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Either mechanical waves or electromagnetic waves propagate in space at a �nite speed. The wave

propagation speed and particle �ow velocity form a four-vector. Using the four-vector, we can

obtain the �uid �ow �eld and the electromagnetic �eld strength tensor. Both tensors share the same

mathematical structure and can be uni�ed into a single mathematical frame. The �eld dynamic

equations, either for �uid �ow or for the charged particle motions, are a combination of the

translational and the rotational motion. The rotational motion behaves as wave properties. The

strength tensor contraction (inner product) forms a hypersurface. It is an inde�nite quadratic form

(saddle-shaped surface) that can take positive or negative values to reveal the dominating moving

types. The electromagnetic waves are located at the saddle points, and the strength tensor for

electromagnetic waves is zero. In general, the motion in the �eld obeys the weak form of Newton’s

action and reaction law, namely, the �eld has an induced secondary �ow, due to the interactions

between vorticity and velocity for �uid �ow or the magnetic �eld and the charge �ow for the

electromagnetic �eld. It is found that this approach is equivalent to the Euler-Lagrangian method,

which is expressed by  . Both methods will produce the same �eld dynamic equations.

1. Introduction

Fluid �ow �elds represent the velocity in space and dynamics of a �ow. The �ow depends on the

pressure (density) and physical properties of the �uid. Electromagnetic �elds describe the behavior of

electric and magnetic �elds in space, in�uenced by charges and currents.
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In �uid �ow, the sources are forces (e.g., pressure gradients) driving the �uid to move. In the

electromagnetism �eld, the sources are charges and currents, which generate electric and magnetic

�elds.

Though �uid �ow and electromagnetic �elds di�er signi�cantly in their physical interpretation, they

share similarities in their mathematical structure.

Both the �uid �eld,  , and the electromagnetic �eld,  , are described by scalar and

vector �elds that vary in space and time.

They are mathematically represented by functions    where    is the scalar or vector �eld (e.g.,

pressure (volumetric energy density),  , and   for the �uid �ow �eld, or charge density,   and   for

the electromagnetic �eld).

Both �elds exhibit rotational behavior described by the curl operator of the �eld. In electromagnetism,

the curl of the electric �eld   and the magnetic �eld   describes how they circulate due

to time-varying �elds or currents, while the curl of the velocity �eld in �uid,  , represents the

vorticity �eld (rotational motion in the �ow �eld). Namely, both �elds contain certain "circulating"

quantities that behave as wave propagation �elds. In other words, �uid waves describe pressure

oscillations that propagate in the form of sound waves at the sound wave propagation speed of  ,

while electromagnetic waves represent the oscillating    and    �elds that propagate in space at the

speed of light, c. Both �elds propagate in space at a �nite wave speed.

Thus, in order to describe the �ow �eld or the electromagnetic �eld correctly and completely, the

wave propagation speed cannot be ignored. In this article, the wave propagation speed and medium

�ow velocity will constitute a four-vector. Based on this four-vector, we will give out the �eld

strength tensor and the �eld dynamic equations, both for the �uid �ow �eld and the electromagnetic

�eld.

2. Fluid Flow Field Strength Tensor and Equations

In 3D space, given a �ow �eld, there is a distribution of some physical quantity, such as pressure and

velocity vector, at each point in this physical space. The contravariant four-velocity and four-

momentum can be de�ned as:

and

(p, , )v ⃗  ω⃗  (ρ, , )E ⃗  B⃗ 

F( , t)r ⃗  F

v ⃗  ω⃗  E ⃗  B⃗ 

(∇ × )E ⃗  (∇ × )B⃗ 

(∇ × )v ⃗ 

cm

E ⃗  B⃗ 

= [ u v w] = [ ]vμ cm cm v ⃗  (1)
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where   is the pressure wave propagation speed, u, v, and w are velocities in Cartesian coordinates, 

 is the mass density, and   is the thermodynamic pressure measured in the �eld when the �uid is

�owing (volumetric energy density).

The product,   gives the rate at which mass �ows through a unit area in a given direction.

The four-position vector is de�ned as:

In this article, we use the (− + + +) metric signature.

Thus, the contravariant four-gradient is de�ned as:

and the covariant four-velocity in Minkowski space is:

With these de�nitions, the contravariant �ow �eld strength tensor can be de�ned as:

Accordingly, it is an antisymmetric rank-2 tensor �eld — in Minkowski space. The �eld tensor’s anti-

symmetry guarantees that  . It is traceless and possesses only six

independent non-zero components.

By the de�nition of    and using the four-momentum of eq. (2), algebraic evaluation yields, for 

:

These terms can be written in a vector form as:

For  , the components are:

= [ ] = [ ]Aμ p

cm
uρm vρm wρm

p

cm
p ⃗  (2)

cm

ρm p

,ρmv ⃗ 

= [ t, ] = [ ]xμ cm x ⃗  tcm x y z (3)

= diag(−, +, +, +)ημν (4)

= − + = [ ]∂μ e ⃗ 0∂ 0 e ⃗ i∂
i − 1

cm
∂t ∂x ∂y ∂z (5)

= = [− ]vμ ημνv
ν

cm u v w (6)

= −F μν ∂μAν ∂ νAμ (7)

= = = = 0F 00 F 11 F 22 F 00

F μν

μ = 0

⎧

⎩

⎨

⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪

= − − ( ) = − ( + ) = −F 01 ∂ uρm

∂tcm

∂
∂x

p

cm

1
cm

∂ uρm

∂t

∂p

∂x
F x

cm

= − − ( ) = − ( + ) = −F 02 ∂ vρm

∂tcm

∂
∂y

p

cm

1
cm

∂ vρm

∂t

∂p

∂y
F y

cm

= − − ( ) = − ( + ) = −F 03 ∂ wρm

∂tcm

∂
∂z

p

cm

1
cm

∂ wρm

∂t

∂p

∂z
F z

cm

(8)

= − ( + ∇p)F ⃗ 0 1

cm

∂ρmv ⃗ 

∂t
(9)

μ = 1
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With a similar approach, we can get other components for   and  . Combining all the terms,

the matrix representation of the contravariant �eld tensor is

The Minkowski inner product of the contravariant four-acceleration and the covariant four-velocity,

eq. (6), in the �eld is zero:

This contraction yields the following equations:

In a more compact vector form, it reads:

If it is divided by the wave propagation speed, we can get another variant of this equation:

where,   is the ratio of   to c. In �uid dynamics, we call it the local Mach number:

Here, we de�ne the induced vorticity �eld as:

For example, the component   of the induced vorticity is shown in Fig.1.

⎧

⎩

⎨

⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪

= − = ( + ) =F 10 ∂A0

∂x1
∂A1

∂x0
1
cm

∂p

∂x

∂ uρm

∂t
F x

cm

= − = − =F 12 ∂A2

∂x1
∂A1

∂x2

∂ vρm

∂x

∂ uρm

∂y
ωz

= − = − = −F 13 ∂A3

∂x1
∂A1

∂x3

∂ wρm

∂x

∂ uρm

∂z
ωy

(10)

μ = 2 μ = 3

=F μν

⎡

⎣

⎢⎢⎢⎢

0

/F x cm

/F y cm

/F z cm

− /F x cm

0

−ωz

ωy

− /F y cm

ωz

0

−ωx

− /F z cm

−ωy

ωx

0

⎤

⎦

⎥⎥⎥⎥
(11)

= 0F μνvν (12)

⎧

⎩

⎨

⎪⎪⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪⎪⎪

− − + v − w = 0
∂ uρm

∂t

∂p

∂x
ωz ωy

− − + w − u = 0
∂ vρm

∂t

∂p

∂y
ωx ωz

− − + u − v = 0
∂ wρm

∂t

∂p

∂z
ωy ωx

(13)

− − ∇p + × = 0
∂ρmv ⃗ 

∂t
v ⃗  ω⃗  (14)

− − ∇( ) + × = 0
∂ρmβ ⃗ 

∂t

p

cm
β ⃗  ω⃗  (15)

β ⃗  v ⃗ 

= =β ⃗  M⃗  v ⃗ 

cm
(16)

= ∇ × ( )ω⃗  ρmv ⃗  (17)

ωz
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Figure 1. The induced vorticity component 

Using the dot product rule of the vector calculus identity, we have

Thus, eq. (14) can be re-written as

The last term in the RHS of eq. (19) is the volumetric kinetic energy density; thus,

In eq. (20), if we de�ne the Lagrangian density as

Then, the eq. (20) can be written more compactly in Cartesian coordinates:

Here,   represents the material derivative of the linear momentum of  .

.ωz

× = × ∇ × ( ) = ∇( ⋅ ) − ( ⋅ ∇)( )v ⃗  ω⃗  v ⃗  ρmv ⃗ 
1

2
ρmv ⃗  v ⃗  v ⃗  ρmv ⃗  (18)

+ ( ⋅ ∇)( ) = −∇p + ∇( ⋅ )
∂ρmv ⃗ 

∂t
v ⃗  ρmv ⃗ 

1

2
ρmv ⃗  v ⃗  (19)

= ∇(−p + T )
D( )ρmv ⃗ 

Dt
(20)

L = T − p (21)

= ∇LDtp ⃗  (22)

Dt p ⃗ 
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The potential (pressure) energy density can be written as

Details can be found in the reference[1].

Then, the Lagrangian density can be rewritten as

If the �ow velocity and wave propagation speed c are de�ned as four vectors, the Lagrangian density is

a hyperboloid quadratic form in four dimensions, or it is a four-dimensional saddle-shaped function:

where the four-vector is de�ned to be

and the metric tensor for Lagrangian density is

If the gradient of the volumetric kinetic energy density is written as a matrix-velocity vector product

in 3D space, the equation (19) will become:

where,   is the engineering strain tensor (it is a symmetric tensor),   is the dynamic viscosity of the

�uid.

This is the modi�ed Navier-Stokes equations, derived from the Euler-Lagrangian approach; details

can be found in the reference[2]. It is con�rmed that the Navier-Stokes equations are not complete. It

ignores the last term in the RHS of eq. (28).

2.1. Velocity decomposition and �eld strength tensor contraction

Any �ow �eld will produce a vorticity �eld, as long as the corresponding shear strain tensor is not

symmetric, for instance,

p = ρmc
2
m (23)

L = − p = −
1

2
ρmv ⃗ 2

1

2
ρmv ⃗ 2 ρmc

2
m (24)

L = Ax
1

2
xT (25)

= [ ]xT cm u v w (26)

A =
ρm

2

⎡

⎣

⎢⎢
⎢

−2

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

⎤

⎦

⎥⎥
⎥

(27)

+ ( ⋅ ∇) ( ) = −∇p + 2μ + ×
∂ρmv ⃗ 

∂t
v ⃗  ρmv ⃗  S̄

¯ 1

2
v ⃗  ω⃗  (28)

S̄
¯

μ

≠
∂ vρm

∂x

∂ uρm

∂y
(29)
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such that

Rearranging eq. (14):

The velocity �eld can be decomposed into two parts:

Then, the dynamic equation (31) can be decomposed into two parts:

where   represents the velocity produced by the negative gradient of potential energy (pressure �eld).

The object will move in the direction of decreasing potential energy, which aligns with how forces

"pull" or "push" objects. We can call this pressure gradient-produced velocity �eld “translational

motion”. It is the �rst row/column of the matrix representation of the contravariant �eld tensor, eq.

(11). Physically, the �uid parcel will stretch or shrink without rotational motion.

The term   represents a motion or force induced by the interaction of the velocity and vorticity

�eld (because of the relative motion between �uid layers), the induced velocity is perpendicular to

both directions. It describes how vorticity interacts with velocity to produce secondary �ows and

instabilities. We can call this velocity “vorticity �eld inducted motion”. In the contravariant �eld

tensor, it is the e�ect of the gradient of the shear �ow (relative motions between �uid layers) or

vorticity �eld,  , by the curl operation onto the velocity �eld, eq. (17). Physically, the �uid parcel will

take a rotational motion.

The combination e�ect of eq. (33) obeys the weak form of Newton’s action and reaction law.

Furthermore, from eq. (17), we can conclude that if the shear strain tensor is symmetric, the velocity

�eld will not produce a vorticity �eld,  , which means if �uid layers have no shear �ow, then the

�uid parcel has no rotational motion. Then eq. (33) degenerates to the strong form of Newton’s action

and reaction law, namely, the particle motion is derived only by the negative gradient of potential

energy, as is shown in Fig. 2. The induced secondary �ow by the vorticity �eld forces the boundary

layer to become thicker and thicker along the x-direction.

= − ≠ 0ωz

∂ vρm

∂x

∂ uρm

∂y
(30)

= −∇p + ×
∂ρmv ⃗ 

∂t
v ⃗  ω⃗  (31)

= +v ⃗  v ⃗ t v ⃗ r (32)

⎧

⎩
⎨
⎪

⎪

= −∇p
∂ρmv ⃗ 

t

∂t

= × = ∇ ( ⋅ ) − ( ⋅ ∇) ( )
∂ρmv ⃗ r

∂t
v ⃗  ω⃗  1

2
ρmv ⃗  v ⃗  v ⃗  ρmv ⃗ 

(33)

v ⃗ t

×v ⃗  ω⃗ 

ω⃗ 

= 0ω⃗ 
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Figure 2. Shear �ow produces a vorticity �eld; the interaction between vorticity and velocity

induces a secondary �ow; the boundary layer becomes thicker and thicker along the x-direction.

If we contract the �uid dynamics strength tensor, eq. (11), it reads:

De�ne a 6-dimensional vector  , by concatenating   and  :

The contraction of the �uid dynamics strength tensor can be written as a quadratic form (it is a

saddle-shaped function):

where   is a   symmetric matrix:

It is concluded that:

: The induced vorticity �eld (antisymmetric shear �ow) dominates the �ow;

eventually, the induced secondary �ow may be stronger than the translational �ow 

= 2 −F μνFμν

⎛

⎝
ω⃗ 2

F ⃗ 2

c2
m

⎞

⎠
(34)

x ⃗  ω⃗  F ⃗ 

cm

= =x ⃗ T [ ]ω⃗  F ⃗ 

cm

T

[ ]ωx ωy ωz
Fx

cm

Fy

cm

Fz

cm

T

(35)

= Q
1

2
F μνFμν x ⃗ T x ⃗  (36)

Q 6 × 6

Q = [ ]
I3×3

03×3

03×3

−I3×3
(37)

> 0F μνFμν

qeios.com doi.org/10.32388/NSN8RQ 8

https://www.qeios.com/
https://doi.org/10.32388/NSN8RQ


;

: The translational motion �eld (stretching or shrinking of the �uid parcel) dominates

the �ow  ;

: The equal magnitudes of the translational motion �eld and the vorticity �eld, 

.

3. Electromagnetic Field Strength Tensor and Equations

In space, there are positively charged particles (positrons, protons, etc., labeled as  ) and negatively

charged particles (electrons, etc. labeled as  ). We de�ne a surplus of positive relative to the negative

charges as the net charges in a position:

In 4D space, the contravariant four-charge-�ux can be de�ned as:

where,   is the permeability in space;   is charge volumetric density, measured in  ; u, v, and w

are charged particle �ow velocity,  , c is photon propagation speed, measured in  .

In the SI unit, this charge �ux vector is measured in Tesla per meter,  .

Similarly, the contravariant electromagnetic strength tensor can be de�ned as:

For  , by the de�nition, using the four-charge-�ux of eq. (39), we have:

where the wave propagation speed c is assumed to be constant. Recalling the photon propagation

speed de�nition:

Substituting this de�nition into eq. (38) yields:

(∥ ∥ > ∥ ∥/ )ω⃗  F ⃗  cm

< 0F μνFμν

(∥ ∥ < ∥ ∥/ )ω⃗  F ⃗  cm

= 0F μνFμν

(∥ ∥ = ∥ ∥/ )ω⃗  F ⃗  cm

ρ+

ρ−

ρ = −ρ+ ρ− (38)

= [ ] = [ ]Aμ μ0

4π
ρc ρu ρv ρw

μ0

4π
ρc J ⃗  (39)

μ0 ρ [ ]C

m3

[ ]m
s

[ ]m
s

[ ]T
m

= −F μν ∂μAν ∂ νAμ (40)

μ = 0

⎧

⎩

⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪⎪⎪⎪⎪

4π =F 01

4π =F 02

4π =F 03

− − = (− − )
∂μ0Jx

c∂t

∂ ρcμ0

∂x

1

c

∂ ρuμ0

∂t

∂ ρμ0 c2

∂x

− − = (− − )
∂μ0Jy

c∂t

∂ ρcμ0

∂y

1

c

∂ ρvμ0

∂t

∂ ρμ0 c2

∂x

− − = (− − )
∂μ0Jz

c∂t

∂ ρcμ0

∂z

1

c

∂ ρwμ0

∂t

∂ ρμ0 c2

∂x

(41)

=c2 1

μ0ε0
(42)
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Here,   is the permittivity in space, E is the electric �eld per unit area,  , and it results from

spatial derivatives of the charge density or rate of change of current �ux at a given point.

The equation (43) can be written in vector form:

The gradient of the charge density,  , represents how the charge density distribution changes in

space. It may relate to the electric �eld produced by the non-homogeneous distribution of the

charges, as shown in Fig.3. If a charged particle is located at the position  , it will accelerate and

produce a current; as a consequence, the charge current will produce a magnetic �eld.

Fig. 3. The gradient of the charge distribution produces a net electric �eld in

the space, which points to the direction of the negative gradient.

Taking a curl operator on this equation, it may relate to Faraday’s law of induction, namely how a

time-varying magnetic �eld corresponds to the curl of an electric �eld.

For  , the components read:

⎧

⎩

⎨

⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪

4π = (− − ) = (− − ) = −F 01 1
c

∂ ρuμ0

∂t
1

μ0ε0

∂ ρμ0

∂x
1
c

∂μ0Jx

∂t
1
ε0

∂ρ

∂x
Ex

c

4π = (− − ) = (− − ) = −F 02 1
c

∂ ρvμ0

∂t
1

μ0ε0

∂ ρμ0

∂x
1
c

∂μ0Jy

∂t
1
ε0

∂ρ

∂y
Ey

c

4π = (− − ) = (− − ) = −F 03 1
c

∂ ρwμ0

∂t
1

μ0ε0

∂ ρμ0

∂z
1
c

∂μ0Jz

∂t
1
ε0

∂ρ

∂z
Ez

c

(43)

ε0 [ ]N

(C⋅ )m2

4πc = − + ∇ρF 0
−→ ⎛

⎝
⎜

∂μ0 J
→

∂t

1

ε0

⎞

⎠
⎟ (44)

∇ρ1
ε0

r
→

μ = 1
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The derivative of the current density with respect to the coordinates (   describes how the

current density and the induced magnetic e�ects vary spatially. As mentioned before, it quanti�es

how the magnetic �eld induced by current density changes in space, due to the relative motions

between charges, as shown in Fig. 4. The SI unit is Tesla per unit area,  , which corresponds to the

net magnitude of the magnetic �eld produced by relative charge motions per unit area.

Fig. 4. Relative charge motion in space produces a magnetic �eld.

The other components for    and    can be calculated by the same approaches. The matrix

representation of the contravariant electromagnetic strength tensor is

⎧

⎩

⎨

⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪

4π = ( + ) =F 10 1
c

1
ε0

∂ρ

∂x

∂ ρuμ0

∂t
Ex

c

4π = − =F 12 ∂ ρvμ0

∂x

∂ ρuμ0

∂y
Bz

4π = − = −F 13 ∂ ρwμ0

∂x

∂ ρuμ0

∂z
By

(45)

 etc. )F 12

[ ]T

m2

μ = 2 μ = 3

=F μν 1

4π

⎡

⎣

⎢⎢⎢⎢⎢⎢

0
Ex

c

Ey

c

Ez

c

− Ex

c

0

−Bz

By

− Ey

c

Bz

0

−Bx

− Ez

c

−By

Bx

0

⎤

⎦

⎥⎥⎥⎥⎥⎥

(46)
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It should be noted here that this is the strength tensor in space at a point, produced by the charge

spatial variation and charge �uxes locally in the vicinity of this point, by a �rst-order approximation

(the �rst-order Taylor expansion), not by the charge per se at this point, but related to the charge at

the point.

At this point, we de�ne an electric charge with a Coulomb of q. The covariant four charge-�ux-

velocity is:

The contraction of the electromagnetic strength tensor with the covariant four charge-�ux-velocity (

) in Minkowski space yields:

Recalling the photon propagation speed de�nition of eq. (42). It can be written more compactly in a

vector form:

The SI unit is volumetric energy density,  . This contraction is the Lorentz force law for the

combination of electric and magnetic force on a charged point particle of q in the �eld.

Similarly, another variation of the equation reads:

if it is divided by the light wave speed of c:  .

The magnetic �eld density per unit area is de�ned as

Assuming the permeability,  , is constant in space, then eq. (49) can be rewritten as:

Using the vector calculus identity of eq. (18), we have

q = q = [− ] = q [ ]vμ ημνv
ν

qc qu qv qw −c v
→ (47)

(q )F μν vν

⎧

⎩

⎨

⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪

−q − + qv − qw = 0
∂ ρuμ0

∂t

q

ε0

∂ρ

∂x
Bz By

−q − + qw − qu = 0
∂ ρvμ0

∂t

q

ε0

∂ρ

∂y
Bx Bz

−q − + qu − qv = 0
∂ ρwμ0

∂t

q

ε0

∂ρ

∂z
By Bx

(48)

−q − q∇( ρ ) + q × = 0
∂ ρμ0 v ⃗ 

∂t
μ0 c2 v ⃗  B⃗  (49)

[ ]J

m3

−q − q∇( ρc) + q × = 0
∂ ρμ0 β ⃗ 

∂t
μ0 β ⃗  B⃗  (50)

=β ⃗  v ⃗ 

c

= ∇ × ( ρ )B⃗  μ0 v ⃗  (51)

μ0

q [− − ∇(ρ ) +   × ∇ × (ρ )] = 0μ0
∂ρv ⃗ 

∂t
c2 v ⃗  v ⃗  (52)
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This equation can be rearranged as:

The RHS in the parentheses can be de�ned as the volumetric Lagrangian density for the

electromagnetic �eld:

Similarly, the �rst term can be regarded as “charge kinetic energy density”, and the second term as

“charge potential energy density”; then, eq. (54) can be written as:

If we de�ne the mass density of the charged particle as  ,  , the Lagrangian density of the

charged particle should include the kinetic energy density:

which can be written more compactly as

This forms a four-dimensional quadratic form:

where   is the contravariant four-velocity vector of the charged particle:

Here, the metric tensor for the Lagrangian density is

q [− − ( ∙ ∇)(ρ ) − ∇(ρ ) + ∇(ρ ∙ )] = 0μ0
∂ρv ⃗ 

∂t
v ⃗  v ⃗  c2 1

2
v ⃗  v ⃗  (53)

+ ( ∙ ∇)(q ρ ) = ∇( q ρ − q ρ )
∂q ρμ0 v ⃗ 

∂t
v ⃗  μ0 v ⃗ 

1

2
μ0 v ⃗ 2 μ0 c2 (54)

L = q ρ − q ρ
1

2
μ0 v ⃗ 2 μ0 c2 (55)

= ∇L = ∇( − )
D(q ρ )μ0 v ⃗ 

Dt
Tc pc (56)

ρm [ ]
kg

m3

L = + q ρ − q ρ
1

2
ρmv ⃗ 2

1

2
μ0 v ⃗ 2 μ0 c2 (57)

L = [(1 + ) − 2 ]
q ρμ0

2

ρm

q ρμ0
v ⃗ 2 c2 (58)

L = x
1

2
xT gμν (59)

xT

=xT [ ]c u v w
T (60)

= q ρgμν μ0

⎡

⎣

⎢
⎢⎢⎢⎢
⎢

−2

0

0

0

0

1 +
ρm
q ρμ0

0

0

0

0

1 +
ρm
q ρμ0

0

0

0

0

1 +
ρm
q ρμ0

⎤

⎦

⎥
⎥⎥⎥⎥
⎥

(61)
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3.1. Electromagnetic tensor contraction and photon gases

Similar to the �uid �ow �eld tensor, the �rst row/column of the electromagnetic strength tensor

represents the force on charged particles produced by the negative gradient of charge density. The

other terms are the induced magnetic �eld strength (similar to the vorticity �eld strength) because of

the relative motion between the charged particles.

Similar to the �uid �ow vorticity �eld, provided that the motion velocity of the charged particles is not

symmetric, it will produce a magnetic �eld, e.g.,

On the condition that the charged particle �ow �eld at a point is symmetric, then the induced

magnetic �eld can be zero, for example,

We form the inner product (contraction) of the electromagnetic strength tensor of eq. (46) as a scalar

function; it yields:

By comparison with eq. (34), it can be seen that here the scalar value    measures the relative

magnitudes of the electric and magnetic �elds.

Similarly, the inner product of the electromagnetic strength tensor can be expressed as a 6-

dimensional hypersurface quadratic form:

Here, the 6-dimensional vector is de�ned as:

It can be seen that,

: the magnetic �eld dominates ( ), the charge �ux, ( ), e�ect

dominates;

: the electric �eld dominates ( ), the charge �ux e�ect is weaker than the

electric �eld.

= −Bz ∂ ρvμ0

∂x

∂ ρuμ0

∂y
(62)

u = v;  and  = ( − ) = 0Bz μ0
∂ρv

∂x

∂ρu

∂y
(63)

= − = −F μνFμν

μ0

8π2

⎛

⎝
B⃗ 2

μ0
ε0E ⃗ 2⎞

⎠

1

8π2

⎛

⎝
B⃗ 2 E ⃗ 2

c2

⎞

⎠
(64)

F μνFμν

8 = Qπ2F μνFμν x ⃗ 
T

x ⃗  (65)

= =x ⃗ T [ ]B⃗  E ⃗ 

c

T

[ ]Bx By Bz
Ex

c

Ey

c

Ez

c

T
(66)

> 0F μνFμν ∥B∥ > ∥E∥1
c

ρμ0 v ⃗ 

< 0F μνFμν ∥B∥ < ∥E∥1
c
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The function has zero points when  .

According to the de�nition of eq. (38), if the magnitudes of the negative charge dominate in a region:

The electromagnetic strength tensor still holds but changes its sign. This strength tensor for a

negative charge-dominated region behaves like a gravitational �eld, where particles attract each

other.

We know that photon gases (electromagnetic waves) carry energy and transport it from one region of

space to another at the speed of light. The total electromagnetic wave energy stored per unit volume

[[3], p.398],  , in a region is

The �rst term of the RHS is the magnetic �eld energy density, and the second term is the electric �eld

energy density.

Using the relation of B=E/C and the wave speed relation of eq. (42), we can re-write the total energy

density of the electromagnetic waves, either by B �eld or by E �eld, as

Namely, the energy density associated with the B �eld equals that due to the E �eld, and each

contributes half to the total energy. In other words, the two terms in the RHS of eq. (68) are equal to

each other  . Substituting this relation into eq. (64), for the electromagnetic waves yields:

The eq. (64) forms a hypersurface function (a saddle-shaped function), which means the

electromagnetic wave is located at a saddle point or minimax point on the saddle-shaped surface,

where  .

If the positively and negatively charged particles form a homogenous mixture in a region, or the space

is occupied with electron dipoles, accordingly, the positive and negative charge densities are equal to

each other:

∥ ∥ = ∥ ∥B⃗  E ⃗ 

c

ρ = − < 0ρ+ ρ− (67)

( )J

m3

u = + = +
1

2
B⃗ 2

μ0

1

2
ε0E ⃗ 2 1

2μ0

⎛

⎝
B⃗ 2 E ⃗ 2

c2

⎞

⎠
(68)

= = u
B⃗ 2

μ0
ε0E

⃗ 2 (69)

( = )B⃗ 2 E ⃗ 2

c2

= 0; Q = 0F μνFμν x ⃗ T x ⃗  (70)

= 0F μνFμν

= ; ρ = − = 0ρ+ ρ− ρ+ ρ− (71)
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If the Gaussian integral surface embraces a complete electron dipole, and the electron dipole is

observed as a complete object, the integral form of Gauss’s law reads:

As a consequence, the region of space is considered as having no charges. Moreover, if the charge �ow

velocity in space is random and isotropic,  , (wavefront in three dimensions), then the

electromagnetic strength tensor automatically degenerates to

That means the equal magnitudes of the E �eld and the B �eld in a relativistic sense, as in

electromagnetic waves. It will be regarded that in this region there are no “charges” and no “current”

( , so that the space is seen as a “vacuum space”.

Based on the aforementioned arguments, it seems we have reason to hypothesize that photon gases

may behave as homogenous mixtures of electric dipoles with equal negative and positive charge

quantities; they travel in space at the speed of light c, relative to the Lab frame. If the photon gas

passes through a strong magnetic �eld, it will show the magneto-optic Faraday e�ect; eventually, the

photons can be split and produce positrons[4][5][6][7].

Therefore, for electromagnetic waves, we call it a “vacuum” space:

4. Scope of the Application and Discussions

Either in the �uid �ow �eld tensor, eq. (11), or in the electromagnetic strength tensor, eq. (46), we do

not specify the initial velocities. The di�erential equations consider only the relative motion (�rst-

order Taylor approximation through the �rst derivative of the �ow �eld).

It is assumed that the mass particle velocity (or charged particle) should be much smaller than the

wave propagation speed of c, either in the �ow �eld or in the electromagnetic �eld:

Here,    means the �eld is incompressible. Details and arguments can be found in the

references[1][2].

(∇ ⋅ − ) = 0 and ∇ ⋅ = 0∭
R

E ⃗  ρ

ε0
E ⃗  (72)

u = v = w = c

= 0 and = 0F μν F μνFμν (73)

= = )Jx Jy Jz

{
= 0 and ∇ ⋅ = 0E ⃗  E ⃗ 

= 0 and ∇ ⋅ = 0B⃗  B⃗ 
(74)

≪ c or c → ∞v ⃗  (75)

c → ∞
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The reason for this assumption is that we did not consider the relativity e�ect. The �uid or

electromagnetic �eld is assumed to be a quasi-incompressible �uid model. If the particle �ow velocity

approaches the wave propagation speed, the relative e�ect cannot be ignored.

Actually, the Lorentz factor represents a volume compression factor (length contraction) because of

the relative motion for the compressible �ow model[1].

If we consider the volume compression e�ect for a compressible model, the mass volumetric density

becomes

where the   is the mass density when the particle is at rest in the Lab. frame,   is the Lorentz factor or

volume compression factor:

If we take the Taylor expansion of the Lorentz factor:

Eq. (76) can be approximated to be

The �rst term is the potential energy density at rest relative to the Lab. frame, the second term is the

linear kinetic energy density. The third and thereafter terms include the wave propagation speed of c,

to consider the volume compression e�ect because of the relative motion.

If we pick up only the �rst two terms and ignore the other terms, namely, we ignore the volume

compression e�ect as an approximation; we assume the �uid density and charge density are only a

function of space and time, not a function of the wave propagation speed of c and the �ow velocity  .

As is classical Newtonian mechanics. In a Newtonian mechanics frame, we assume the wave

propagation speed is in�nitely great. Thereby, the �eld is incompressible; any disturbance in the �eld

will instantaneously propagate into the whole �eld without any time lag, no matter how big the �eld is

and how far two points are from each other. Thus, in Newtonian mechanics, we ignore the wave’s

momentum and energy propagation in the �eld.

= γρm ρ0 (76)

ρ0 γ

γ =
1

1 − β ⃗ 2
− −−−−

√
(77)

Taylor(γ) = 1 + + + +. . .
1

2

v2

c2

3

8

v4

c4

5

16

v6

c6
(78)

= γ ≈ + + [ + +. . .]ρmc
2 ρ0c

2 ρ0c
2 1

2
ρ0v

2 v2 3ρ0

8
( )
v

c

2 5ρ0

16
( )
v

c

4
(79)

v ⃗ 

= (t,x,y, z) and ρ = ρ(t,x,y, z)ρm ρm (80)

qeios.com doi.org/10.32388/NSN8RQ 17

https://www.qeios.com/
https://doi.org/10.32388/NSN8RQ


If the photon gas is assumed to be an elastic compressible �uid, the elastic compression bulk modulus

can be de�ned as[1]:

5. Conclusions

Either mechanic waves or electromagnetic waves carry energy and momentum and propagate in the

�eld at a �nite speed. In order to describe the �eld dynamics correctly and completely, the wave

propagation speed term cannot be ignored. The wave speed and particle �ow velocity form a four-

vector. Based on the four-vector, the �eld strength tensor can be derived. It is an antisymmetric rank-

2 �eld tensor. In matrix representation, the �rst row/column is the “translation motion”; other terms

are the “rotational motion”. The �uid dynamics strength tensor and electromagnetic �eld tensor

share an essential similarity in their mathematical structure, though they di�er signi�cantly in their

physical interpretation and governing principles. In the general case, any �ow �eld will produce a

vorticity �eld, as long as the corresponding shear strain is not symmetric. Similarly, a non-symmetric

charged particle �ow �eld will produce a magnetic �eld. The non-symmetry is an intrinsic property of

the �eld. The contraction of the �eld tensor gives a hypersurface function; it can be positive, negative,

or zero, depending on whether “translation motion” or “rotational motion” dominates. The �eld

tensor is zero for electromagnetic waves, which are located at the saddle point of a hypersurface

quadratic form, because the energy density associated with the B �eld equals that due to the E �eld. It

seems that photon gases may be hypothesized as electric dipoles with equal negative and positive

charge quantities. Experimental results show that the photon can be split and produce a positron in a

strong magnetic �eld. The Minkowski inner product of the contravariant four-acceleration and the

covariant four-velocity gives the �uid dynamic equations, while the contraction of the

electromagnetic �eld strength tensor with the four-velocity of a charged particle results in the

Lorentz force law for the electromagnetic �eld. It is the combination of electric and magnetic force on

the charge q in the �eld. From the dynamic equations, we can deduce the volumetric Lagrangian

density for the �elds, either for �uid dynamics or for electromagnetic dynamics. It is concluded that

the dynamic equations obtained by this approach are equivalent to the Euler-Lagrangian approach.

Finally, both approaches will give the same �eld equations.

= ρ =Bphoton c2 ρ

μ0ε0

(81)
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