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In medical image analysis, model predictions can be a�ected by sensitive attributes, such as race and

gender, leading to fairness concerns and potential biases in diagnostic outcomes. To mitigate this,

we present a causal modeling framework, which aims to reduce the impact of sensitive attributes on

diagnostic predictions. Our approach introduces a novel fairness criterion, Diagnosis Fairness, and a

unique fairness metric, leveraging path-speci�c fairness to control the in�uence of demographic

attributes, ensuring that predictions are primarily informed by clinically relevant features rather

than sensitive attributes. By incorporating adversarial perturbation masks, our framework directs

the model to focus on critical image regions, suppressing bias-inducing information. Experimental

results across multiple datasets demonstrate that our framework e�ectively reduces bias directly

associated with sensitive attributes while preserving diagnostic accuracy. Our �ndings suggest that

causal modeling can enhance both fairness and interpretability in AI-powered clinical decision

support systems.

1. Introduction

Medical image analysis driven by deep learning has achieved impressive success, often reaching or

exceeding human expert-level diagnostic performance across various tasks[1][2][3]. While these

advanced medical image models have signi�cantly improved the accuracy and e�ciency of medical

diagnosis, they have also raised concerns about the fairness and reliability of AI-driven decisions. It

has been revealed that many medical AI systems unintentionally incorporate sensitive demographic

attributes (e.g., race, gender, age) into their decision-making process, potentially leading to biased

predictions and compromised healthcare equality[4][5]. This systematic bias undermines the
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trustworthiness of medical AI systems and raises ethical concerns regarding their deployment in real-

world clinical settings.

The core of this issue lies in the challenge of controlling the in�uence of sensitive attributes within

medical images. For example, in chest X-ray diagnosis, models may rely on anatomical variations

associated with gender or race instead of focusing on pathology-related features[6][7][8]. Although

one might consider omitting sensitive information, models often infer these demographics from

correlated image patterns, perpetuating the bias[9]. Moreover, removing sensitive features could

compromise diagnostic precision, as these features often correlate with critical diagnostic signals[10]

[11][12]. Therefore, achieving the optimized balance between fairness and accuracy is crucial for ethical

and e�ective AI in medical imaging.

Previous studies on mitigating bias in medical AI applications can be broadly categorized into data-

centric and algorithmic approaches. Data-centric approaches focus on improving the diversity and

balance of datasets to reduce bias. For instance, Burlina et al. employed generative methods for data

augmentation, minimizing diagnostic disparities in retinal image classi�cation between light-

skinned and dark-skinned individuals[13]. Other approaches, such as resampling strategies, have been

employed to address dataset imbalance issues, ensuring fairer representation of underrepresented

subgroups[14][15].

Algorithmic methods address fairness during the model training process by modifying the training

objective or employing specialized architectures. For example, Paul et al. proposed the Training and

Representation Alteration (TARA) framework[14], which adapts domain generalization techniques to

improve fairness across demographic groups. Similarly, Zhou et al. developed multimodal methods for

pulmonary embolism detection[16], demonstrating the impact of architectural choices on fairness

outcomes. Another important debiasing technique is adversarial learning, such as adversarial

debiasing (AD)[10]  and fairness-aware adversarial perturbation (FAAP)[17]. AD[10]  uses adversarial

learning to mitigate biases within the model by designing the training process as an adversarial game,

where a secondary network attempts to detect protected attributes (e.g., gender, race) from the

primary model’s output. FAAP[17]  takes a distinct approach by generating adversarial perturbations

that directly incorporate fairness constraints; these perturbations challenge the model’s robustness

while assessing and mitigating its bias.
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While these methods succeed in domains like face recognition and tabular classi�cation, they often

face limitations in medical imaging, where sensitive and diagnostic attributes are typically entangled,

making it di�cult to separate demographic in�uence from clinically relevant information. Most

existing approaches attempt to either blind models to sensitive attributes or process datasets without

fully understanding the causal relationships between sensitive attributes, image features, and

diagnostic outcomes. This limitation can result in an inability to distinguish genuine clinical

di�erences from undesirable demographic biases, ultimately compromising diagnostic accuracy.

Therefore, achieving fairness in medical AI requires rethinking the existing bias-mitigation strategies

and evaluations.

To address these challenges, we propose a novel algorithmic method utilizing causal modeling that

explicitly distinguishes the direct e�ect and indirect e�ect caused by the sensitive attribute.

Theoretically, our approach leverages structural causal models to identify and isolate the direct

in�uence of sensitive attributes on predictions. Practically, we deploy adversarial training and rethink

the rationale behind the algorithm, creating unique causal-based fairness concepts and metrics. To

the best of our knowledge, previous fairness metrics are agnostic to causal modeling. Our primary

contributions can be summarized as follows:

We propose Diagnosis Fairness, a novel fairness criterion rooted in causal modeling, designed to

ensure that diagnostic decisions are driven primarily by medically relevant information. We further

introduce the Approximate Diagnosis Fairness metric to evaluate the criterion e�ectively.

We translate this criterion into practice by leveraging conditional mutual information and

incorporating adversarial training and data utility enhancement to achieve improved fairness with

minimal impact on diagnostic accuracy.

We conduct extensive experiments, including baseline comparisons, data utility evaluations,

explainability analyses, and ablation studies across multiple real-world medical datasets and

downstream tasks. The results demonstrate the e�ectiveness and robustness of our approach.
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2. Preliminaries

Figure 1. The SCM of our framework, where arrows represent causal paths. Here, 

 denotes the sensitive attribute,   represents the true diagnosis,   is the

predicted diagnosis, and   is the input modality (e.g., X-ray images). Red paths

indicate biased paths that will be removed to improve diagnosis fairness.

2.1. Causal E�ect

The concept of causal e�ect[18][19][20]  refers to the causal in�uence that one variable (the cause

variable) exerts on another (the outcome variable). Unlike mere correlation, a causal e�ect signi�es

that changes in the cause variable lead to changes in the outcome variable through a direct causal

mechanism. We now de�ne the speci�c causal e�ects within the Structural Causal Model (SCM)[21] for

our framework, as illustrated in Fig. 1.

De�nition 1 (Total Causal E�ect[18]). The Total Causal E�ect (TCE) of a change in the value of the

sensitive attribute   from   to   on   is given by:

The TCE measures the in�uence of   on   as the e�ect propagates along all causal paths from   to  .

However, if we consider the in�uence along only a subset of causal paths from   to  , we refer to the

resulting e�ect as the path-speci�c e�ect, de�ned below.

De�nition 2 (Direct E�ect  [19][20]). Given the direct path   and the indirect path 

, the Direct E�ect (DE) represents the path-speci�c e�ect of    along  ,

S Y Ŷ

X

S S− S+ Ŷ

TCE(S) = P ( | ) − P ( | ).Ŷ S+ Ŷ S− (1)

S Ŷ S Ŷ

S Ŷ

= {S → X → }πd Ŷ

= {S → Y → X → }πi Ŷ S+ πd
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with   along  :

where    represents the post-intervention distribution of    with the intervention 

  a�ecting only the direct path  , while the reference intervention    in�uences the

indirect path  .

De�nition 3 (Indirect E�ect [19][20]). Utilizing the concept of TCE and DE within the causal graph, we

de�ne the Indirect E�ect (IE) as:

where IE captures the e�ect from   that propagated through the indirect path  .

2.2. Fairness Concept

Traditional fairness ensures that predictive models treat individuals equally across di�erent sensitive

groups, such as race, gender, and age[22][23]. From a causal perspective, fairness can be depicted as 

 de�ned in Eq. 1. The criterion showcases that no explicit bias caused or conditioned by 

 should be allowed. However, the proposed concept neglects that true diagnosis   can be impacted

by  , which is an indirect e�ect that contributes to the predicted diagnosis  . For example, doctors

can be more con�dent diagnosing a speci�c gender if the disease only happens to that gender. In this

case, the e�ect of    is devoid of bias and should be considered a contribution. However, resorting

directly from   to decide is obviously biased because   should not be regarded as the direct cause of a

disease. Considering both the contribution and the bias exhibited in  , we formally de�ne the

Diagnosis Fairness (DF):  . This criterion proposes to prune    to exclude bias while

allowing for   to contribute to the diagnosis within  .

S− πi

DE(S) = P ( | , ) − P ( | ),Ŷ S
+
πd S

−
πi Ŷ S

− (2)

P ( | , )Ŷ S+
πd S−

πi Ŷ

do( )S+ πd do( )S−

πi

IE(S) = TCE(S) − DE(S)

= (P ( | ) − P ( | ))Ŷ S+ Ŷ S−

− (P ( | , ) − P ( | ))Ŷ S+
πd S−

πi Ŷ S−

= P ( | ) − P ( | , ),Ŷ S+ Ŷ S+
πd S−

πi

(3)

S πi

TCE(S) = 0

S Y

S Ŷ

S

S S

S

DE(S) = 0 πd

S πi
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3. Method

Figure 2. Overview of the Fair Diagnosis framework. The deployed models,   and   (in

grey), are �xed after pretraining. Data utility enhancement (in blue) is applied during

pretraining, while adversarial training (in orange) ensures fair masking and maintains

original model performance.

Figure 2 provides an overview of the Fair Diagnosis framework. Our approach uses adversarial masks

to suppress the direct e�ect of sensitive attributes on the model’s predictions. The framework

integrates adversarial training and mask generation, supported by data utility enhancement during

the pretraining phase. This method e�ectively minimizes conditional mutual information, 

, thereby enhancing Diagnosis Fairness (DF). To clarify the theoretical motivation

behind this approach, we provide a proof in Section 3.3 demonstrating that achieving   is

su�cient to ful�ll the DF criterion.

3.1. Pretraining

Mutual Information (MI)  [24]  measures the amount of information shared between two random

variables. Inspired by this, we propose a data utility pretraining phase based on MI to enhance the

generalization of our model for downstream tasks. This phase aims to guide the embedding to retain

fθ fh

I(S;X|Y ) = 0

I(S;X|Y ) = 0
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essential information from the source domain, allowing the learned representations to generalize

e�ectively across multiple tasks. Speci�cally, we de�ne the embedding as:

where    belongs to the source domain, and the operation    means iteratively adding

with both upper and lower constraints. After that, we employ the Jensen-Shannon Mutual

Information (Jensen-Shannon MI) estimator [25][26][27] to maximize the mutual information between

the representations learned from   and  . By using Jensen-Shannon MI, we can approximate a lower

bound on the mutual information, which ensures that the most relevant features from the source

domain are retained during the pretraining process.

Jensen-Shannon Mutual Information (MI), acting as the lower bound of MI, is de�ned as follows:

where   is MI,   is a neural network estimator parameterized by  , and   is the

softplus function. Here,    is the positive embedding from the target domain, and    is a

shu�ed version of  , acting as the negative embedding. Hence, to maximally retain the original

information, the feature extractor and the mutual information estimator can be optimized using Eq. 6:

By maximizing this objective, we ensure that the learned representations    e�ectively transfer

meaningful information from    to the target domain, promoting robust data utility. Therefore, we

can conveniently extend to multiple tasks by applying individual �ne-tuning on  .

3.2. Adversarial Training

Next, let us explore how DF is approximated via adversarial training between the generator   and the

conditioned discriminator  . Speci�cally, the generator   is used to generate the masks. After adding

the masks to the original training set  , the modi�ed data   is passed to the discriminator  . The

discriminator then predicts    while conditioned on  , where the conditioning means that we

simultaneously input   to   to make it directly learn the patterns in  . In other words, the input and

output of   can be described as:

E = ( ),fθ X
~

(4)

= X ⊕ g(X)X
~

⊕

X
~

E

I( ;E)X
~

≥ ( ;E)I
(JSD)
θ,ω

X
~

:= [−σ(− ( ,E))] − [σ( ( , ))] (5)E
,EX

~ fω X
~

E
,X

~
E ′ fω X

~
E′

I(⋅) fω ω σ(z) = log(1 + )ez

E = ( )fθ X
~

E′

E

arg ( ;E).max
θ

max
ω

I
(JSD)
θ,ω

X
~

(6)

E

X
~

= (EŶ i fh )i

g

dY g

X X
~

dY

Ŝ Y

Y dY Y

dY

= ( ,Y ).Ŝ dY X
~

(7)
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Acting as  ’s opponent, the generator    will generate masks that fail    by ensuring that    and 

 are as independent as possible under the condition of  ; otherwise,   will be able to predict   with

ease. Theoretically, the objective of   is:

To achieve this objective, we consequently implement concrete optimization techniques. The

optimization functions in this adversarial setting guide the interaction between   and  . Speci�cally:

Generator Loss: The generator therefore aims to create perturbations that hinder the discriminator

from correctly predicting  , which can be achieved by minimizing the mutual information  .

However, merely minimizing it will push the latent representations towards the opposite side of the

sensitive attribute, e.g., female �ips to male. Therefore, we further add a regularization that lets 

  make random guesses on the perturbed images by increasing the entropy    of the protected

attribute:

where    is a relatively small value that controls the regularization of the entropy loss.

Simultaneously, we want the generator to maintain the accuracy of the deployed model. Therefore, the

overall   can be calculated as:

where   balances the accuracy and fairness trade-o�.

Discriminator Loss: The discriminator tries to maximize its ability to predict the protected attribute 

 from the perturbed images, given the prior knowledge of diagnosis   (shown in Eq. 7), formulated

as:

where the objective of   acts as the adversarial of the �rst term of  , which showcases how the

adversarial training works. Consequently, the iterative adversarial training ensures that the generator

learns to create fair perturbations (by fooling the discriminator) while preserving the original model

performance, as the discriminator tries to distinguish which sensitive group each sample belongs to.

Therefore, the objectives of our method can be formulated as follows:

dY g dY S

X Y dY S

g

I(S;X ∣ Y ) = 0. (8)

g dY

Ŝ I( ;S)Ŝ

dY H

= I( ;S) − αH( ),L
fair
g Ŝ Ŝ (9)

α > 0

Lg

= − βI( ;Y ),Lg L
fair
g Ŷ (10)

β > 0

Ŝ Y

= −I( ;S),LdY
Ŝ (11)

LdY
L
fair
g

arg −I( ;S) + αH( ) + βI( ;Y ),max
g

min
dY

Ŝ Ŝ Ŷ (12)
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where    and    are updated alternatively during the optimization. Note that    and    are set to 0

during the updating of   to allow   to focus on distinguishing protected attributes. By leveraging

adversarial training between   and  , we can reach a better DF without changing the parameters of

the deployed model.

3.3. Theoretical Analysis

In this section, we analyze the theoretical relationship between the objective of the generator   and

diagnosis fairness, as well as the feasibility of evaluating diagnosis fairness through  .

Theorem 1. For random variables  ,  ,   and  , the conditional mutual information   is a

su�cient and not necessary condition of  .

Proof. (Su�ciency): According to Eq. 2:

apply Bayesian Rule[28] to the formula:

According to the de�nition of  , it satis�es ( ), which can be described as:

Let   impact on  , we can deduce:

dY g α β

dY dY

g dY

g

I(S; ∣ Y ) = 0Ŷ

Y S X Ŷ I(S;X ∣ Y ) = 0

DE(S) = 0

DE(S) = P( ∣ , ) − P( ∣ , )Ŷ S
+
πd S

−
πi Ŷ S

−
πd S

−
πi

= P( ∣ X)P(X ∣ Y , )P(Y ∣ )∑
Y

Ŷ S+
πd S−

πi

− P( ∣ X)P(X ∣ Y , )P(Y ∣ )∑
Y

Ŷ S−
πd S−

πi

= P( ∣ X)[ P(X ∣ Y , )P(Y ∣ )Ŷ ∑
Y

S+
πd S−

πi

− P(X ∣ Y , )P(Y ∣ )] ,∑
Y

S
−
πd S

−
πi

(13)

DE(S) = [∑
Y

P( ∣ X,Y )P(X ∣ Y )P(Y ∣ )S+
πd S−

πi

P( ∣ Y )S+
πd

− ] ,∑
Y

P( ∣ X,Y )P(X ∣ Y )P(Y ∣ )S−
πd S−

πi

P( ∣ Y )S−
πd

= [∑
Y

P( ∣ X,Y )P(Y ∣ )S+
πd S−

πi

P( ∣ Y )S+
πd

− ] .∑
Y

P( ∣ X,Y )P(Y ∣ )S−
πd S−

πi

P( ∣ Y )S−
πd

(14)

I(S;X ∣ Y ) = 0 S ⊥ X ∣ Y

P (S ∣ X,Y ) = P (S ∣ Y ), (15)

S πd

= = C,
P( ∣ X,Y )S+

πd

P( ∣ Y )S+
πd

P( ∣ X,Y )S−
πd

P( ∣ Y )S−
πd

(16)
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where   is a constant. Substitute into Eq. 14:

(Necessity): Since Eq. 16 is a special case of Eq. 15, therefore,

so   is not a necessary condition of DE . 

Theorem 1 concludes that if we meet the requirement of  , DF will be satis�ed, where 

 will be pruned, showcasing that the adversarial training between   and   is theoretically reaching

DF. Subsequently, we further prove that   can be the evaluation metric for the objective

of adversarial training, shedding light on the DF evaluation.

Theorem 2. For random variables  ,  ,  , and  ,    is a su�cient and not necessary

condition for  .

Proof. (Su�ciency): Assume that    is a complete mediator between    and  . This assumption

implies that any dependence between   and   can be fully mediated by  . Using the law of total

probability[29], we can express   as follows:

Thus, the equation holds ( ), which is equivalent to  .

(Necessity): To show that    does not necessarily imply  , consider the

following:

While

C

DE(S) = C ⋅ (P(Y ∣ ) − P(Y ∣ )) = 0∑
Y

S
−
πi S

−
πi

(17)

DE(S) = 0⟹ I(S;X ∣ Y ) = 0, (18)

I(S;X ∣ Y ) = 0 (S) = 0 □

I(S;X|Y ) = 0

πd g dY

I(S; |Y ) = 0Ŷ

Y S X Ŷ I(S;X|Y ) = 0

I(S; |Y ) = 0Ŷ

X Ŷ (Y ,S)

Ŷ (Y ,S) X

P ( |Y ,S)Ŷ

P ( |Y ,S)Ŷ = ∫ P ( |X,Y ,S)P (X|Y ,S)dXŶ

= ∫ P ( |X)P (X|Y ,S)dXŶ

= ∫ P ( |X)P (X|Y )dXŶ

= P ( |Y ). (19)Ŷ

S ⊥ |YŶ I(S; |Y ) = 0Ŷ

I(S; |Y ) = 0Ŷ I(S;X|Y ) = 0

P (X|Y ,S) = P (X| ,Y ,S)P ( |Y ,S). (20)∑
Ŷ

Ŷ Ŷ

P (X|Y ) = P (X| ,Y )P ( |Y )∑
Ŷ

Ŷ Ŷ

= P (X| ,Y )P ( |Y ,S). (21)∑
Ŷ

Ŷ Ŷ
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It is generally not possible to derive Eq. 20 from Eq. 21 without assuming that ( ). This

indicates that   is not a necessary condition for  . 

Since directly measuring   and DF can be inherently challenging, Theorem 2 concludes

that   is a su�cient condition for  , making it a practical evaluation metric.

We de�ne   as the Approximate Diagnosis Fairness (ADF). Given that we aim to minimize 

  in our method and have proven that both DF and ADF are su�cient conditions for 

, ADF serves as a valuable metric to measure DF in evaluations.

4. Experiments

4.1. Experiment Settings

4.1.1. Datasets

MIMIC-CXR[30]: The MIMIC-CXR dataset, part of the MIMIC initiative, includes over 370,000 chest

X-rays from more than 60,000 patients, labeled with conditions like pneumonia, pleural e�usion, and

lung lesions. This anonymized dataset is valuable for machine learning research, supporting tasks

such as automated disease detection and clinical decision support, especially in critical care

environments.

CheXpert[31]: The CheXpert dataset, created by Stanford University, contains over 224,000 chest X-

rays annotated for 14 radiological �ndings, including lung opacity and cardiomegaly. Known for its

high-quality labels obtained through a robust NLP-based pipeline, CheXpert is widely used in AI

research for disease classi�cation and anomaly detection in medical imaging.

TCGA-LUAD[32]: This dataset from The Cancer Genome Atlas (TCGA) project focuses on lung

adenocarcinoma, providing gene expression, mutation pro�les, methylation, and clinical data. It is

instrumental for research in lung cancer biomarkers, diagnostics, and targeted therapies, supporting

advancements in cancer genomics and precision medicine.

S ⊥ X|Y

I(S;X|Y ) = 0 I(S; |Y ) = 0Ŷ □

I(S;X|Y ) = 0

I(S; |Y ) = 0Ŷ I(S;X|Y ) = 0

I(S; |Y )Ŷ

I(S;X|Y )

I(S;X|Y ) = 0
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Dataset Baselines

MIMIC

Vanilla[33] 85.46 63.85 5.10 6.31 10.59

AD[10] 83.90 62.01 4.58 5.56 7.38

FAAP[17] 83.07 61.05 4.04 5.20 6.07

Ours 84.26 62.10 2.02 3.53 2.25

CheXpert

Vanilla[33] 85.87 65.93 5.05 8.86 11.18

AD[10] 84.45 63.77 3.43 7.18 6.31

FAAP[17] 83.50 62.55 2.86 5.40 4.84

Ours 85.80 64.99 0.98 1.16 1.20

TCGA

Vanilla[33] 98.47 98.58 3.57 11.94 7.21

AD[10] 97.55 97.87 3.20 9.84 4.08

FAAP[17] 97.10 97.64 2.75 9.46 3.79

Ours 97.85 98.20 1.39 6.89 1.46

Table 1. Main results on MIMIC-CXR, CheXpert, and TCGA-LUAD datasets. For simplicity, we refer to

MIMIC-CXR as MIMIC, and TCGA-LUAD as TCGA in the experiments. All models are pretrained and

�ne-tuned on ResNet50.

4.1.2. Fairness Metrics

We evaluate fairness using both traditional metrics and our proposed ADF metric:

Demographic Parity (DP)[23]  measures the disparity in prediction rates between di�erent sensitive

groups (e.g.,   vs.  ). Formally,

where a smaller DP value indicates fewer disparities between sensitive groups in predictions.

ACC% AUC% EOe−2 DPe−2 ADFe−3

S = 0 S = 1

DP = |P ( = 1|S = 1) − P ( = 1|S = 0)|,Ŷ Ŷ (22)
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Equalized Opportunity (EO)[22] is a notion of nondiscrimination with respect to a speci�ed protected

attribute, measuring the disparity in true positive rates across sensitive groups. Speci�cally,

As two of the most popular fairness metrics, DP focuses on the positive prediction rate across sensitive

groups, while EO focuses on the true positive rate.

Approximate Diagnosis Fairness (ADF) quanti�es the amount of mutual information between the

predicted diagnosis   and the sensitive attribute  , conditioned on the true diagnosis  . Speci�cally,

ADF captures how much uncertainty about   can be reduced by knowing  , under the condition of  .

As proved by Theorem 1 and Theorem 2, ADF serves as an e�ective metric for evaluating diagnosis

fairness by considering both bias and clinically relevant contributions from  , while EO and DP aim to

directly exclude the e�ect of   from all the circumstances.

4.2. Baselines

We compare with three baseline methods: Vanilla[33], Adversarial Debiasing (AD)[10], and Fairness-

Aware Adversarial Perturbation (FAAP)[17], where Vanilla[33]  uses a classic training method, i.e.,

gradient descent to optimize; AD[10]  introduces an adversarial network that attempts to detect

protected attributes (e.g., gender, race) from the primary model’s output; while FAAP[17]  generates

adversarial perturbations that directly incorporate fairness constraints, mitigating bias.

4.3. Main Results

The main results across the three datasets are presented in Table 1. Compared with AD, we showcase a

considerable improvement in fairness, without sacri�cing much accuracy; compared with FAAP, we

simultaneously reach better accuracy and fairness. Therefore, these observations demonstrate the

e�ectiveness of our method. Additionally, we observe a more distinct di�erence between ADF and

traditional fairness metrics, including EO and DP. For example, in the TCGA-LUAD dataset, compared

with Vanilla, our evaluation of ADF is lower by 5 times, while EO and DP are approximately lower by 2

times. This distinction aligns with the objective of our method and also showcases the e�ectiveness of

the proposed fairness metric.

EO = |P ( = 1|S = 1,Y = 1) − P ( = 1|S = 0,Y = 1)|.Ŷ Ŷ (23)

Ŷ S Y

ADF = I(S; |Y ).Ŷ (24)

Ŷ S Y

S

S
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4.4. Data Utility Assessment

Figure 3. Data utility evaluations on the MIMIC-CXR dataset, showing the

�ne-tuning performance of   across eight di�erent downstream tasks.

We evaluate the data utility of the MIMIC-CXR dataset after applying the MI estimator. Speci�cally,

we start with a pretrained model for “Pneumonia” classi�cation and subsequently �ne-tune   across

eight di�erent downstream tasks, including the diagnosis of “Atelectasis”, “Cardiomegaly”,

“Consolidation”, etc. The experimental results, presented in Fig. 3, indicate that most tasks achieve an

AUC of 65% and an accuracy of 80%, demonstrating the robustness and versatility of the MI estimator

across downstream tasks.

fh

fh
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Dataset Models

MIMIC

Resnet18 84.26 62.10 2.02 3.53 2.25

Resnet50 84.67 62.46 1.78 2.39 1.19

ViT 86.95 63.90 3.35 2.98 2.07

CheXpert

Resnet18 85.80 64.99 0.98 1.16 1.20

Resnet50 86.40 66.34 1.12 1.41 1.34

ViT 86.98 67.53 1.78 1.76 2.51

TCGA

Resnet18 97.25 98.20 1.89 7.06 1.64

Resnet50 97.87 98.23 1.40 6.95 1.51

ViT 98.45 99.03 2.02 8.97 1.98

Table 2. Ablation studies on di�erent models.

ACC% AUC% EOe−2 DPe−2 ADFe−3
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4.5. Explainability Analysis

Figure 4. Explainability analysis on both MIMIC-CXR and TCGA-LUAD datasets. GradCAM[34] is

applied to the last convolution layer of   when applied to  , and to   when applied to  .

We perform an explainability analysis on the MIMIC-CXR and TCGA-LUAD datasets, where

GradCAM[34]  is utilized to generate heatmaps. These heatmaps visualize the regions that contribute

most signi�cantly to the model’s predictions, for both the predicted diagnosis    and the sensitive

attribute prediction  . The results in Fig. 4 demonstrate the di�erence between Vanilla and our Fair

Diagnosis framework. We observe that in Vanilla, the heatmap on   is highly overlapped with that on 

, indicating the bias from sensitive attributes. For example, in the MIMIC-CXR dataset, the model

may focus on the breast region in female patients, meaning that any variation in “breast shape” could

inadvertently a�ect the diagnosis. This overlap reveals an implicit bias, as the model leverages

sensitive attribute information directly in making predictions. In contrast, our method showcases a

clear separation between the regions highlighted for    and    across both datasets. This separation

suggests that our method e�ectively disentangles the information related to the sensitive attribute 

 from the diagnosis prediction  , thereby pruning the direct e�ect of  . By minimizing the overlap,

our framework ensures that predictions are driven by medically relevant features rather than sensitive

attributes.

fθ Ŷ dY Ŝ

Ŷ

Ŝ

Ŷ

Ŝ

Ŷ Ŝ

Ŝ Ŷ S
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4.6. Ablation Studies

4.6.1. Model Ablation Study

We conducted a model ablation study on three di�erent architectures: ResNet18, ResNet50, and Vision

Transformers (ViTs). The results are presented in Table 2. We observe that ViTs perform slightly

better in terms of accuracy and AUC but with a minor trade-o� in fairness metrics. This suggests that

our method can enhance fairness across various neural network architectures without signi�cantly

compromising performance. For the remaining experiments, we use ResNet50 as it provides a

balanced trade-o� between performance and fairness.

4.6.2. Parameter Ablation Study

We further examine the e�ect of di�erent hyperparameters on model performance and fairness.
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Dataset

MIMIC

0 85.46 63.85 5.10 6.31 10.59

0.1 84.75 62.90 3.48 3.75 3.98

0.2 84.26 62.10 2.02 3.53 2.25

0.3 81.00 60.27 2.25 3.72 2.33

0.4 80.70 59.95 2.67 4.50 2.59

CheXpert

0 85.87 65.93 5.05 8.86 11.18

0.1 85.16 64.50 4.90 4.83 7.82

0.2 84.59 63.11 3.47 2.64 3.24

0.3 84.02 63.00 2.52 1.02 3.68

0.4 82.05 61.07 4.58 3.63 9.11

TCGA

0 98.47 98.58 3.57 11.94 7.21

0.1 98.16 98.43 2.38 9.09 5.14

0.2 97.85 98.20 1.39 6.89 1.46

0.3 97.16 98.09 1.69 7.69 2.82

0.4 96.55 97.63 1.78 7.95 2.98

Table 3. Ablation studies on di�erent noise strength  .

Ablation on Noise Strength  : Table 3 shows the e�ect of varying the noise strength    in the mask

generation. We observe that as    increases, the performance gradually decreases. This decline

suggests that larger    values result in stronger masking, which �lters out more information,

potentially removing some relevant diagnostic features. As for fairness, EO, DP, and ADF metrics

initially improve with a slight increase in  , indicating that a small amount of noise helps reduce bias.

η ACC% AUC% EOe−2 DPe−2 ADFe−3

η

η η

η

η

η
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However, when   becomes too large, fairness begins to deteriorate. This is likely because the generator

struggles to optimize e�ectively under strong masking, thus impacting both performance and

fairness. Based on these �ndings, we set    in the remaining experiments to balance

performance and fairness.

Dataset

MIMIC

0 86.53 63.05 5.56 3.58 2.32

1 86.46 62.79 4.50 2.54 1.62

2 86.58 63.14 3.84 1.89 1.41

3 86.92 64.68 3.55 1.22 1.20

4 85.99 63.02 3.51 1.02 1.13

CheXpert

0 85.41 64.93 2.42 4.48 5.12

1 85.21 65.24 1.33 3.41 3.36

2 85.52 65.45 1.30 3.08 3.12

3 85.29 65.18 1.22 2.84 2.26

4 85.60 65.52 1.00 1.67 1.52

TCGA

0 98.42 98.39 2.38 9.54 4.79

1 98.70 98.51 1.89 7.74 3.42

2 98.02 97.94 1.75 7.50 1.50

3 98.55 98.25 1.43 7.01 1.47

4 98.19 98.01 1.39 6.89 1.46

Table 4. Ablation studies on di�erent  .

Ablation on Entropy Loss Regularization  : Table 4 demonstrates the impact of varying the entropy

η

η = 0.2

α ACC% AUC% EOe−2 DPe−2 ADFe−3

α

α
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loss regularization parameter  . As   increases, we observe a gradual decrease in performance, while

fairness metrics improve. This trade-o� occurs because the entropy loss    encourages the

generator to produce predictions that make the discriminator’s task of predicting   more challenging,

which promotes fairness. Based on this trade-o�, we set    in the remaining experiments to

achieve an optimal balance between performance and fairness.

Dataset

MIMIC

0 80.69 54.65 1.08 2.63 0.98

1 84.98 62.34 1.39 2.78 1.87

2 85.03 62.87 2.03 3.34 2.55

3 86.98 64.40 5.56 4.73 5.06

4 87.79 64.80 7.58 5.31 5.50

CheXpert

0 71.15 59.75 0.54 0.42 1.31

1 84.59 65.13 3.32 2.02 1.54

2 85.90 65.40 3.50 3.03 2.04

3 86.73 65.89 3.75 3.36 2.45

4 87.74 66.65 4.50 3.48 5.25

TCGA

0 72.70 92.01 1.03 6.45 1.42

1 97.85 98.20 1.39 6.89 1.46

2 98.16 98.63 1.97 9.30 2.27

3 98.30 98.71 2.03 9.35 3.55

4 98.33 99.24 4.76 9.97 5.81

Table 5. Ablation studies on di�erent  .

α α

H( )Ŝ

S

α = 1

β ACC% AUC% EOe−2 DPe−2 ADFe−3

β
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Ablation on Loss Regularization  : The results are presented in Table 5. This parameter controls the

weight of the generator loss term  , which is designed to preserve performance while applying

masks to the input image. As    increases, we observe a gradual increase in both accuracy and AUC,

accompanied by a decrease in fairness metrics (EO, DP, and ADF). This trade-o� occurs because a

higher   value allows the generator to focus more on preserving diagnostic performance, but at the

cost of reduced fairness, as the generator becomes less constrained in limiting sensitive attribute

in�uence.

5. Conclusion

This work introduces Diagnosis Fairness (DF) to mitigate demographic biases in medical imaging,

along with a new metric, Approximate Diagnosis Fairness (ADF), for practical fairness evaluation. Our

approach, combining data utility enhancement and adversarial training, improves fairness across

medical datasets without sacri�cing diagnostic accuracy. Experimental results show that our method

e�ectively reduces bias while maintaining robust and interpretable performance, underscoring the

potential of causal reasoning in fair medical AI. Future work will focus on more e�cient causal

modeling for high-dimensional data and addressing the balance between fairness and accuracy,

especially for subgroups where strict fairness constraints may impact performance.

Appendix A. Implementation details

A.1. Hyperparameter Settings

In our experiments, we explored several key hyperparameters to evaluate their impact on

performance and fairness. Speci�cally, the noise strength  , controlling the intensity of adversarial

perturbations generated by the model’s generator, is set to 0.2 in experiments. The fairness weighting

parameter    is set to 1.0, balancing the entropy-based fairness loss with task performance. Loss

regularization   is set to 1.0 to prioritize classi�cation accuracy. The learning rate for the generator,

discriminator, and feature extractor was initialized at  , with step-based learning rate

schedulers applied to ensure convergence. Training and testing datasets were split with a ratio of 90%

to 10%, ensuring su�cient data for both robust evaluation and training.

β

I( ,Y )Ŷ

β

β

η

α

β

1 × 10−4
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A.2. Dataset-Speci�c Tasks

Regarding dataset labels, for the MIMIC-CXR[30] and CheXpert[31] datasets, our main task focused on

pneumonia classi�cation, utilizing gender as the sensitive attribute (mapped as male = 0, female = 1).

For the TCGA[32]  dataset, we focused on detecting pathological stages of lung cancer, speci�cally

distinguishing between early and late stages. We preprocess the dataset to ensure a balanced

representation of these stages (Stage I A, Stage I B, Stage II A, and Stage II B are mapped to the early

stage; Stage III A, Stage III B, Stage III C, Stage IV A, and Stage IV B are mapped to the late stage),

enabling robust evaluation of both performance and fairness metrics in the classi�cation task. Also,

gender is utilized as the sensitive attribute.

A.3. Environments

The models are trained o�ine using PyTorch[35] and executed on a machine equipped with an AMD

EPYC 7763 64-Core Processor CPU @ 4.00GHz and an NVIDIA RTX 6000 Ada Generation GPU, running

the Ubuntu 22.04.3 LTS operating system. The experiments were conducted within a Conda

environment and a Docker container to ensure reproducibility and ease of deployment. The Conda

environment was managed using Miniconda[36]  version 23.9.0 (Python 3.10.13), while the Docker

container[37]  was built on Docker version 24.0.5 with a base image of “nvidia/cuda:12.4.0-cudnn8-

devel-ubuntu22.04” to support GPU acceleration. We will provide our Conda environment, Docker

container, and code implementations upon publication.
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