NEC Labs America; 3. NEC Labs America, United States

Large Language Models (LLMs) exhibit potential arti�cial generic intelligence recently, however, their usage

is costly with high response latency. Given mixed LLMs with their own strengths and weaknesses, LLM

routing aims to identify the most suitable model for each query in the stream to maximize response quality

and minimize cost and latency. However, the challenges involve: (1) dynamic trade-offs among quality, cost,

and latency; (2) enabling continual learning in deployed systems; and (3) navigating a varying (e.g., new LLM

addition or old LLM removal) set of LLM candidates over time. To bridge these gaps, we develop MixLLM, a

dynamic contextual-bandit-based routing system for query-LLM assignment. Speci�cally, we �rst leverage

query tags to enhance query embeddings for the routing task. Next, we design lightweight prediction

models to estimate the response qualities and costs of queries over LLMs. We then devise a meta-decision

maker to choose the query-LLM assignments to best tradeoff response quality, cost, and latency. Finally, the

system bene�ts from continual training, allowing it to adapt to evolving queries and user feedback over

time. Our extensive experiments show that MixLLM achieves the best trade-offs in response quality, cost,

and latency (97.25% of GPT-4’s quality at 24.18% of the cost under the time constraint).

Xinyuan Wang worked on the project during an internship at NEC Labs America

Corresponding author: Yanchi Liu, yanchi@nec-labs.com

1. Introduction

Large Language Models (LLMs) have exhibited abilities to understand massive texts, generate actionable

knowledge, enable contextual reasoning, and innovate diverse applications[1][2][3][4][5][6]. However, deploying

LLMs presents unique challenges in managing computational resources, optimizing response times, and

ensuring scalability.

Qeios

qeios.com doi.org/10.32388/NS4GU3 1

mailto:yanchi@nec-labs.com
https://www.qeios.com/
https://doi.org/10.32388/NS4GU3

Figure 1. Which is the most suitable LLM?

As shown in Figure 1, the diversity of available LLMs[7][8][9][10][11][12][13], each with different strengths and

weaknesses, poses a challenge when selecting the most appropriate model for a given task. More powerful

models, such as GPT-4[14], can deliver high-quality responses, but the pricy cost and computational

requirements limit their accessibility. Thus, LLM routing, which chooses the most suitable LLMs for incoming

queries in mixed LLM candidates, is needed to balance the trade-offs between response quality, cost, and

latency.

Existing LLM routing methods can be categorized into non-predictive methods and predictive methods. Non-

predictive methods, like cascading[15][16], �rstly exploit smaller LLMs and then switch to larger LLMs based on

a reviewer model, but this increases both cost and latency as multiple LLMs are involved[17]. Predictive methods

predict the performance of candidate LLMs to select the best one for each query. For example,

HybridLLM[18] exploits a binary classi�er to predict the query dif�culty for routing, RouterBench[19] predicts

response quality directly, and FORC[20] optimizes quality and cost at the set level.

However, the challenges involved in existing work are multifaceted. Firstly, a key limitation of current methods

is the lack of consideration of high latency when too many queries are routed to the same LLM. Ignoring latency

can create bottlenecks, reduce system ef�ciency, and impact user experience. Secondly, continual learning in a

deployed system poses a signi�cant challenge: LLMs must adapt to evolving queries and learn from user

feedback over time to maintain relevance and accuracy, necessitating robust mechanisms for incorporating

feedback. Lastly, �exibly managing the addition and removal of candidate LLMs is essential; as advancements

in model architectures and techniques emerge, the routing system needs to integrate new models and retire

outdated ones to ensure users bene�t from the latest advancements.

qeios.com doi.org/10.32388/NS4GU3 2

https://www.qeios.com/
https://doi.org/10.32388/NS4GU3

To address these challenges, we propose MixLLM, a dynamic contextual-bandit-based routing system for

query-LLM assignment. First, we propose a tag-enhanced embedding model by using tags generated from the

InsTag[21] model. These tags help improve the query representations from noises. Next, we design lightweight

prediction models for each LLM to estimate response quality and cost. These LLM-speci�c predictions do not

require system-wide retraining when new LLMs are introduced. The meta decision-maker then selects the best

LLM for each query based on the predictions. It balances trade-offs between response quality, cost, and latency

to optimize query-LLM assignments. Finally, MixLLM bene�ts from continual training, allowing the system

adapts to evolving queries and user feedback over time, improving the performance in real-world deployment.

Our extensive experiments demonstrate that MixLLM effectively balances response quality, cost, and latency,

achieving 97.25% of GPT-4’s quality at only 24.18% of the cost. By incorporating a latency penalty, MixLLM

avoids congestion and high-latency issues, ensuring ef�cient system performance even under heavy load.

Additionally, we extend the RouterBench dataset by incorporating the latest Llama 3.1 model, showcasing the

framework’s scalability and adaptability. The results from online training further validate the effectiveness of

the continual training approach.

Our contributions are as follows:

We propose MixLLM that leverages enhanced query embeddings, latency penalties, and continual learning

to balance response quality, cost, and latency in LLM routing.

MixLLM accounts for real-world query streams by introducing a latency mechanism that factors in

hardware limitations.

MixLLM offers key bene�ts, including selecting the optimal LLM, handling the latency constraint, and

adapting over time to changing environments and user feedback.

We extend the RouterBench dataset by incorporating the latest Llama 3.1 model and adding prompt and

response length.

2. Related Work

Studies on selecting the most suitable LLM include non-predictive and predictive routing systems.

2.1. Non-predictive Routing System

Non-predictive systems incorporate LLM inference during routing. A common approach is cascading, where

smaller models are used �rst, switching to larger ones if needed. FrugalGPT[15] introduced three strategies to

reduce cost while maintaining response quality: prompt adaptation, LLM approximation, and LLM cascade

form a chain of LLMs, selecting LLMs from small to large. AutoMix[16] introduced a similar cascading strategy,

qeios.com doi.org/10.32388/NS4GU3 3

https://www.qeios.com/
https://doi.org/10.32388/NS4GU3

where a self-reviewer judges the answer and a meta-reviewer decides whether switching to a larger model is

needed. However, in non-predictive routing systems, one query may need to be answered by several LLMs

which increases both cost and resource usage.

Figure 2. Overview of the MixLLM Framework

2.2. Predictive Routing System

Predictive systems estimate the quality of LLM response before making routing decisions and route each query

to only one LLM. These systems typically fall into categories such as classi�cation, quality prediction,

optimization, and bandit-based solutions, each offering unique strategies. Given the capability of LLMs to

handle tasks across diverse domains, including medical applications[22][23], bioinformatics[24][25], material

science[26], industrial engineering[27][28], etc, these routing systems are crucial for optimization in real-world

scenarios. Classi�cation-based approaches predict the best LLM for a query by treating LLMs as labels.

HybridLLM[18] trained a binary classi�er to assign ”easy” queries to smaller models. ME-Switch[29] extended to

a multi-label domain classi�er, improving memory and computation ef�ciency. Other methods like

Zooter[30] introduced a reward model for ranking responses from different LLMs, using tag-based label

enhancement for training data. RouteLLM[31] introduced four distinct routing strategies, including similarity-

weighted ranking, matrix factorization, and supervised and prompting classi�cation. However, query labels

may shift when new and powerful LLMs emerge. Response quality prediction methods focus on predicting the

quality of each LLM’s response for a given query. Shnitzer et al.[32] used 3 different ways to predict

“correctness” (response quality) for each LLM and select the best one. RouterBench[19] optimized the quality-

cost trade-off by a “willingness to pay” parameter. It also introduced a large benchmark dataset for routing

tasks. However, they did not predict cost and ignored latency. Optimization-based methods treat LLM routing as

a set-level optimization problem. FORC[20] employed predicted response quality and cost for quality-oriented

and cost-oriented linear programming strategies. OptLLM[33] optimized the routing problem with a multi-label

qeios.com doi.org/10.32388/NS4GU3 4

https://www.qeios.com/
https://doi.org/10.32388/NS4GU3

classi�cation model. But these approaches potentially ignore low cost-effective queries. Bandit-based methods

like MetaLLM[34] adopted a single bandit approach, where the system learns to balance quality and cost trade-

offs over time. However, the dependency between arms can limit scalability when adding or removing LLMs.

3. Methodology

3.1. The Dynamic LLM Routing Task

We study the problem of dynamic LLM routing with streaming queries. Given queries that arrive sequentially,

our goal is to assign each query to the most appropriate LLM selected from a set of candidates to trade off

response quality, cost, and latency. Formally, let the set of streaming queries be: and the set of

LLM candidates be: The objective is to select the most suitable LLM for the query .

3.2. Overview of The MixLLM Framework

Figure 2 shows that MixLLM consists of four components: (1) tag-enhanced query embedding, (2) LLM-speci�c

prediction, (3) meta decision maker, and (4) continual learning mechanism. This framework allows MixLLM to

route queries to LLMs in a dynamic system while achieving quality-cost-latency trade-offs and continual

learning with a changing LLM candidate set.

3.3. Tag-enhanced Query Embedding via Unsupervised Fine-tuning

A query can be seen as a token sequence, thus, its embedding can be generated using a pre-trained encoder (e.g.,

BERT[35]): where represents the embedding of -th query in a query stream. However,

such general-purpose query embeddings contain too much noises and are not tailored for LLM routing. To

address this limitation, we propose enhancing the encoder by introducing tag knowledge, which enriches the

query embeddings and improves their effectiveness for routing tasks.

Different LLMs can be pro�cient in different domains (e.g., Science, Legal)[36]. Using GPT-4 as an example,

Figure 3 shows a clear correlation between domain and response quality. The query distribution after t-SNE

dimension reduction is shown in Figure 3a, with each color representing a speci�c domain. Figure 3b highlights

GPT-4’s response quality. It is evident that GPT-4 has a higher error frequency (orange points in Figure 3b) in

the “Legal” (red points in Figure 3a) and “Math” (purple points in Figure 3a) domains. These observations

inspire us to develop the tag-enhanced embedding approach. By incorporating tags and their derived domains,

we can guide embeddings to capture these distinctions, making them more suitable for LLM routing tasks.

Q = { ,qn}
|Q|
n=1

M = { .ml}
|M|
l=1

m∗
n qn

= Encoder(),en qn en n qn

qeios.com doi.org/10.32388/NS4GU3 5

https://www.qeios.com/
https://doi.org/10.32388/NS4GU3

Figure 3. Domain-Quality Correlation

Step 1: Automated Query Tag Generation. To prepare, we employ the InsTag[21] model to generate �ne-grained

tags for each query and manually cluster the tags into a set of coarse-grained domains, denoted as . InsTag is

an instruction tagging method designed to quantify the diversity and complexity of human instructions, and

these tags contribute to model �ne-tuning.

Step 2: Unsupervised Fine-tuning of Encoder. While the InsTag model, backed by Llama-2 13B, is too large to

be used during inference, we �ne-tune the BERT encoder during the training stage. We develop an

unsupervised optimization objective that integrates intra-domain similarity () and inter-domain

separation ():

where the intra-domain similarity loss encourages embeddings within the same domain cluster to be close to

their center :

The inter-domain separation loss ensures that different domain centers are distinct:

D

Lintra

Linter

L = + ,Lintra Linter (1)

μj

= − log .Lintra
1

|Q|
∑
i=1

|Q| exp(⋅)ei μi

exp(⋅)∑|D|
j=1 ei μj

(2)

= log exp(⋅).Linter
1

|D|
∑
j=1

|D|

∑
k≠j

μj μk (3)

qeios.com doi.org/10.32388/NS4GU3 6

https://www.qeios.com/
https://doi.org/10.32388/NS4GU3

3.4. LLM-Speci�c Quality and Cost Prediction

Given a query embedding, we aim to predict both the response quality and �nancial cost for each candidate

LLM on the query, so the meta decision-maker can assign the most suitable model.

Step 1: Estimating the Response Quality of A Query-LLM Pair. Since different LLMs have different response

qualities, we learn an LLM-speci�c regression function for each LLM. This function estimates the response

quality of the -th query on the -th LLM:

Step 2: Estimating the Financial Cost of A Query-LLM Pair. The total cost of the -th query on the -th LLM

includes: 1) the known input cost and 2) the predicted output cost, according to typical LLM pricing policies:

where is the prompt length of query , and and are unit prices of input prompt and

output response. The response length is predicted using a similar method as the response quality

predictors:

3.5. Meta Decision Maker

For the -th query , the �nal decision score for each candidate LLM is determined by three factors: (1) ,

which trade-offs the predicted quality and cost; (2) , which accounts for potential prediction uncertainty;

and (3) , which discourages selecting candidates with long waiting time:

where and control the relative importance.

The willingness to pay is introduced in to control the priority of quality over cost, leading to different

budgets accordingly:

To handle prediction errors, we introduce an uncertainty measurement () to enhance robustness[37]:

where represents the inverse covariance matrix for the -th LLM. This measures the amount of

information gathered for each candidate and adjusts the con�dence of the prediction accordingly.

n l

= (;),p̂n,l f
rq
l

en θ
rq
l

(4)

n l

= + ,ĉ n,l ⋅len
prm
n,l

price
prm
l

input cost

⋅lenres
n,l

^ priceres
l

output cost

(5)

len
prm
n,l

qn price
prm
l

priceres
l

lenres
n,l

^

= (;),lenres
n,l

^ f rl
l

en θrl
l (6)

n qn strade
n,l

sunc
n,l

s
pen
l

= + α ⋅ − β ⋅ .sn,l strade
n,l

sunc
n,l

s
pen
l

(7)

α β

λ strade
n,l

= ⋅ − ⋅ ,strade
n,l

λ

λ + 1
p̂n,l

1

λ + 1
ĉ n,l (8)

sunc
n,l

= ⋅ ⋅ ,sunc
n,l

e
T
n A

−1
l en (9)

A
−1
l l

qeios.com doi.org/10.32388/NS4GU3 7

https://www.qeios.com/
https://doi.org/10.32388/NS4GU3

Considering hardware limitations, it is crucial to avoid routing queries to candidates with excessively long

waiting time. The penalty is given by:

where is a scaling factor and represents the maximum tolerable waiting time. The waiting time for

candidate includes: 1) the initial latency required for the LLMs to start and 2) the token output time for

generating each token in the response. The coef�cient (smaller than 1) makes the penalty stronger. By scaling

the threshold to , the system applies the penalty earlier, discouraging the selection of candidates before

their waiting time reaches the full limit of .

Finally, the candidate with the highest score is selected as the most suitable one:

3.6. Continual Learning

To ensure effectiveness in real-world applications, we designed both of�ine and online training modes. The

of�ine mode enables the model to achieve robust performance before deployment, while the online mode

allows the model to continuously improve in response to changing environments and user feedback.

Of�ine Training: Prior to deployment, we perform of�ine training using re�ned feedback from all candidate

LLMs. The re�ned feedback includes real response quality and length, which involves updating the parameters

of the predictive models:

The parameters for the response quality predictors are updated using gradient descent:

Similarly, the response length predictor parameters are updated as:

The uncertainty matrices are updated incrementally by query embeddings:

This update accumulates information over time, decreasing the inverse , which leads to low uncertainty,

indicating increased con�dence in predictions. Then the waiting time is adjusted based on the LLM

assignment.

Online Training: After deployment, the system incrementally updates predictive models and uncertainty

matrices using re�ned single feedback from the selected LLMs.

= ,spen
l

eγ⋅(−ξ⋅τ)wl (10)

γ τ wl

l

ξ

ξ ⋅ τ

τ

= arg ()m∗
n max

l
sn,l (11)

θ
rq
l

:= − ⋅ L(,),θ
rq
l

θ
rq
l

η1 ∇
θ

rq
l

pn,l p̂n,l (12)

θrl
l

:= − ⋅ L(,),θrl
l θrl

l η2 ∇
θrl
l

lenres
n,l lenres

n,l
^ (13)

Al

:= + ⋅ .Al Al e
T
n en (14)

A
−1
l

qeios.com doi.org/10.32388/NS4GU3 8

https://www.qeios.com/
https://doi.org/10.32388/NS4GU3

However, user feedback based on human satisfaction with the LLM service, often binary (“good” or “not

good”), is challenging for training. To address this, we introduce a Dynamic Feedback Score () based on the

contextual bandit method to capture the binary user feedback and dynamically adjust the scoring mechanism.

The �nal score for each LLM is updated as:

where represents the appropriateness of the -th LLM to answer the given query predicted by a shared 3-

layer MLP network:

And is the con�dence factor based on the variance, to ensure the reliability of and prevent over-reliance

on unstable predictions:

where is a small constant to avoid division by zero. Low variance increases , which will enhance the

importance, while high variance decreases it, which re�ects instability. Then the candidate with the highest

score is selected:

Since we cannot directly supervise the network outputs with binary feedback , we apply the Policy Gradient

method[38] to update . The probability of selecting candidate is:

The goal is to maximize the expected reward:

with gradient on selected candidate :

The parameters are updated as:

s
df

n,l

= + ⋅ ,s′
n,l

sn,l κn,l s
df

n,l
(15)

s
df

n,l
l

[, , … ,] = (;).s
df
n,1 s

df
n,2 s

df

n,|M|
f df

en θdf (16)

κn,l s
df

n,l

= ,κn,l
1

[]+ ϵVarn s
df

n,l

(17)

ϵ κn,l

= arg ().m∗
n max

l
s′
n,l

(18)

rn

θdf l

π(l| ;) = .en θdf
exp()s

df

n,l

exp()∑
|M|
k=1

s
df

n,k

(19)

J() = [],θdf E
l∼π(⋅| ;)en θdf

rn (20)

m∗
n

logπ(| ;) =∇
θdf

m∗
n en θdf

(− log exp())∇
θdf

s
df

n,m∗
n

∑
k=1

L

s
df

n,k

(21)

:= − ⋅ logπ(| ;) ⋅ .θdf θdf η3 ∇
θdf

m∗
n en θdf rn (22)

qeios.com doi.org/10.32388/NS4GU3 9

https://www.qeios.com/
https://doi.org/10.32388/NS4GU3

4. Experiments

4.1. Experimental Settings

4.1.1. Dataset

We conduct our experiments utilizing the RouterBench dataset[19], which consists of 36,497 queries from 8 NLP

datasets, including Chinese and English. Each query is answered by 11 different LLMs, with records of

responses, as well as corresponding quality and cost metrics. Moreover, we extend the dataset with Llama 3.1 8B

and 70B models1 and add prompt and response lengths of all the queries and responses. The dataset is split into

80% training and 20% testing.

4.1.2. Baseline Algorithms

We compare MixLLM with both non-predictive and predictive baselines in our experiments. For non-predictive

methods, the cascading approach tests smaller models �rst and switches to larger ones if needed. We extend

AutoMix[16] by ordering multiple LLMs by size, with cheaper models prioritized when sizes are equal. For

predictive methods, RouteLLM[31] assigns queries to LLMs using a BERT-based multi-label classi�er, while

Zooter[30] is represented by an MLP-based classi�er. RouterBench[19] predicts response quality to achieve a

quality-cost trade-off. Both FORC[20] and OptLLM[33] predict quality and then perform set-level optimization,

while MetaLLM[34] uses a bandit algorithm with a quality-cost reward. For additional comparison, we also

include random routing and individual LLMs.

Since the baseline algorithms do not include online training after deployment, we only compare them with our

of�ine training component for a fair comparison in Section 4.2, while the online training component is further

evaluated in Section 4.3.

4.1.3. Evaluation Metrics

We evaluate the methods on the streaming test queries based on the quality-cost trade-off under the latency

constraint. Speci�cally, the response quality score for each query is scaled from 0 to 1, while the query cost is

measured in dollars. Any query that exceeds the maximum tolerable waiting time is assigned a quality score of

0. The total quality and total cost are calculated as the sum of quality scores and query costs for all the test

queries. We evaluate the routing performance across varying budget levels using parameter , ranging from

 to in Equation (8), with a larger will prioritize response quality.

λ

10−6 106 λ

qeios.com doi.org/10.32388/NS4GU3 10

https://www.qeios.com/
https://doi.org/10.32388/NS4GU3

4.1.4. Con�gurations

In our experiments, we set up a software environment consisting of Python 3.12, PyTorch 2.0, and CUDA 12.1

running on Ubuntu 18.04 LTS. Most experiments were conducted on a 12GB Titan-V GPU, while tasks involving

Llama models, such as dataset extension and tag extraction, were performed on two 80GB H100 GPUs.

All random seeds are set to 42 for reproducibility. In Equation (7), is set to 0.01, and is set to 0.1. In

Equation (10), is set to 0.1.

As for learning rates, and are set to 1, re�ecting the use of simple machine learning algorithms, while is

set to 0.001 due to the complexity of the neural network.

Query streams are con�gured at a rate of 100 queries per 10 seconds. The maximum tolerable waiting time is

set to 30 seconds, and the waiting time of LLMs will be updated every 10 seconds. The prices of input and

output, the average initial time, and response speeds of different LLMs are publicly available2. This website

estimates the costs of open-source LLMs based on computational resources, including CPU, GPU, and memory

usage, while API-based LLMs are priced directly using their API rates.

As for quality and length regressors, we use random forest (RF) for quality prediction across all LLMs, while a

combination of multi-layer perceptron (MLP), RF, and K-nearest neighbors (KNN) is applied for length (cost)

prediction depending on the LLM. Those predictors are lightweight. For example, the size of an MLP model is

less than 2MB, so the inference and update time is shorter.

α β

γ

η1 η2 η3

τ

qeios.com doi.org/10.32388/NS4GU3 11

https://www.qeios.com/
https://doi.org/10.32388/NS4GU3

Figure 4. Overall Results

4.2. Overall Results

As shown in Figure 4, MixLLM consistently outperforms the baselines, delivering strong performance. For the

baseline methods, response quality can decline with larger budgets since queries may exceed the latency

constraint. Notably, MixLLM achieves 97.25% of GPT-4’s quality at only 24.18% of the cost when is 1.4. In

comparison, the best baseline method, OptLLM, reaches 96.39% of GPT-4’s quality at 32.94% of the cost.

However, beyond this point, OptLLM’s response quality drops as many queries exceed the waiting time

tolerance, while MixLLM remains stable. The same situation also happens on other baseline algorithms.

The Oracle result represents the most optimal routing on this dataset, balancing response quality and cost. It

serves as a benchmark for the best possible assignment. In this context, a point closer to the upper left (Oracle)

signi�es higher quality at a lower cost. To obtain the Oracle result, all candidate LLMs are tested for each query.

For each query, the LLM that meets the quality threshold and has the lowest cost is selected. While the �nal

results re�ect only the quality and cost of the selected LLM, the process of determining the Oracle result

requires signi�cant computational resources.

Each single LLM provides one quality-cost point. For instance, GPT-4 demonstrates superior quality, while

GPT-3.5 offers a better balance of cost and quality. The “Random” routing serves as a baseline; points above and

to the left of this anchor are superior in offering better quality at a lower cost.

λ

qeios.com doi.org/10.32388/NS4GU3 12

https://www.qeios.com/
https://doi.org/10.32388/NS4GU3

AutoMix struggles because multiple LLMs handle each query, quickly exhausting the budget and reaching the

latency constraint. RouteLLM and Zooter fail to adjust budgets dynamically and can only provide one quality-

cost point. RouterBench performs well at lower budgets but faces latency issues as budgets increase. FORC and

OptLLM share the problem of ignoring some queries due to set-level optimization, affecting user experience.

MetaLLM is less effective because it can’t consider multiple LLMs simultaneously, underscoring the need for a

multi-armed bandit approach.

4.3. Study on Continual Training

To enable continual training, we simulate the real-world query streams by splitting the training dataset into

different ratios (Table 1) for of�ine and online training. For example, an 80:20 split means 80% of the data are

used in of�ine training, while 20% of the data are used in online training. The of�ine training uses re�ned

feedback across these splits. For online training, in addition to the re�ned feedback, user feedback is simulated

by assuming the user is satis�ed if the response quality exceeds 0.7 and the waiting time is less than 15

seconds.

Setting 80:20 50:50 30:70

Without Online Training 75.54% 71.98% 69.74%

With Re�ned Feedback 76.45% 72.99% 71.29%

Improvement 1.21% 1.39% 2.22%

With Binary Feedback 75.93% 72.37% 70.65%

Improvement 0.52% 0.53% 1.31%

Table 1. The Power of Continual Training

Table 1 presents the overall response quality for each setting, calculated as the sum of the response qualities

divided by the total number of queries. Higher percentages indicate better performance. To ensure fairness,

results within the same split ratio (column) maintain similar costs, which means the improvements re�ect the

impact of online training feedback. Results show both types of feedback improve model performance. Although

the improvement may seem modest, it’s important to note that online feedback is only available for the selected

one, which limits the effectiveness compared to of�ine training. Despite this limitation, the results suggest that

qeios.com doi.org/10.32388/NS4GU3 13

https://www.qeios.com/
https://doi.org/10.32388/NS4GU3

online training becomes more effective as more data are available. In real-world scenarios, where online

training data are abundant, MixLLM will have greater opportunities to adapt. Re�ned feedback outperforms

binary feedback due to its detailed nature. Nevertheless, even the simpler binary feedback contributes to

improved performance.

In our experiments, we implemented one online test at the end of online training to demonstrate the

continuing improvement of learning from and aligning with online feedback. Without loss of generality, we

believe our one-time �nding (online feedback can improve performance and alignment) can be generalized to

recurrent tests. It is feasible to adapt our system to conduct recurrent tests at the end of each cycle in a real-

world scenario.

4.4. Study on Tag-Enhanced Embedding

To obtain tags for the tag-enhanced encoder training, we employ InsTag[21], a Llama-based tagging LLM to

generate one or more tags for each training query. InsTag is capable of producing over 6,000 tags, e.g., “data

structure”, “legal ethics”, which are manually categorized into 20 domains, e.g., “Computer Science”, “Legal”.

Cost Level Cost Range General Embedding Enhanced Embedding Improvement

Low < 1 53.14% 56.18% 5.72%

Middle 1 - 8 72.09% 73.43% 1.85%

High > 8 75.76% 76.36% 0.79%

Table 2. Effect of Tag-Enhanced Embedding

The results in Table 2 demonstrate the effectiveness of tag-enhanced embedding. The values represent

response qualities across different cost levels, where each cost level corresponds to a speci�c cost range. To

ensure fairness, the costs within each level (row) are kept similar. As the cost level increases, which corresponds

to a higher budget and a greater emphasis on response quality, the improvement from tag-enhanced

embedding diminishes. Nevertheless, at each cost level, tag-enhanced embedding consistently enhances

routing performance, highlighting its importance.

qeios.com doi.org/10.32388/NS4GU3 14

https://www.qeios.com/
https://doi.org/10.32388/NS4GU3

4.5. Study on Latency Constraint

Theoretically, the trade-off between response quality and query cost often operates within the bounds of

limited hardware resources in the real world. Effectively managing the workload on devices becomes essential.

Different components, such as the CPU, GPU, memory, and bandwidth, all have their performance metrics, but

these factors converge on one critical metric: query waiting time. Therefore, we employ the latency as the

primary constraint.

We conducted a simulation to account for the latency constraint. The total time required to answer a query has

two parts: 1) the initial time to begin generating and 2) the response time, which depends on the answer length.

We use the average initial time for each LLM and estimate the response time by multiplying the output length

by the corresponding LLM’s generation speed. For closed-source LLMs, the simulation is based on API

statistics. For open-source LLMs, we simulated under ideal hardware conditions, assuming suf�cient memory

and stable network connections to ensure optimal performance. The average initial time and response speed of

different LLMs are publicly available3.

Figure 5. Results without Latency Constraint

Even without the latency constraint, MixLLM still outperforms the baselines, as shown in Figure 5. When

compared to results with latency constraint (Figure 4), MixLLM maintains stable performance due to the time

penalty component. However, the baselines show more variation.

qeios.com doi.org/10.32388/NS4GU3 15

https://www.qeios.com/
https://doi.org/10.32388/NS4GU3

In Figure 4, AutoMix’s performance drops the most, primarily due to its cascading nature. Each query starts

with the �rst LLM, resulting in signi�cantly increased waiting time. Other predictive baselines also experience

performance declines at higher cost levels, as they tend to route queries to more powerful LLMs with longer

waiting times. This results in many queries exceeding the maximum tolerable waiting time and going

unanswered.

4.6. Study on Adaptive Training

Figure 6. Results with Updated Candidates

Each LLM in MixLLM operates independently, ensuring scalability. Adding or removing candidate LLMs does

not require complete re-training, which only affects the corresponding LLM. To demonstrate this advantage,

we extended the RouterBench dataset using new Llama 3.1 models. Speci�cally, we utilized the Llama 3.1 8B and

70B models to answer each query in the dataset. Then we record responses and measure their quality, cost, and

length. As shown in Figure 6, with the introduction of the powerful Llama 3.1 models, MixLLM achieves 98.55%

of GPT-4’s response quality while reducing the cost to just 16.79% when is 1.8. Furthermore, MixLLM

continues to outperform other baselines.

λ

qeios.com doi.org/10.32388/NS4GU3 16

https://www.qeios.com/
https://doi.org/10.32388/NS4GU3

4.7. Study on Out-of-Domain Generalization

Real-world queries often originate from new or unseen domains, presenting challenges for LLM routing

systems. To evaluate the domain adaptation and generalization capabilities of MixLLM, we conducted an out-

of-domain (OOD) experiment. In this setup, we simulate an OOD scenario using the domains de�ned by tags.

We maintain an 80:20 splitting ratio, where the testing set (20% of the data) contains non-overlapping domains

not present in the training set (80% of the data). This design ensures that some testing samples belong to

entirely unseen domains during training.

Splitting Policy Of�ine Only Of�ine Online

Normal 80:20 Splitting 75.54% 76.45%

OOD 80:20 Splitting 71.43% 73.89%

Decrease 5.44% 3.35%

Table 3. Result on OOD Scenario

The results in Table 3 reveal that when using only of�ine training, MixLLM’s performance decreases by 5.44%

at the same price cost level. However, when integrating both of�ine and online training, the performance drop

is mitigated to 3.35%. This demonstrates that the integrated of�ine-online training strategy effectively

enhances domain generalization and adaptation. Furthermore, we identify MixLLM’s OOD problem as a novel

routing task, calling on the research community to explore and incorporate advanced domain adaptation

techniques into frameworks like ours to better address this pressing challenge.

4.8. Study on Different Choice Policy

During our experiments, a new question arises: Can selecting more LLMs improve performance? To explore this,

we applied various selection policies, with the results presented in Figure 7.

+

qeios.com doi.org/10.32388/NS4GU3 17

https://www.qeios.com/
https://doi.org/10.32388/NS4GU3

Figure 7. Results on Choice Policy Study

“Top 1”, “Top 2”, and “Top 3” refer to policies where the LLM(s) with the highest 1, 2, or 3 scores are selected.

When multiple LLMs are chosen, the response quality re�ects the best one, while costs are summed. The “TOP

1.5” policy introduces a dynamic adjustment, which selects the top 1 LLM when the budget is low and expands

to include more LLMs as the budget increases. As illustrated in Figure 7, increasing the number of selected

LLMs shifts the curve upwards and to the right. This outcome is expected because selecting more LLMs

increases both cost and the likelihood of choosing the most capable model. Notably, with the same budget (red

line in Figure 7), the “Top 3” policy achieves the highest response quality, even surpassing the most powerful

single LLM, GPT-4, at only 20% of its cost.

However, in practical scenarios, users typically seek a single, de�nitive answer rather than multiple options.

How to select the �nal answer? Adding a reviewer to choose the best answer is one potential solution, but it

requires additional time and resources. Given the complexity, we did not incorporate a multi-choice selection

into MixLLM. It presents interesting engineering challenges, and we welcome further exploration and

collaboration for those interested in addressing this problem.

5. Conclusion

We proposed MixLLM, a dynamic routing system that selects the most suitable LLM for each query by

balancing response quality, cost, and latency. By enhancing query embeddings with tag knowledge and

incorporating latency constraints, MixLLM effectively addresses key challenges in real-world LLM deployment.

The system’s adaptability, achieved through continual learning and independent prediction for each LLM,

qeios.com doi.org/10.32388/NS4GU3 18

https://www.qeios.com/
https://doi.org/10.32388/NS4GU3

ensures ef�ciency as queries evolve and new models are introduced. Our results demonstrate that MixLLM

optimizes resource usage while maintaining strong performance across varying budget levels.

Limitations

Although MixLLM presents strong performance in the experiments, some limitations are listed as follows. (1)

The training process assumes access to re�ned feedback, including response quality and cost, which may not

always be available in real world. Training-free methods could help, such as scaling laws[39]. (2) MixLLM may

face challenges when routing queries from brand-new domains, commonly referred to as the out-of-domain

(OOD) problem (see Section 4.7 for further details). (3) MixLLM faces challenges in practical scenarios requiring

the selection of a single de�nitive answer from multiple LLM outputs, as discussed in Section 4.8. (4) While

MixLLM considers hardware limitation through the latency constraint, more detailed dispatch strategies

considering system information could further improve its practicality. (5) More complex routing tasks remain

unexplored, such as hierarchical routing. This could involve �rst routing a query to a relevant domain, and then

selecting the most suitable LLM within that domain. (6) MixLLM’s performance needs to be tested in real-world

applications to ensure its robustness beyond idealized environments.

Acknowledgments

Dr. Yanjie Fu is supported by the National Science Foundation (NSF) via the grant numbers: 2426340, 2416727,

2421864, 2421865, 2421803, and National Academy of Engineering Grainger Foundation Frontiers of

Engineering Grants.

Footnotes

1 https://ai.meta.com/blog/meta-llama-3-1/

2 https://arti�cialanalysis.ai/

3 https://arti�cialanalysis.ai/

References

�. ^Radford A, Narasimhan K, Salimans T, Sutskever I, et al. (2018). "Improving language understanding by generati

ve pre-training."

�. ^Radford A, Wu J, Child R, Luan D, Amodei D, Sutskever I, et al. (2019). "Language models are unsupervised multita

sk learners." OpenAI blog. 1 (8): 9.

qeios.com doi.org/10.32388/NS4GU3 19

https://ai.meta.com/blog/meta-llama-3-1/
https://artificialanalysis.ai/
https://artificialanalysis.ai/
https://www.qeios.com/
https://doi.org/10.32388/NS4GU3

�. ^Brown T, Mann B, Ryder N, Subbiah M, Kaplan JD, Dhariwal P, Neelakantan A, Shyam P, Sastry G, Askell A, et al.

(2020). "Language models are few-shot learners." Advances in Neural Information Processing Systems. 33: 1877–1

901.

�. ^Raffel C, Shazeer N, Roberts A, Lee K, Narang S, Matena M, Zhou Y, Li W, Liu PJ (2020). "Exploring the limits of tra

nsfer learning with a uni�ed text-to-text transformer". Journal of Machine Learning Research. 21 (140): 1–67.

�. ^Chowdhery A, Narang S, Devlin J, Bosma M, Mishra G, Roberts A, Barham P, Chung HW, Sutton C, Gehrmann S, et

al. (2023). "Palm: Scaling language modeling with pathways". Journal of Machine Learning Research. 24(240):1–1

13.

�. ^Touvron H, Lavril T, Izacard G, Martinet X, Lachaux MA, Lacroix T, Rozière B, Goyal N, Hambro E, Azhar F, et al. 2

023. "Llama: Open and ef�cient foundation language models." arXiv preprint arXiv:2302.13971. Available from: htt

ps://arxiv.org/abs/2302.13971.

�. ^Jiang Y, Pan Z, Zhang X, Garg S, Schneider A, Nevmyvaka Y, Song D (2024). "Empowering time series analysis wit

h large language models: A survey". arXiv preprint arXiv:2402.03182. Available from: https://arxiv.org/abs/2402.031

82.

�. ^Gong N, Reddy CK, Ying W, Fu Y (2024). "Evolutionary large language model for automated feature transformati

on". arXiv preprint arXiv:2405.16203. Available from: https://arxiv.org/abs/2405.16203.

�. ^Li H, Peng Q, Wang X, Mou X, Wang Y (2023). "Sehf: A summary-enhanced hierarchical framework for �nancial r

eport sentiment analysis". IEEE Transactions on Computational Social Systems.

��. ^Li H, Wang X, Du H, Sun W, Peng Q (2024). "Sade: A speaker-aware dual encoding model based on diagbert for m

edical triage and pre-diagnosis." In ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Si

gnal Processing (ICASSP), pages 12712–12716. IEEE.

��. ^Wang X, Peng Q, Mou X, Li H, Wang Y (2022). "A hierarchal BERT structure for native speaker writing detection". I

n: 2022 China Automation Congress (CAC), pages 3705–3710. IEEE.

��. ^Wang X, Wu L, Hong L, Liu H, Fu Y (2024). "LLM-enhanced user-item interactions: Leveraging edge information f

or optimized recommendations". arXiv preprint arXiv:2402.09617. Available from: https://arxiv.org/abs/2402.09617.

��. ^Wang X, Li H, Zheng D, Peng Q (2024). "Lcmdc: Large-scale Chinese medical dialogue corpora for automatic triag

e and medical consultation". arXiv preprint arXiv:2410.03521. Available from: https://arxiv.org/abs/2410.03521.

��. ^Achiam J, Adler S, Agarwal S, Ahmad L, Akkaya I, Aleman FL, Almeida D, Altenschmidt J, Altman S, Anadkat S, et

al. 2023. "Gpt-4 technical report." arXiv preprint arXiv:2303.08774. Available from: https://arxiv.org/abs/2303.0877

4.

��. a, bChen L, Zaharia M, Zou J (2023). "Frugalgpt: How to use large language models while reducing cost and improv

ing performance". arXiv preprint arXiv:2305.05176. Available from: https://arxiv.org/abs/2305.05176.

qeios.com doi.org/10.32388/NS4GU3 20

https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2402.03182
https://arxiv.org/abs/2402.03182
https://arxiv.org/abs/2405.16203
https://arxiv.org/abs/2402.09617
https://arxiv.org/abs/2410.03521
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2305.05176
https://www.qeios.com/
https://doi.org/10.32388/NS4GU3

��. a, b, cMadaan A, Aggarwal P, Anand A, Potharaju SP, Mishra S, Zhou P, Gupta A, Rajagopal D, Kappaganthu K, Yan

g Y, et al. 2023. "Automix: Automatically mixing language models". arXiv preprint arXiv:2310.12963. Available from:

https://arxiv.org/abs/2310.12963.

��. ^Tay Y, Dehghani M, Tran VQ, Garcia X, Wei J, Wang X, Chung HW, Shakeri S, Bahri D, Schuster T, et al. 2022. "Ul2:

Unifying language learning paradigms." arXiv preprint arXiv:2205.05131. Available from: https://arxiv.org/abs/220

5.05131.

��. a, bDing D, Mallick A, Wang C, Sim R, Mukherjee S, Ruhle V, Lakshmanan LVS, Awadallah AH (2024). "Hybrid LLM:

Cost-ef�cient and quality-aware query routing". arXiv preprint arXiv:2404.14618. Available from: https://arxiv.org/

abs/2404.14618.

��. a, b, c, dHu QJ, Bieker J, Li X, Jiang N, Keigwin B, Ranganath G, Keutzer K, Upadhyay SK (2024). "Routerbench: A ben

chmark for multi-llm routing system". arXiv preprint arXiv:2403.12031.

��. a, b, c\u0160akota M, Peyrard M, West R (2024). "Fly-swat or cannon? cost-effective language model choice via me

ta-modeling". Proceedings of the 17th ACM International Conference on Web Search and Data Mining. pp. 606-61

5.

��. a, b, cLu K, Yuan H, Yuan Z, Lin R, Lin J, Tan C, Zhou C, Zhou J (2023). "#instag: Instruction tagging for analyzing su

pervised �ne-tuning of large language models". The Twelfth International Conference on Learning Representatio

ns.

��. ^Liu L, Le PT, Stohn JP, Liu H, Ying W, Baron R, Rosen CJ (2024). "Calorie restriction in mice impairs cortical but not

trabecular peak bone mass by suppressing bone remodeling". Journal of Bone and Mineral Research. 39 (8): 1188–1

199.

��. ^Liu L, Le PT, DeMambro VE, Feng T, Liu H, Ying W, Baron R, Rosen CJ (2025). "Calorie restriction induces mandibl

e bone loss by regulating mitochondrial function". Bone. 190:117326.

��. ^Ying W, Wang D, Hu X, Qiu J, Park J, Fu Y (2024). "Revolutionizing biomarker discovery: Leveraging generative AI f

or bio-knowledge-embedded continuous space exploration". In Proceedings of the 33rd ACM International Confer

ence on Information and Knowledge Management, pages 5046–5053.

��. ^Liu H, Liu L, Rosen CJ (2024). "Pth and the regulation of mesenchymal cells within the bone marrow niche". Cells.

13 (5): 406.

��. ^Hu X, Wang D, Ying W, Fu Y (2024). "Reinforcement feature transformation for polymer property performance pre

diction". In: Proceedings of the 33rd ACM International Conference on Information and Knowledge Management.

p. 4538–4545.

��. ^Xie H, Hoskins D, Rowe K, Ju F (2025). "Transformer-based of�ine printing strategy design for large format additi

ve manufacturing". Journal of Computing and Information Science in Engineering. 25 (2).

qeios.com doi.org/10.32388/NS4GU3 21

https://arxiv.org/abs/2310.12963
https://arxiv.org/abs/2205.05131
https://arxiv.org/abs/2205.05131
https://arxiv.org/abs/2404.14618
https://arxiv.org/abs/2404.14618
https://www.qeios.com/
https://doi.org/10.32388/NS4GU3

��. ^Xie H, Hoskins D, Rowe K, Ju F (2024). "Spatio-temporal transformer for temperature pro�les prediction in large f

ormat additive manufacturing". In 2024 IEEE 20th International Conference on Automation Science and Engineer

ing (CASE), pages 1331–1336. IEEE.

��. ^Liu J, Gong R, Zhang M, He Y, Cai J, Zhuang B (2024). "Me-switch: A memory-ef�cient expert switching framewor

k for large language models". arXiv preprint arXiv:2406.09041. Available from: https://arxiv.org/abs/2406.09041.

��. a, bLu K, Yuan H, Lin R, Lin J, Yuan Z, Zhou C, Zhou J (2024). "Routing to the expert: Ef�cient reward-guided ensem

ble of large language models". Proceedings of the 2024 Conference of the North American Chapter of the Associati

on for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers). Mexico City, Mexico: A

ssociation for Computational Linguistics. pp. 1964–1974. doi:10.18653/v1/2024.naacl-long.109.

��. a, bOng I, Almahairi A, Wu V, Chiang WL, Wu T, Gonzalez JE, Kadous MW, Stoica I (2024). "Routellm: Learning to ro

ute llms with preference data". arXiv preprint arXiv:2406.18665. Available from: https://arxiv.org/abs/2406.18665.

��. ^Shnitzer T, Ou A, Silva M, Soule K, Sun Y, Solomon J, Thompson N, Yurochkin M (2023). "Large language model ro

uting with benchmark datasets". arXiv preprint arXiv:2309.15789.

��. a, bLiu Y, Zhang H, Miao Y, Le VH, Li Z (2024). "Optllm: Optimal assignment of queries to large language models". a

rXiv preprint arXiv:2405.15130.

��. a, bNguyen QH, Hoang DC, Decugis J, Manchanda S, Chawla NV, Doan KD (2024). "Metallm: A high-performant an

d cost-ef�cient dynamic framework for wrapping llms". arXiv preprint arXiv:2407.10834. Available from: https://ar

xiv.org/abs/2407.10834.

��. ^Devlin J, Chang MW, Lee K, Toutanova K (2019). "BERT: Pre-training of deep bidirectional transformers for langu

age understanding". Proceedings of the 2019 Conference of the North American Chapter of the Association for Co

mputational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Minneapolis, Minnes

ota: Association for Computational Linguistics. pp. 4171–4186. doi:10.18653/v1/N19-1423.

��. ^Liu H, Zheng Z, Qiao Y, Duan H, Fei Z, Zhou F, Zhang W, Zhang S, Lin D, Chen K. MathBench: Evaluating the theor

y and application pro�ciency of LLMs with a hierarchical mathematics benchmark. In: Findings of the Association

for Computational Linguistics ACL 2024. Bangkok, Thailand and virtual meeting: Association for Computational

Linguistics; 2024. p. 6884-6915. Available from: https://aclanthology.org/2024.�ndings-acl.411.

��. ^Li L, Chu W, Langford J, Schapire RE (2010). "A contextual-bandit approach to personalized news article recomme

ndation." In Proceedings of the 19th international conference on World wide web, pages 661–670.

��. ^Ban Y, He J, Cook CB (2021). "Multi-facet contextual bandits: A neural network perspective." In Proceedings of the

27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pages 35–45.

��. ^Ruan Y, Maddison CJ, Hashimoto T (2024). "Observational scaling laws and the predictability of language model

performance". arXiv preprint arXiv:2405.10938. Available from: https://arxiv.org/abs/2405.10938.

qeios.com doi.org/10.32388/NS4GU3 22

https://arxiv.org/abs/2406.09041
https://doi.org/10.18653/v1/2024.naacl-long.109
https://arxiv.org/abs/2406.18665
https://arxiv.org/abs/2407.10834
https://arxiv.org/abs/2407.10834
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/2024.findings-acl.411
https://arxiv.org/abs/2405.10938
https://www.qeios.com/
https://doi.org/10.32388/NS4GU3

Declarations

Funding: Dr. Yanjie Fu is supported by the National Science Foundation (NSF) via the grant numbers: 2426340,

2416727, 2421864, 2421865, 2421803, and National Academy of Engineering Grainger Foundation Frontiers of

Engineering Grants.

Potential competing interests: No potential competing interests to declare.

qeios.com doi.org/10.32388/NS4GU3 23

https://www.qeios.com/
https://doi.org/10.32388/NS4GU3

