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Neuromorphic cameras, also known as event cameras, are asynchronous brightness-change sensors that can capture

extremely fast motion without su�ering from motion blur, making them particularly promising for 3D reconstruction

in extreme environments. However, existing research on 3D reconstruction using monocular neuromorphic cameras

is limited, and most of the methods rely on estimating physical priors and employ complex multi-step pipelines. In

this work, we propose an end-to-end method for dense voxel 3D reconstruction using neuromorphic cameras that

eliminates the need to estimate physical priors. Our method incorporates a novel event representation to enhance edge

features, enabling the proposed feature-enhancement model to learn more e�ectively. Additionally, we introduced

Optimal Binarization Threshold Selection Principle as a guideline for future related work, using the optimal

reconstruction results achieved with threshold optimization as the benchmark. Our method achieves a 54.6%

improvement in reconstruction accuracy compared to the baseline method.

I. Introduction

3D reconstruction in VR/AR applications enables realistic restoration of scenes and objects, serving as a 3D form of

information present that provides users with a more immersive experience  [1][2]. Many devices can be used to collect

data for 3D reconstruction, including traditional RGB cameras, RGB-D cameras, LiDAR, structured light systems, etc.

However, they have di�erent limitations, including limited dynamic range, motion blur, high power consumption,

etc. [3].

Neuromorphic cameras, also known as event cameras, are bio-inspired sensors responding to local brightness

changes  [3]. Each pixel in a neuromorphic camera operates independently and asynchronously, which di�ers from

traditional (frame-based) RGB cameras that capture pictures with a shutter and have a �xed interval in recording

video  [3][4][5]. Neuromorphic cameras report changes in brightness only when a threshold is reached. When there is a

greater change in brightness in the scene or object, such as when the object is moving faster, more event data will be

generated. The neuromorphic camera produces a continuous stream of events, which includes the coordinates, precise

timestamp, and the polarity of brightness change.

Neuromorphic cameras in 3D reconstruction tasks can be divided into stereo and monocular types. Stereo neuromorphic

cameras involve multiple rigidly connected neuromorphic cameras, providing information from multiple viewpoints.

Qeios

qeios.com doi.org/10.32388/NU8FBX 1

https://www.qeios.com/
https://doi.org/10.32388/NU8FBX


These methods typically perform scene scanning and produce real-time semi-dense reconstruction results. They often

follow the classical two-step stereo solution: matching disparities at the same timestamps and then triangulating 3D

points to calculate the depth information of every point in the scene [6][3]. However, performing 3D reconstruction with

a monocular neuromorphic camera, which lacks disparity information, often requires more complex computations. Such

methods must be combined with the physical prior knowledge (e.g., camera trajectories) to achieve similar results as

parallax in the stereo task. The physical prior is always required, and it can either be obtained by simultaneous mapping

with other devices or be predicted by a Visual Odometer (VO) or SLAM algorithm targeting the event stream  [6].

Moreover, these methods all require a complex event-to-3D pipeline  [7][8][9][10]. The pipeline is a full work�ow that

optimally processes event data and reconstructs it into a 3D model, including steps such as event representation, prior

estimation, computation of parallax, triangulation, depth estimation, and 3D model reconstruction. Event processing

pipelines are a common research direction in these tasks. A recent study introduced a neural network, E2V [1], capable of

directly taking the represented event stream as input and outputting voxel results. This approach made progress in

simplifying the event processing pipeline. It is also the �rst method to perform voxel-based 3D reconstruction using a

monocular neuromorphic camera. However, it leaves substantial room for improvement in reconstruction accuracy.

In this research, we propose an end-to-end method for dense voxel 3D reconstruction using neuromorphic cameras that

eliminates the need to estimate physical priors. Our contributions can be summarized as:

We propose a novel event representation method, Sobel Event Frame, which enhances edge features and restrains

redundant data in the event stream, enabling e�ective learning of 3D features.

We propose a 3D reconstruction model designed to enhance the learning of edge features in event streams with

E�cient Channel Attention, building on the approach of event-based 3D reconstruction without the need for physical

priors or pipelines.

We propose Optimal Binarization Threshold Selection Principle and suggest it as a guideline for future research about

event-based 3D reconstruction with deep learning.

II. Related Work

A. Physics and Geometry-based Methods

Most methods for performing spatial scanning and instantaneous 3D reconstruction using a monocular neuromorphic

camera are based on physical and geometric computations. These methods establish strict event processing pipelines,

requiring steps such as feature extraction and feature matching, and must compute physical prior information.

Kim et al. proposed the �rst method for depth estimation using a moving monocular neuromorphic camera [11], which

mainly consists of three decoupled probabilistic �lters that estimate the 6-DoF motion of the camera, the scene

intensity gradient, and the inverse depth of the scene relative to keyframes. Rebecq et al., in 2016, proposed an event-

based visual odometry algorithm (EVO) [10]. The tracking module in EVO uses Event Frame to represent event streams,

generate edge images, and estimate the camera pose. Its mapping module expands the semi-dense 3D map when new

events arrive and feeds the map back into the tracking module. The EMVS method proposed by Rebecq et al. in 2018,
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based on a known camera trajectory  [6], back-projects events into space to create a light-density volume  [12]. It

identi�es the edge structures of the scene as the maxima of the light density to produce a semi-dense depth map.

Multiple viewpoints are then used to fuse the depth maps and complete 3D reconstruction. Guan et al. introduced a new

hybrid tracking and dense mapping system based on neuromorphic cameras called EVI-SAM [13]. The pipeline of EVI-

SAM includes two parallel modules: an Event Visual-Inertial Odometry (EVIO) module for tracking and estimating

camera poses and an event-driven mapping module.

B. Deep Learning-based Methods

Recent methods using monocular neuromorphic cameras for 3D reconstruction rely on existing synthetic or real event

datasets to train deep learning models for dense 3D reconstruction results. However, pipelines and the estimation of

physical priors remain indispensable.

Baudron et al. proposed the E3D method, including a pipeline with a neural network  [7], E2S, to convert event frames

into contours while using an additional neural branch for camera pose regression, ultimately generating multi-view

mesh reconstruction results. Xiao et al. utilized the E2VID [4] deep learning method to process continuous event streams

and output normalized intensity image sequences  [8]. They used Structure-from-Motion (SfM) to estimate sparse

intrinsic, extrinsic point clouds, followed by Multi-View Stereo (MVS) techniques to complete dense reconstruction.

Wang et al. proposed a method that includes a physical prior extraction branch and a NeRF [14] rendering branch [9]. By

incorporating an event warping �eld and a deterministic event generation model, they integrated physical priors into

the NeRF pipeline. They also introduced a novel probabilistic chunk sampling strategy based on spatial event density,

which helps the model learn local geometric features more robustly and e�ciently.

The study done by Chen et al. in 2023 serves as the baseline for this research [1]. It is the �rst study to use the voxel grid

to represent event-based 3D reconstruction results. The study primarily introduces a deep learning model, E2V, which

consists of a 3D event frame encoder to transform the feature representation of the data and a 3D voxel decoder to

convert these features into a 3D voxel grid. Additionally, this research proposed a dataset, SynthEVox3D, for event-based

3D reconstruction. This method opened up a new direction for event-based 3D reconstruction, while its reconstruction

accuracy on mIoU was only 0.346, which shows room for further improvement.

III. Method

We propose an end-to-end method for dense voxel 3D reconstruction using monocular neuromorphic camera that

eliminates the need to estimate physical priors.

A. Novel Event Representation: Sobel Event Frame

Event representation refers to preprocessing the data captured by the neuromorphic camera, which encodes the

information of the event’s coordinate, timestamp, and polarity.

Event Frame is the most commonly used event representation method, referring to all approaches that can frame event

streams. Event Frame divides event data into multiple �xed-length time windows, either based on timestamp or event
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count. Each time window generates an image-like frame where each pixel represents whether an event occurred within

that time window. Pixels where no event occurred during the time window are �lled with 0.

Each event frame   is a pixel value generated in the time window  , where   represents the pixel coordinates. 

  represent the  -th event in the event stream within time window  .    denote the polarity of event    (with 

 for positive polarity and   for negative polarity).   is the total number of events in the time window  .

We summarize all �ve design modes of Event Frame as follows:

a) Last Positive Event (Pos): If the last event at each pixel within the time window has a positive polarity, it is marked as 1,

otherwise 0.

b) Last Negative Event (Neg): If the last event at each pixel within the time window has a negative polarity, it is marked as

1, otherwise 0.

c) Last Event Polarity (Last): If the last event at each pixel within the time window has a positive polarity, it is marked as 1,

and if negative, it is marked as -1.

d) Any Event (Any): If any event occurs at a pixel within the time window, regardless of polarity, it is marked as 1.

e) Separate Frames for Polarity (Sep): For each time window, a positive event frame    is generated for positive

events in a time window, and a negative event frame   is generated for negative events in a time window.

The Sobel operator is an image processing algorithm primarily used for edge detection. It computes the gradient of pixel

intensity in both the horizontal (x-axis) and vertical (y-axis) directions using convolution, aiming to highlight the

edges in the image [15].

In neuromorphic camera-related research, there has been some work on applying convolution to event data, but only a

few studies have used the Sobel operator [16][17], and these are applied on initial event stream aimming to detect edge

and structure in dynamic scenes, which can be considered as non-frame-based preprocessing method for events.

The Sobel operator has never been applied to frame-based event representations in the neuromorphic camera �eld. Our

attempt introduces the Sobel operator to continuously highlight edges of patterns in the event frame for 3D

reconstruction, and we name this method Sobel Event Frame. Applying Sobel Event Frame to all pixels continuously can

be represented by the following formula:
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Here,   denotes the event frame at time window  .   is the output frame after applying the convolution. 

 is the convolution kernel.   and   are half the height   and width   of the convolution kernel, respectively. We

select a kernel size   in experiments. After extracting the gradient magnitude, we normalize it to the greyscale

intensity range    for visualization. Referring to Figure 1, we can intuitively perceive the pattern’s edges are

enhanced.

Figure 1. Visualizations of di�erent modes of Sobel Event Frame applied on event stream of an airplane object.

B. Event-to-Voxel 3D ResNet with ECA

We propose a model to process event data to dense voxel 3D reconstruction, e�ectively incorporating the event data

represented by Sobel Event Frame and further enhancing the learning on edge feature information.

The E2V model uses a deeper model architecture, ResNet-152, as the encoder to extract complex 3D features from the

represented event stream  [1]. However, due to massive information in 3D data, the extracted features may include

irrelevant or redundant information (e.g., the object is primarily located in the center of the event frame, while no events

occur around the edges), which limits the performance of model.

Inspired by Wang et al. [18], we introduce the E�cient Channel Attention (ECA) mechanism into the encoder with deeper

convolutional layers. This mechanism aims to e�ciently capture inter-channel interactions by employing a 1D

convolution with an adaptively determined kernel size, thus avoiding the dimensional reduction seen in other channel

attention mechanisms. It achieves high performance without increasing the complexity of the deep CNN model.

Referring to Figure 2, we integrate an ECA module after each bottleneck layer of the ResNet-152 encoder, ensuring that

the model can focus on more meaningful information at every stage of feature extraction. We expect edge features

strengthened by the Sobel Event Frame will be enhanced again. The ECA module �rst applies global average pooling to

each channel, capturing the global context of the input 3D feature maps. Then, a lightweight 1D convolution is applied to

the pooled features to learn the dependencies among channels. A sigmoid activation function follows, normalizing the

attention scores to values between 0 and 1. This process is highly e�cient because it avoids fully connected layers and

directly applies attention through a 1D convolution.

O(x, y, t) = E(x + w, y + h, t) ⋅ S(w, h)∑
w=−a

a

∑
h=−b

b

(1)

E(x, y, t) t O(x, y, t)

S(w, h) a b h w

m = n = 3

[0, 255]
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Figure 2. Enhanced 3D ResNet Encoder.

For decoder, we add a controllable output reshaping module to E2V decoder  [1], learning the correlation between the

event data and ground truth labels, to generate the voxel logit output.

C. Optimal Binarization Threshold Selection Principle

After generating the model, we use it to perform inference (prediction) on the testing data subset. The output of the

model consists of continuous logits, which will be converted into continuous probability values    by Sigmoid

function. By setting a binarization threshold  , we can determine whether a reconstructed point is present or absent as

follows:

Previous studies used a �xed binarization threshold such as 20%  [1]  or 50%  [7]. However, we found that the optimal

threshold varies depending on the event representation method.

To determine the best threshold  , we iterate through a prede�ned range of thresholds   (from 0.15 to 0.50 with a step

size of 0.01) and select the threshold that yields the best mIoU and F-Score as follows:

IV. Experiments

A. Datasets and Implementation Details

Dataset: Synthetic Event Camera Voxel 3D Reconstruction Dataset (SynthEVox3D) is the only available dataset for 3D

reconstruction with voxel label based on event data. SynthEVox3D consists of 39,739 event data samples in 13 categories

sourced from ShapeNet [19], including Airplane, Bench, Cabinet, Car, Chair, Displayer, Lamp, Speaker, Ri�e, Sofa, Table,

Telephone, and Watercraft. Each category contains objects of di�erent shapes, ensuring data di�erentiation. The event

data are generated by all-angle scanning within    using a neuromorphic camera, producing event streams with a

resolution of   pixels. SynthEVox3D-Tiny is a subset of SynthEVox3D, which randomly selects 80 samples from

σ(x)

p

Output Binary Value = {
1,
0,

if σ( ) > p,xout

if σ( ) ≤ p.xout

where σ( ) =xout
1

1 + e−xout

p∗ P

= {p∗ arg max
p∈P
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for mIoU
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each category, making a total of 1,040 samples. These samples include 832 training data (80%), 104 validation data

(10%), and 104 testing data (10%).

Event Representation: We use a �xed time window of   to segment the event data into event frames, forming

100 frames (total duration of 0.5s). The karnel size of Sobel Event Frame is set to  . After event representation, the

event data is normalized to   and rescaled to a shape of   for �tting the model input. To further prevent

over�tting, we randomly apply operations such as �ipping, rotation, and inversion of the event stream.

Deep Learning: We set the batch size to   and use the Adam optimizer with a learning rate of  . The optimizer is

adopted with  . The total number of training epochs is set to 100. The dropout rate is set to  . The loss

function used is Focal Loss due to the imbalanced data structure (polarization data).

Event

Representation
Threshold mIoU Ri�e Chair Car Table Sofa Spkr Airpln Dspl Wtrcft Lamp Cbn Bench Tel

E2V - Event

Frame (Pos)
0.22 0.358 0.384 0.318 0.446 0.346 0.403 0.327 0.442 0.262 0.398 0.311 0.417 0.352 0.254

E2V - Event

Frame (Any)
0.19 0.377 0.393 0.358 0.478 0.284 0.411 0.320 0.453 0.306 0.445 0.326 0.406 0.324 0.393

Ours - Sobel

EvtFrm (Pos)
0.34 0.523 0.610 0.451 0.598 0.443 0.523 0.461 0.514 0.535 0.524 0.440 0.617 0.514 0.569

Ours - Sobel

EvtFrm (Any)
0.33 0.512 0.655 0.437 0.569 0.451 0.539 0.458 0.570 0.607 0.515 0.372 0.548 0.372 0.560

Table I. IoU results for each category

5.0 × 10−3

3 × 3

[0, 1] (n, 256, 256)

5 1.0 × 10−6

β = {0.9, 0.999} 0.25
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Event

Representation
Threshold

F-

Score
Ri�e Chair Car Table Sofa Spkr Airpln Dspl Wtrcft Lamp Cbn Bench Tel

E2V - Event

Frame (Pos)
0.22 0.507 0.544 0.465 0.616 0.494 0.559 0.467 0.605 0.382 0.557 0.451 0.576 0.502 0.380

E2V - Event

Frame (Any)
0.19 0.532 0.552 0.516 0.640 0.421 0.578 0.471 0.620 0.447 0.602 0.478 0.565 0.476 0.555

Ours - Sobel

EvtFrm (Pos)
0.34 0.682 0.767 0.614 0.755 0.593 0.689 0.625 0.681 0.695 0.679 0.604 0.769 0.679 0.723

Ours - Sobel

EvtFrm (Any)
0.33 0.667 0.796 0.596 0.726 0.616 0.702 0.610 0.728 0.757 0.675 0.528 0.695 0.520 0.719

Table II. F-Score results for each category

B. Experimental Processes & Results

First, we conducted training on the SynthEVox3D-Tiny dataset. We reproduced the E2V method using Event Frame

(Pos)and evaluated it on the testing data subset as the baseline. At the optimal threshold of 0.22, the E2V method

achieved mIoU of 0.358 and F-Score of 0.507.

Subsequently, we tested E2V on the other four modes of Event Frame and evaluated all �ve modes of Sobel Event

Frameusing our method. The (Pos) and (Any) modes, which do not contain negative data, performed better under the

current experimental settings. Therefore, in Tables I and II, we only present the results of them.

Using Sobel Event Frame (Pos) with a binarization threshold of 0.34, our method achieved mIoU of 0.523 and F-Score of

0.682. This represents an improvement of 0.165 (46.1%) in mIoU and 0.175 (34.5%) in F-Score compared to the E2V

method with Event Frame (Pos).

Then, we conducted a full dataset evaluation on SynthEVox3D with our model and the best-performing mode: Sobel

Event Frame (Pos). As shown in Table III, our method achieved a mIoU of 0.535 on the full dataset, which represents a

54.6% improvement over E2V, demonstrating the stability of our method even with extensive training data. We also

compared our method with state-of-the-art voxel reconstruction methods based on multi-view traditional images. The

mIoU values of these traditional methods were obtained from 20 views of objects in the ShapeNet dataset. While the

datasets are not entirely comparable, our reconstruction accuracy is approaching that of these traditional methods. We

believe that if both methods were compared under the same extremely rapid scanning conditions, traditional methods

will su�er from motion blur, but our method will perform better, which we plan to test as a future work.
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  Training Data Size mIoU

3D-R2N2   0.636

AttSets

30,000

0.693

Pix2Vox++ 0.706

EVolT   0.735

E2V (Tiny) 832 0.358

E2V (Full) 39,739 0.346

Ours (Tiny) 832 0.523

Ours (Full) 39,739 0.535

Table III. Comparison of mIoU scores across methods.

Figure 3 presents visualizations of 12 random reconstruction results from the testing data, showing each object, voxel

reconstruction results from our method and baseline, and ground truth labels. In the voxel reconstruction results, we

use green to represent correctly reconstructed voxels and red to represent incorrectly reconstructed voxels. It can be

observed that our voxel outputs perform better than the baseline. There are no outlier voxels from incorrect

reconstructions surrounding the object. The category of the object can be easily identi�ed.

Figure 3. Visualization of 3D voxel reconstruction results.

C. Ablation Study

Our method can be divided into three components: event representation, model, and binarization threshold selection,

for conducting ablation studies to evaluate the contribution of each component to the reconstruction results.

∼
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Event Representation and Model: We conducted ablation studies on event representation and the model using the

SynthEVox3D-Tiny dataset, referring to Table IV for the results. By using Event Frame (Pos) to process event data as

input to our proposed model, we obtained a mIoU of 0.421 at a threshold of 0.21, which means our model brought about a

17.6% improvement. Using the E2V model, we also trained and tested with Sobel Event Frame (Pos), achieving a mIoU of

0.471 at a threshold of 0.33. In other words, relying solely on Sobel Event Frame resulted in a 31.6% improvement. The

combination of both led to a further enhancement, reaching a mIoU of 0.523, a 46.1% improvement over the baseline.

EventRep Model Threshold mIoU

Event Frame (Pos) E2V 0.22 0.358

Event Frame (Pos) Ours 0.21 0.421 (17.6%↑)

Sobel EvtFrm (Pos) E2V 0.33 0.471 (31.6%↑)

Sobel EvtFrm (Pos) Ours 0.34 0.523 (46.1%↑)

Table IV. Ablation Study Results on Event Representation and Model Variants

Binarization Threshold: To demonstrate that the binarization threshold should be optimally selected rather than �xed,

we listed the mIoU and F-Score results using Sobel Event Frame (Pos) at thresholds ranging from 0.16 to 0.42 (with a step

size of 0.02), as shown in Table V. The best results were achieved at a threshold of 0.34, reaching a mIoU of 0.523 and an

F-Score of 0.682. Performance was slightly worse at thresholds of 0.32 and 0.36. Deviating from the threshold of 0.34 in

either direction led to poorer results. The E2V method suggests using 0.20 as a reference threshold [1], but this did not

yield the best results in our experiments. Within this range, using the worst threshold (0.16) would result in a mIoU

decrease of 0.035. Additionally, according to Table IV, applying di�erent event representation methods had a signi�cant

impact on the optimal threshold, while the model only had a smaller e�ect on the optimal threshold.
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Threshold mIoU F-Score Threshold mIoU F-Score

0.16 0.488 0.653 0.30 0.521 0.681

0.18 0.496 0.660 0.32 0.522 0.682

0.20 0.503 0.666 0.34 0.523 0.682

0.22 0.508 0.670 0.36 0.522 0.681

0.24 0.513 0.674 0.38 0.521 0.680

0.26 0.516 0.677 0.40 0.519 0.677

0.28 0.519 0.679 0.42 0.516 0.674

Table V. The mIoU and F-Score results of Sobel Event Frame (Pos) under di�erent binarization thresholds.

Therefore, this demonstrates the signi�cant impact of the binarization threshold on model performance, indicating that

the optimal threshold is not �xed but needs to be optimized based on the speci�c event representation method. We

recommend that future related tasks refer to our Optimal Binarization Threshold Selection Principle, �exibly adjusting the

threshold to optimize results, which serves as a guideline for future work.

V. Conclusion & Future Work

In this study, we proposed a novel event representation method, Sobel Event Frame, and an ECA-enhanced deep learning

method for end-to-end 3D reconstruction using the monocular neuromorphic camera without relying on physical priors

and pipelines. Additionally, we introduced a Optimal Binarization Threshold Selection Principle and advocated for it as a

guideline for future event-based 3D reconstruction. Under our approach, we achieved a signi�cant improvement in

reconstruction accuracy, further bridging the gap with results from traditional camera-based 3D reconstruction.

Looking ahead, we plan to expand this project further. Regarding event representation, our aim is to explore more

potential representations and extend Sobel Event Frame to other computer vision tasks. Although we introduced Optimal

Binarization Threshold Selection Principle, it is still necessary to investigate the factors that in�uence threshold selection.

Most importantly, we need to test the performance of traditional methods and event-based methods under extreme

conditions, such as very fast motion, low light, or high brightness scenarios, which will demonstrate the advantages of

neuromorphic cameras in the �eld of 3D reconstruction.
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