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Abstract 

Riemann’s functional equation 𝜋!
!
"Γ #"

#
$ 𝜁(𝑠) = 𝜋!$

#
"!

!
"%Γ #&

#
− "

#
$ 𝜁(1 − 𝑠) is 

valid on the vertical line 𝑠 = 1 2⁄ + 𝑖𝑡. Each side is a real-valued function. 
The Riemann’s Xi function is also a real-valued function along the vertical 
line of 𝑠 = 1 2⁄ + 𝑖𝑡. Through the holomorphic extensions of the Riemann 
zeta function, starting from the real-valued function at 𝑠 = 1 2⁄ + 𝑖𝑡 into the 
both sides of 𝜎 < 1 2⁄  and 𝜎 > 1 2⁄ , we can get two versions of the zeta 
functional equation, eq. (45). The key property of the scaling and rotational 
factors g(s) and g(1-s) behave as multiplicative inverses in the complex 
plane, eq. (48). It is deduced that the Zeta function also has multiplicative 
inverses, the symmetric point is at (1/2,0) in the complex plane. The moduli 
behave as a hyperbola. Especially, along the vertical line 𝜎 = 1 2⁄ + 𝑖𝑡, the 
amplitudes of both function g(s) and g(1-s) are equal to 1, its arguments 
have opposite signs. If 𝜎 ≠ 1 2⁄ , the amplitudes of 𝜁(𝑠) and 𝜁(1 − 𝑠) are 
not equal to each other, because of their multiplicative inversion 
relationship. It is deduced that the non-trivial zeros can only be on the 
vertical line of 𝑠 = 1 2⁄ + 𝑖𝑡 . A gamma function vector field is given in 
Appendix B, and some moduli of gamma function at special points are 
given. Finally, another variation of the Zeta function is provided in an 
integral form in Appendix D. The asymptotes behave as a c8 cyclic group 
for the large t values. 
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1. Euler’s product and zeta function are reciprocal relationship  

 

The Riemann zeta function is defined by the following infinite series: 

 

𝜁(𝑠) = 5
1
𝑛"

'

()&

= 1 +
1
2"
+
1
3"
+
1
4"
+
1
5"
+
1
6"
+⋯ (1) 

 

The Euler product formula and the Riemann zeta function have the 
following relation: 

 

…=1 −
1
11"

> ∙ =1 −
1
7"
> ∙ =1 −

1
5"
> ∙ =1 −

1
3"
> ∙ =1 −

1
2"
> ∙ 𝜁(𝑠) = 1 (2) 

 

This can be written more concisely as an infinite product over all primes p: 

 

∏⏟
*+,-.

(1 − 𝑝!") ∙ 𝜁(𝑠) = 1 (3) 

 

This equation shows that Euler’s product and zeta function have a 
reciprocal relationship. 

 

If we plot ∏⏟
*+,-.

(1 − 𝑝!") on the y-axis and 𝜁(𝑠) on the x-axis, the curve will 

be a hyperbola with asymptotes along the axes. This hyperbola is 
symmetric with respect to the line y=x. 

 

Dividing both sides by everything but the ζ(s) we obtain: 

 

𝜁(𝑠) = ∏⏟
*+,-.

(1 − 𝑝!")!& = ∏⏟
*+,-.

=
1

1 − 𝑝!"
> = 𝑓(𝑝") (4) 
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The Euler product formula is an alternative expression of the Riemann ζ 
function in terms of prime numbers. We define it as a function of 𝑓(𝑝"). 

 

Originally the function was defined for real arguments of 𝑠 = 𝜎 . It is 
convergent when 𝜎 is greater than 1. It was Riemann who extended the 
real-valued function to be a complex function with a complex variable 𝑠 =
𝜎 + 𝑖𝑡 rather than a real variable 𝜎. Through the extension onto the entire 
complex plane ℂ, the Riemann zeta function is now expressed as: 
 

𝜁(𝜎 + 𝑖𝑡	) = 5
1

𝑛/0,1	

'

()&

= 1 +
1

2/0,1	
+

1
3/0,1	

+
1

4/0,1	
+

1
5/0,1	

+⋯ (5) 

 
 
2. Fourier series and vector dot product expressions 

 
Each term in the eq. (5) can be expressed as: 
 
 

𝑛!3	 = 𝑛!/!,1	 = 𝑛!/ ∙ (cos(𝑡𝜔() − 𝑖 ∙ sin(𝑡𝜔()) (6) 
 
 
where 𝜔( = ln(𝑛). 
 
The complex conjugate of 𝑛!/!,1	 is: 

 
 

𝑛!3	 = 𝑛!/0,1	 = 𝑛!/ ∙ (cos(𝑡𝜔() + 𝑖 ∙ sin(𝑡𝜔()) (7) 
 
 
Combining the Complex Power Function and its Conjugate 
 
 

𝑛!3	 + 𝑛!3	 = 𝑛!/0,1	 = 𝑛!/ ∙ 2 cos(𝑡𝜔() (8) 
 
 
Dividing by 2 cos(𝑡𝜔(): 
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𝑛!/ =
𝑛!"

2 cos(𝑡𝜔()
+

𝑛!3	

2 cos(𝑡𝜔()
 (9) 

 

With the help of the following relations: 

 

N𝑛
!" = 𝑛!/!,1 = 𝑛!/ ∙ 𝑒!,(15$)

𝑛!3	 = 𝑛!/0,1 = 𝑛!/ ∙ 𝑒,(15$)
 (10) 

 

 

Hence, the Riemann zeta function for real arguments can be expressed 
as: 

 

𝑓(𝑝/) = 𝜁(𝜎	) = 5
𝑛!/

2 cos(𝜔(𝑡)

'

()&

𝑒!,5$1 +5
𝑛!/

2 cos(𝑡𝜔()
𝑒,5$1

'

()&

 (11) 

 

where,  𝑡𝜔( ≠ 𝑘 7
#
, k is the positive integers, 𝑘 = 1,2,3,⋯. 

 

We can also express the eq. (11) more concisely as 

 

2𝑓(𝑝/) = 25𝑛!/
'

()&

= 5
|𝑛|!/

cos(𝜔(𝑡)

'

()!'

𝑒,5$1 (12) 

 

When 𝑡𝜔( =
7
#
, we have  

	

𝑒,
7
# = 𝑖;			𝑒!,

7
# = −𝑖 (13) 

	

Equation (10) can be expressed as: 
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T𝑛
!" = 𝑛!/!,

7
# = −𝑛!/ ∙ 𝑖

𝑛!3	 = 𝑛!/0,
7
# = 𝑛/ ∙ 𝑖

 (14) 

 

Namely: 

 

𝑛" + 𝑛!3	 = 0 (15) 
 

Thus, the eq. (11) or (12) still holds. 

 

With the Euler formula 

  

2 cos(𝜔(𝑡) = 𝑒,5$1 + 𝑒!,5$1 (16) 
 

eq. (11) can also be rewritten as: 

 

𝑓(𝑝/) = 5 =
𝑛!/

𝑒,5$1 + 𝑒!,5$1
>

'

()&

𝑒!,5$1 +5=
𝑛!/

𝑒,5$1 + 𝑒!,5$1
> 𝑒,5$1

'

()&

 (17) 

 

If we define a basis vector for angular frequencies  

 

𝑒 = [⋯ 𝑒!,5"1 𝑒!,5#1 0 𝑒,5#1 𝑒,5"1 ⋯] (18) 
 

and an amplitude coefficient vector: 

 

𝑐 = Z⋯
2−𝜎

2 cos(𝑡𝜔#)
1
2

0
1
2

2−𝜎

2 cos(𝑡𝜔#)
⋯[ (19) 

 

Hence, for real arguments, eq. (11) is the Fourier series for Euler product 
formula with complex Fourier coefficients: 
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𝑓(𝑝/) = 𝑐 ∙ 𝑒 =5𝑐(𝑒,5$1
'

!'

= 5\𝑐(𝑒,5$1 + 𝑐8 + 𝑐!(𝑒!,5$1]
'

()&

 (20) 

 

It should be paid attention that the function 𝑓(𝑝/) is a real-valued function. 
Accordingly, the coefficients for positive and negative angular frequency 
flow are conjugated with each other. 

 

3. Physical Interpretations 

 
The series of powers of natural numbers with real arguments, defined by 
eq. (11), is convergent, if the real argument is greater than one, 𝜎 > 1. 
 

Physically, it can be imagined as two rotational particles with opposite 
rotational signs, namely, one particle is rotating clockwise and another one 
anticlockwise. If we view the two particles as a whole system, then the 
total rotational momentum (the sum of the rotational momentum of the two 
particles) will be zero. But the total rotational energy is 2𝑓(𝑝/), the greater 
the parameter, 𝜎, is, the smaller the total energy will be.  

 

Initially, the two particles are located at the coordinate origin, they are 
rotating in an over-damping field, this over-damping field finally causes the 
entangled oscillators to return to equilibrium without oscillating. Fig. 1 
gives an example of 𝜎 = 2. Oscillators move slowly toward the equilibrium 
state. 
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Fig. 1. Initially entangled two particles  (𝜎 = 2) is viewed as a system: 
total rotational energy is 2𝑓(𝑝#) = 7"

9
. After the decay the total vorticity=0 

 

 

 

4. Riemann’s functional equation holds at 𝑅𝑒(𝑠) = 𝜎 = &
#
 

 

One of Riemann’s functional equations is 

 

𝜋!
"
#Γ #

𝑠
2
$ 𝜁(𝑠) = 𝜋!$

&
#!

"
#%Γ =

1
2
−
𝑠
2
> 𝜁(1 − 𝑠) (21) 

 

Recalling the infinite series definition of the Riemann zeta function of eq. 
(1), this equation can be expressed explicitly as 

 

5#𝜋!
"
#Γ #

𝑠
2
$ ∙ 𝑛!/$ 𝑒!,∙5$1 =5=𝜋!$

&
#!

"
#%Γ =

1
2
−
𝑠
2
> ∙ 𝑛/!&> 𝑒,∙5$1 (22) 

 

In this case, the amplitude vectors for negative and positive angular 
frequencies are: 
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𝑐!(______⃗ (𝑠) = `𝜋!
"
#Γ #

𝑠
2
$ ∙ 𝑛!/a ; 			𝑐(___⃗ (𝑠) = Z𝜋!$

&
#!

"
#%Γ =

1
2
−
𝑠
2
> ∙ 𝑛/!&[ (23) 

 

and the angular frequency vectors are: 

 

𝑒!(______⃗ = \𝑒!,∙5$1]; 			𝑒(____⃗ = \𝑒,∙5$1] (24) 
 

Hence, eq. (22) can be expressed more compactly as: 

 

5𝑐!(______⃗ ∙ 𝑒!,∙5$1
'

()&

= 5𝑐(___⃗
'

()&

∙ 𝑒,∙5$1 (25) 

 

We define a complex function as: 

 

Φ(𝑠) = 𝜋!"Γ(𝑠) (26) 
 

Hence, the amplitude vectors of eq. (23) can be rewritten as: 

 

𝑐!(______⃗ (𝑠) = `Φ #
𝑠
2
$ ∙ 𝑛!/a ; 			𝑐(___⃗ (𝑠) = ZΦ =

1
2
−
𝑠
2
> ∙ 𝑛/!&[ (27) 

 

Both sides of eq. (25) are infinite series, each term must be equal. 

 

Φ#
𝑠
2
$ ∙ 𝑛!/ ∙ 𝑒!,∙5$1 = Φ=

1
2
−
𝑠
2
> ∙ 𝑛/!& ∙ 𝑒,∙5$1 (28) 

 

Namely: 

 

Φ=
𝜎
2
+ 𝑖

𝑡
2
> ∙ 𝑛!/ ∙ 𝑒!,∙5$1 = Φ=

1
2
−
𝜎
2
− 𝑖

𝑡
2
> ∙ 𝑛/!& ∙ 𝑒,∙5$1 (29) 
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Isolating the function of Φ#"
#
$: 

 

Φ=
𝜎
2
+ 𝑖

𝑡
2
> = Φ=

1
2
−
𝜎
2
− 𝑖

𝑡
2
> ∙ 𝑛#/!& ∙ 𝑒,∙#5$1 (30) 

 

The magnitudes of both sides must be equal. Therefore 

 

cΦ =
𝜎
2
+ 𝑖

𝑡
2
>c = cΦ =

1
2
−
𝜎
2
− 𝑖

𝑡
2
>c ∙ 𝑛#/!& (31) 

 

The amplitude of the RHS of eq. (31) multiplies a scaling factor of 𝑛#/!&. 
For amplitudes to match with the 𝑛#/!& factor, we should consider special 
values of 𝜎:  

𝑛#/!& = 1 (32) 
 

Hence: 

 

𝜎 =
1
2

 (33) 

 

That is, given 𝜎 = &
#
, the amplitude conditions for both sides of the infinite 

series, eq. (25) are satisfied. 

 

The arguments of the complex functions are related by 2𝜔(𝑡 modulo 2π: 

 

𝑎𝑟𝑔 ZΦ =
𝜎
2
+ 𝑖

𝑡
2
>[ = 𝑎𝑟𝑔 cΦ =

1
2
−
𝜎
2
− 𝑖

𝑡
2
>c + 2𝜔(𝑡 + 2𝑘𝜋 (34) 

 

That means, for the infinite series, eq. (25) to hold, the complex variable s 
must have its real part 𝜎 equal to 𝜎 = &

#
. Thus, s can be written as: 
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𝑠 =
1
2
+ 𝑖𝑡 (35) 

 

Namely, the real part of s is fixed at 1/2, and the imaginary part t can vary. 

 

Given these conditions, the Fourier coefficients can be written explicitly: 

 

𝑐!(______⃗ = ZΦ =
1
4
+ 𝑖

𝑡
2
> ∙ 𝑛!

&
#[ ; 			𝑐(___⃗ = ZΦ=

1
4
− 𝑖

𝑡
2
> ∙ 𝑛!

&
#[ (36) 

 

Thus, eq. (25) can be expressed explicitly as: 

 

5ZΦ=
1
4
+ 𝑖

𝑡
2
> ∙ 𝑛!

&
#[ ∙ 𝑒!,∙5$1

'

()&

= 5 ZΦ=
1
4
− 𝑖

𝑡
2
> ∙ 𝑛!

&
#[

'

()&

∙ 𝑒,∙5$1 (37) 

 

From eq. (37) We know that each term 

 

𝑛!
&
# =

𝑒,∙5$1

Φ#14 + 𝑖
𝑡
2$
;			𝑛!

&
# =

𝑒!,∙5$1

Φ#14 − 𝑖
𝑡
2$

 (38) 

 

Adding both terms together: 

 

2𝑛!
&
# =

𝑒!,∙5$1

Φ#14 + 𝑖
𝑡
2$
+

𝑒,∙5$1

Φ#14 − 𝑖
𝑡
2$

 (39) 

 

Thus, the Fourier expansion of the Euler product formula at 𝜎 = &
#
 is 
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2𝑓g𝑝& #⁄ h = 2𝜁 =
1
2
> = 5

𝑒!,∙5$1

Φ#14 + 𝑖
𝑡
2$

'

()&

+5
𝑒,∙5$1

Φ#14 − 𝑖
𝑡
2$

'

()&

 (40) 

 

This is a real-valued function, thus, this equation implies that the absolute 
values of the arguments of Φ#"

#
$ at 𝜎 = &

#
 equal the basis vectors of 𝑒,∙5$1, 

but with opposite signs. 

 

In other words, equation (40) represents the complex form of the Fourier 
expansion of the Euler product formula at 𝜎 = &

#
. Or we can say that the 

Riemann zeta function at 𝜎 = &
#
 can be expressed as a complex Fourier 

series. The complex coefficients of the negative and positive angular 

frequency flow are `Φ #&
<
+ 𝑖 1

#
$a
!&

and  `Φ #&
<
− 𝑖 1

#
$a
!&

, respectively. 

 

It has been proved by Siegel [1] that at 𝜎 = &
#
, the Riemann functional 

equation (21) is a real-valued function: 

 

Φ=
1
4
+ 𝑖

𝑡
2
> 𝜁 =

1
2
+ 𝑖𝑡> = Φ=

1
4
− 𝑖

𝑡
2
> 𝜁 =

1
2
− 𝑖𝑡> = 𝑟𝑒𝑎𝑙 − 𝑣𝑎𝑙𝑢𝑒𝑑 (41) 

 

Hence, the amplitude vectors can be rewritten as: 

 

𝑐 = Φ =
1
4
+ 𝑖

𝑡
2
> ∙ 𝑛!/ (42) 

 

and its arguments have an opposite sign of 𝜁 #&
#
+ 𝑖𝑡$, namely have the 

following form: 

 

𝑎𝑟𝑔(𝑐) = 𝜔(𝑡 (43) 
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Fig. 2. The absolute values of the arguments of the functions Φ(𝑠 2⁄ ) 
and 𝜁(𝑠) equal to each other, but with opposite signs.  

 

 

Recalling the definition of Riemann’s Xi function, 

 

𝜉(𝑠) =
1
2
𝑠(1 − 𝑠) `𝜋!

"
#Γ #

𝑠
2
$ 𝜁(𝑠)a (44) 

 

At 𝜎 = &
#
, the complex numbers of s and (1-s) are conjugates, hence, in the 

complex plane, along the line 𝑠 = &
#
+ 𝑖𝑡, the Riemann’s Xi function of (42) 

is a real-valued function. 

 

 

5. Holomorphic extensions of the Riemann zeta function 

 

There are two versions of the functional equation: 
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n
𝜁(𝑠) = 2"𝜋"!& sin #

𝜋𝑠
2
$ Γ(1 − 𝑠)ζ(1 − 𝑠) 𝑅𝑒(𝑠) ≤ 1

𝜁(1 − 𝑠) = 2&!"𝜋!" cos #
𝜋𝑠
2
$ Γ(𝑠)ζ(𝑠) 𝑅𝑒(𝑠) ≥ 0

 (45) 

 
 
Except for two points of s=0 and 1-s=0. Because the gamma function at 
s=0 has a pole. 
 
 
Where the gamma function is defined: 
 
 

Γ(𝑠) = r 𝑥"!&𝑒!=𝑑𝑥
'

8
𝑅𝑒(𝑠) > 0 (46) 

 
 
We define two complex functions: 
 
 

n
𝑔(𝑠) = 2"𝜋"!& sin #

𝜋𝑠
2
$ Γ(1 − 𝑠)

𝑔(1 − 𝑠) = 2&!"𝜋!" cos #
𝜋𝑠
2
$ Γ(𝑠)

 (47) 

 
 
It can be proved that they behave as multiplicative inverses in complex 
plane, with one function being the inverse of the other for all points in their 
domain where both functions are non-zero: 

 

𝑔(𝑠) ∙ 𝑔(1 − 𝑠) = 1 (48) 
 

It was fully proved in Appendix C, for more details we can apply Appendix 
C.  

 

Hence, two Riemann zeta functions, eq. (45), can be rewritten as 

 

N 𝜁(𝑠) = 𝑔(𝑠)ζ(1 − 𝑠) 𝑅𝑒(𝑠) ≤ 1
𝜁(1 − 𝑠) = 𝑔(1 − 𝑠)ζ(𝑠) 𝑅𝑒(𝑠) ≥ 0 (49) 
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If we define the amplitude and argument of 𝑔(𝑠) to be r and 𝜃, respectively, 
because of the complex multiplicative inversion behavior of g(s) and g(1-
s) of the eq. (48), thus, the Riemann zeta function in the complex plane 
can be expressed as: 

 

u
𝜁(𝑠) = ζ(1 − 𝑠) ∙ 𝑟𝑒,>!

𝜁(1 − 𝑠) = ζ(𝑠) ∙
1
𝑟
𝑒!,>!

 (50) 

 

where 𝜃" is the argument of 𝑔(𝑠) at the point of 𝑠 = 𝜎 + 𝑖𝑡. 

 

This implies that in the general case, the amplitudes of 𝜁(𝑠) and ζ(1 − 𝑠) 
are not equal to each other, rather, they behave as multiplicative inverses: 

 

|𝜁(𝑠)| ∙ |ζ(1 − 𝑠)| = 1 (51) 
 

If we plot |𝜁(1 − 𝑠)| on the y-axis and |𝜁(𝑠)| on the x-axis, the curve of the 
amplitudes will be a hyperbola with asymptotes along the axes. This 
amplitude hyperbola is symmetric with respect to the line y=x, this is at the 
location of 𝜎 = &

#
.  

 

Especially, in the complex plane, along the vertical line 𝜎 = &
#
+ 𝑖𝑡, the 

amplitudes of g(s) and g(1-s) are equal to each other, and both equal one: 

 

n
c𝑔 =

1
2
+ 𝑖𝑡>c = 1

c𝑔 =
1
2
− 𝑖𝑡>c = 1

 (52) 

 

They are conjugates, thus, along the line 𝑠 = &
#
+ 𝑖𝑡, the Riemann zeta 

functions, eq. (49), can be expressed as: 
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n
𝜁 =
1
2
+ 𝑖𝑡> = ζ =

1
2
− 𝑖𝑡> ∙ 𝑒,>%

𝜁 =
1
2
− 𝑖𝑡> = ζ =

1
2
+ 𝑖𝑡> ∙ 𝑒!,>%

 (53) 

 

where 𝜃1 is the argument of 𝑔(𝑠) at the point of 𝑠 = &
#
+ 𝑖𝑡: 

 

𝜃1 = 𝑡 ∙ ln(2𝜋) + 𝑡𝑎𝑛!& v𝑡𝑎𝑛ℎ =
𝜋𝑡
2
>x + 𝛽 (54) 

 

and where 𝛽 is the argument of gamma function at the points of 𝜎 = &
#
− 𝑖𝑡: 

  

𝛽 = 𝑎𝑟𝑔 ZΓ =
1
2
− 𝑖𝑡>[ (55) 

 

Thus, the operating effect of 𝑔 #&
#
+ 𝑖𝑡$ on the ζ #&

#
− 𝑖𝑡$ leads the ζ #&

#
− 𝑖𝑡$ 

to rotate an angle of 𝜃1 clockwise, while 𝑔 #&
#
− 𝑖𝑡$ leads the ζ #&

#
+ 𝑖𝑡$ to 

rotate an angle of 𝜃1 anticlockwise, but the scaling factor of 𝑔 #&
#
+ 𝑖𝑡$ and 

𝑔 #&
#
− 𝑖𝑡$ keeps as constant, both factors are equal to one. 

 

Moreover, if the argument 𝜃1 = 0, we have the following trivial equations: 

 

n
𝜁 =
1
2
+ 𝑖𝑡> = ζ =

1
2
− 𝑖𝑡>

𝜁 =
1
2
− 𝑖𝑡> = ζ =

1
2
+ 𝑖𝑡>

 (56) 

 

In this case, both equations take the same amplitude and argument 
simultaneously. The non-trivial zero points of the Riemann zeta function 
will be located at these points. 
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Hence, along the vertical line 𝑠 = &
#
+ 𝑖𝑡, the amplitudes of 𝜁 #&

#
+ 𝑖𝑡$ and 

ζ #&
#
− 𝑖𝑡$ are the same for all cases, and the difference of their arguments 

is equal to 2𝜃1, namely, the rotation radii of 𝜁 #&
#
+ 𝑖𝑡$ and ζ #&

#
− 𝑖𝑡$ equal 

each other. If one function is rotating and passing through the coordinate 
origin clockwise, another one must be rotating and passing through the 
origin anticlockwise, and furthermore, they will be located at the points of 
𝜃1 = 0. 

 

In the general case, the amplitudes of 𝜁(𝑠) and 𝜁(1 − 𝑠) are not equal to 
each other, because of their multiplicative inversion relationship, eq.(51). 
If the rotation radius of one function is bigger, another one must be smaller, 
hence, both functions cannot pass through the coordinate origin, otherwise, 
the multiplicative inversion relationship of eq. (51) cannot be held, unless 
the amplitude, r, of the function 𝑔(𝑠) is zero for all cases in the definition 
domain. But from the definition of the eq. (47), it cannot be equal to zero. 
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Appendix A: sin(πs) and cos(πs) 

 

Given a complex variable s in the complex plane: 

 

𝑠 = 𝜎 + 𝑖𝑡 (A1) 
 

The definition of complex sine function is 

 

sin(𝜋𝑠) = sin(𝜋𝜎 + 𝑖𝜋𝑡) = sin(𝜋𝜎) 𝑐𝑜𝑠ℎ(𝜋𝑡) + 𝑖 ∙ cos(𝜎𝜋) 𝑠𝑖𝑛ℎ(𝜋𝑡) (A2) 
 

With different values of 𝜎, we can get its algebraic expressions, e.g., as 
following expressions: 

 

Table A1: the most important expressions of sin(πs) 
 

𝜎 = 0   sin(𝑖𝜋𝑡) = 𝑖 ∙ sinh(𝜋𝑡) 

𝜎 =
1
4

   sin #7
<
+ 𝑖𝜋𝑡$ = &

√#
[𝑐𝑜𝑠ℎ(𝜋𝑡) + 𝑖 ∙ 𝑠𝑖𝑛ℎ(𝜋𝑡)] 

𝜎 =
1
2

   sin #7
#
+ 𝑖𝜋𝑡$ = cosh(𝜋𝑡) 

𝜎 =
3
4

   sin #@7
<
+ 𝑖𝜋𝑡$ = &

√#
[𝑐𝑜𝑠ℎ(𝜋𝑡) − 𝑖 ∙ 𝑠𝑖𝑛ℎ(𝜋𝑡)] 

𝜎 = 1   sin(𝜋 + 𝑖 ∙ 𝜋𝑡) = −𝑖 ∙ sinh(𝜋𝑡) 
 

They are symmetric about 𝜎 = &
#
. 

 

Accordingly, in general, its Modulus (amplitude) is 

 

|sin(𝜋𝑠)| = |[sin(𝜋𝜎) 𝑐𝑜𝑠ℎ(𝜋𝑡)]# + [cos(𝜎𝜋) 𝑠𝑖𝑛ℎ(𝜋𝑡)]# (A3) 
 

And its argument is 
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𝜃 = 𝑡𝑎𝑛!&[𝑐𝑜𝑡(𝜎𝜋)𝑡𝑎𝑛ℎ(𝜋𝑡)] (A4) 
 

The explicit algebraic expressions for the most important amplitudes 
between 0 ≤ 𝜎 ≤ 1 are as follows: 

 

Table A2: the most important amplitudes of sin(πs) 
 

𝜎 = 0   |sin(𝑖 ∙ 𝜋𝑡)| = sinh(𝜋𝑡) 

𝜎 =
1
6

   }sin #7
9
+ 𝑖𝜋𝑡$} = &

#
|cosh#(𝜋𝑡) + 3 ∙ sinh#(𝜋𝑡) 

𝜎 =
1
4

   }sin #7
<
+ 𝑖𝜋𝑡$} = &

√#
|cosh(2𝜋𝑡) 

𝜎 =
1
3

   }sin #7
@
+ 𝑖𝜋𝑡$} = &

#
|3 ∙ cosh#(𝜋𝑡) + sinh#(𝜋𝑡) 

𝜎 =
1
2

   }sin #7
#
+ 𝑖𝜋𝑡$} = cosh(𝜋𝑡) 

𝜎 =
2
3

   }sin ##7
@
+ 𝑖𝜋𝑡$} = &

#
|3 ∙ cosh#(𝜋𝑡) + sinh#(𝜋𝑡) 

𝜎 =
3
4

   }sin #@7
<
+ 𝑖𝜋𝑡$} = &

√#
|cosh(2𝜋𝑡) 

𝜎 =
5
6

   }sin #A7
9
+ 𝑖𝜋𝑡$} = &

#
|cosh#(𝜋𝑡) + 3 ∙ sinh#(𝜋𝑡) 

𝜎 = 1   |sin(𝜋 + 𝑖 ∙ 𝜋𝑡)| = sinh(𝜋𝑡) 
 

 

The most important arguments between 0 ≤ 𝜎 ≤ 1 are listed as follows: 

 

Table A3: the most important arguments of sin(πs) 
 

𝜎 = 0   𝜃 = 𝑡𝑎𝑛!&[∞] = 7
#
 

𝜎 =
1
6

   𝜃 = 𝑡𝑎𝑛!&\√3 ∙ 𝑡𝑎𝑛ℎ(𝜋𝑡)] 

𝜎 =
1
4

   𝜃 = 𝑡𝑎𝑛!&[𝑡𝑎𝑛ℎ(𝜋𝑡)] 

𝜎 =
1
3

   𝜃 = 𝑡𝑎𝑛!& ` &
√@
∙ 𝑡𝑎𝑛ℎ(𝜋𝑡)a 

𝜎 =
1
2

   𝜃 = 𝑡𝑎𝑛!&[0] = 0 



19 
 

𝜎 =
2
3

   𝜃 = 𝑡𝑎𝑛!& `− &
√@
∙ 𝑡𝑎𝑛ℎ(𝜋𝑡)a 

𝜎 =
3
4

   𝜃 = 𝑡𝑎𝑛!&[−𝑡𝑎𝑛ℎ(𝜋𝑡)] 

𝜎 =
5
6

   𝜃 = 𝑡𝑎𝑛!&\−√3 ∙ 𝑡𝑎𝑛ℎ(𝜋𝑡)] 

𝜎 = 1   𝜃 = 𝑡𝑎𝑛!&[−∞] = − 7
#
 

 

It can be seen that both the amplitudes and arguments are symmetric 
about 𝜎 = &

#
. 

 

When the variable t approaches infinity, the asymptotes of the amplitudes 
are: 

 

|sin(𝜎𝜋 + 𝑖𝜋𝑡)| ≈ sinh(𝜋𝑡) ≈ cosh(𝜋𝑡) (A5) 
 

and the asymptotes of the arguments is 

 

𝜃 ≈ 𝑡𝑎𝑛!&[𝑐𝑜𝑡(𝜎𝜋)] =
𝜋
2
− 𝜎𝜋 (A6) 

 

Thus, some asymptotes of the arguments between 0 ≤ 𝜎 ≤ 1  are as 
follows: 

 

Table A4: some asymptotes of the arguments of 𝑠𝑖𝑛(𝜋𝑠) 
 

𝜎 = 0   𝜃 = 𝑡𝑎𝑛!&[∞] = 7
#
 

𝜎 =
1
4

   𝜃 = 𝑡𝑎𝑛!& `𝑐𝑜𝑡 #7
<
$a ≈ 7

<
 

𝜎 =
1
2

   𝜃 = 𝑡𝑎𝑛!&[0] = 0 

𝜎 =
3
4

   𝜃 = 𝑡𝑎𝑛!& `−𝑐𝑜𝑡 #7
<
$a ≈ − 7

<
 

𝜎 = 1   𝜃 = 𝑡𝑎𝑛!&[−∞] = − 7
#
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The vector field of 𝑠𝑖𝑛(𝜋𝑠) is given in Fig. A1: 

 

 
 

Fig. A1 the 𝑠𝑖𝑛(𝜋𝑠) vector field in the complex plane for 0 ≤ 𝜎 ≤ 1 
 

 

The definition of the complex cosine function is 

 

cos(𝜋𝑠) = cos(𝜋𝜎 + 𝑖𝜋𝑡) = cos(𝜋𝜎) 𝑐𝑜𝑠ℎ(𝜋𝑡) − 𝑖 ∙ sin(𝜎𝜋) 𝑠𝑖𝑛ℎ(𝜋𝑡) (A7) 
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Similar to the sine function, we can also get the most important algebraic 
expressions of cos(𝜋𝑠) for 0 ≤ 𝜎 ≤ 1. Correspondingly, it is very easy to 
get the most important amplitudes and arguments. Here we give only its 
vector field in the complex plane as in Fig. A2. 

 

 
 

Fig. A2. The 𝑐𝑜𝑠(𝜋𝑠) vector field in the complex plane for 0 ≤ 𝜎 ≤ 1 
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Comparing Fig. A1 with Fig. A2, it can be seen that the arguments of 
𝑠𝑖𝑛(𝜋𝑠) and 𝑐𝑜𝑠(𝜋𝑠) have a shift of 7

#
: 

 

𝑐𝑜𝑠(𝜋𝑠) = 𝑠𝑖𝑛 #
𝜋
2
+ 𝜋𝑠$ (A8) 
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Appendix B: Gamma Function and its Vector Field 

 

Given a complex variable 𝑠 = 𝜎 + 𝑖𝑡 in the complex plane, the gamma 
function is related to sin(πs) by the reflection formula: 

 

Γ(𝑠)Γ(1 − 𝑠) =
𝜋

sin(𝜋𝑠)
 (B1) 

 

With the complex sin function definition in Appendix A, we have the 
general reflection formula in the region of 0 ≤ 𝜎 ≤ 1: 

 

Γ(𝜎 + 𝑖𝑡)Γ(1 − 𝜎 − 𝑖𝑡) =
𝜋

sin(𝜋𝜎) 𝑐𝑜𝑠ℎ(𝜋𝑡) + 𝑖 ∙ cos(𝜋𝜎) sinh(𝜋𝑡)
 (B2) 

 

With different values of 𝜎 , we can get some important algebraic 
expressions, e.g., as follows: 

 

Table B1: some important algebraic expressions 
 

𝜎 = 0 Γ(𝑖𝑡)Γ(1 − 𝑖𝑡) = −𝑖 ∙
𝜋

sinh(𝜋𝑡)
 

𝜎 =
1
4

 Γ =
1
4
+ 𝑖𝑡> Γ =

3
4
− 𝑖𝑡> =

√2 ∙ 𝜋
𝑐𝑜𝑠ℎ(𝜋𝑡) + 𝑖 ∙ sinh(𝜋𝑡)

 

𝜎 =
1
2

 Γ =
1
2
+ 𝑖𝑡> Γ =

1
2
− 𝑖𝑡> =

𝜋
𝑐𝑜𝑠ℎ(𝜋𝑡)

 

𝜎 =
3
4

 Γ =
3
4
+ 𝑖𝑡> Γ =

1
4
− 𝑖𝑡> =

√2 ∙ 𝜋
𝑐𝑜𝑠ℎ(𝜋𝑡) − 𝑖 ∙ sinh(𝜋𝑡)

 

𝜎 = 1 Γ(1 + 𝑖𝑡)Γ(−𝑖𝑡) = 𝑖 ∙
𝜋

sinh(𝜋𝑡)
 

 

One of the properties of the Gamma function is its recurrence relation, 
which relates Γ(1 + 𝑠) to Γ(𝑠). The recurrence relation is: 

 

s ∙ Γ(𝑠) = Γ(1 + 𝑠) (B3) 
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On the imaginary axis, 𝜎 = 0, substituting these values into the recurrence 
relation, we have 

 

(it)Γ(𝑖𝑡) = Γ(1 + 𝑖𝑡); 							Γ(𝑖𝑡) =
1
𝑖𝑡
∙ Γ(1 + 𝑖𝑡) (B4) 

 

Substituting this equation into the reflection formula for the case of 𝜎 = 1, 
we can get: 

 

(it)Γ(𝑖𝑡)Γ(−𝑖𝑡) = 𝑖 ∙
𝜋

sinh(𝜋𝑡)
 (B5) 

 

Hence, the reflection formula on the imaginary axis is: 

 

Γ(𝑖𝑡)Γ(−𝑖𝑡) =
1
𝑡
∙

𝜋
sinh(𝜋𝑡)

 (B6) 

 

Substituting (B4) into the reflection formula for the case of 𝜎 = 0, we have 
the reflection formula along the line 𝜎 = 1: 

 

Γ(1 + 𝑖𝑡)Γ(1 − 𝑖𝑡) = 𝑡 ∙
𝜋

sinh(𝜋𝑡)
 (B7) 

 

Given the value of 𝜎 = &
#
, we have the reflection formula along the line 𝜎 =

&
#
, as is listed in Table B1. 

 

Γ =
1
2
+ 𝑖𝑡> Γ =

1
2
− 𝑖𝑡> =

𝜋
𝑐𝑜𝑠ℎ(𝜋𝑡)

 (B8) 

 

Equations (B6), (B7), and (B8) are the conjugate pairs, respectively, thus 
we can get some import moduli of the gamma function as follows: 
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The modulus of the gamma function on the imaginary axis: 

 

|Γ(𝑖𝑡)| =
1
√𝑡
∙

√𝜋
|sinh(𝜋𝑡)

 (B9) 

 

The modulus of the gamma function along the vertical line of 𝜎 = 1: 

 

|Γ(1 + 𝑖𝑡)| = √𝑡 ∙
√𝜋

|sinh(𝜋𝑡)
 (B10) 

 

and the modulus of the gamma function along the vertical line of 𝜎 = &
#
: 

 

cΓ =
1
2
+ 𝑖𝑡>c =

√𝜋
|𝑐𝑜𝑠ℎ(𝜋𝑡)

 (B11) 

 

Obviously, when t=0, it degenerates to the value on the real axis: 

 

cΓ =
1
2
>c = √𝜋 (B12) 

 

Hence, we have the following ratios of the gamma function moduli: 

 

|Γ(𝑖𝑡)| cΓ =
1
2
+ 𝑖𝑡>c� =

1
√𝑡
∙ |𝑐𝑜𝑡ℎ(𝜋𝑡) (B13) 

 

and 

 

|Γ(1 + 𝑖𝑡)| cΓ =
1
2
+ 𝑖𝑡>c� = √𝑡 ∙ |𝑐𝑜𝑡ℎ(𝜋𝑡) (B14) 
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Assuming the modulus of the gamma function changes continuously in the 
complex plane, then it can be deduced that along the horizontal line of 𝜎 =
𝑐𝑜𝑛𝑠𝑡, in the left side region of 𝜎 < &

#
, the modulus |Γ(𝜎 + 𝑖𝑡)| is smaller 

than the value of }Γ #&
#
+ 𝑖𝑡$}, while in the right side region of 𝜎 > &

#
, the 

modulus |Γ(𝜎 + 𝑖𝑡)| is greater than the value of }Γ #&
#
+ 𝑖𝑡$}. 

 

Furthermore, it is observed from the reflection formula of (B1) and (B2), 
the argument of the expression Γ(𝑠)Γ(1 − 𝑠) has a reverse relationship of 
the argument of sin(𝜋𝑠): 

 

𝑎𝑟𝑔[Γ(𝑠)Γ(1 − 𝑠)] = 𝑡𝑎𝑛!&[−𝑐𝑜𝑡(𝜋𝜎)𝑡𝑎𝑛ℎ(𝜋𝑡)] (B15) 
 

For large t, the asymptotes of the argument are   

 

𝑎𝑟𝑔[Γ(𝑠)] + 𝑟𝑔[Γ(1 − 𝑠)] ≈ 𝑡𝑎𝑛!&[−𝑐𝑜𝑡(𝜋𝜎)] = 𝜎 ∙ 𝜋 −
𝜋
2

 (B16) 
 

When 𝜎 = 0, Γ(𝑖𝑡) and Γ(1 − 𝑖𝑡) have a negative complementary angle 
relationship: 

 

𝑎𝑟𝑔[Γ(𝑖𝑡)] + 𝑎𝑟𝑔[Γ(1 − 𝑖𝑡)] ≈ −
𝜋
2

 (B17) 
 

when 𝜎 = 1, Γ(−𝑖𝑡) and Γ(1 + 𝑖𝑡)	have a positive complementary angle 
relationship: 

𝑎𝑟𝑔[Γ(1 + 𝑖𝑡)] + 𝑎𝑟𝑔[Γ(−𝑖𝑡)] ≈
𝜋
2

 (B18) 
 

Obviously, when 𝜎 = &
#
, Γ #&

#
+ 𝑖𝑡$ and Γ #&

#
− 𝑖𝑡$ are conjugates, the sum 

of their arguments is zero: 
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𝑎𝑟𝑔 ZΓ =
1
2
+ 𝑖𝑡>[ + 𝑎𝑟𝑔 ZΓ =

1
2
− 𝑖𝑡>[ = 0 (B19) 

 

If the argument of Γ #&
#
− 𝑖𝑡$ is equal to 𝛽, then the argument of Γ #&

#
+ 𝑖𝑡$ 

must be equal to – 𝛽.  Fig. B1 gives a representation vector field for the 
gamma function in the region of 0 ≤ 𝜎 ≤ 1. 

 

 
 

Fig. B1 Gamma function vector field in the region 0 ≤ 𝜎 ≤ 1. 
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Appendix C: Complex Multiplicative Inverse of g(s) and g(1-s) 

 

 

The complex scaling and rotation functions for the Riemann zeta function 
are defined by eq. (47): 

 

n
𝑔(𝑠) = 2"𝜋"!& sin #

𝜋𝑠
2
$ Γ(1 − 𝑠)

𝑔(1 − 𝑠) = 2&!"𝜋!" cos #
𝜋𝑠
2
$ Γ(𝑠)

 (C1) 

 

We will show multiplicative inverses behavior between g(s) and g(1-s), 
namely, the identity of eq. (48): 

 

𝑔(𝑠) ∙ 𝑔(1 − 𝑠) = 1 (C2) 
 

The product of both functions is 

 

𝑔(𝑠) ∙ 𝑔(1 − 𝑠) =
1
𝜋
∙ `2 ∙ sin #

𝜋𝑠
2
$ cos #

𝜋𝑠
2
$a [Γ(𝑠)Γ(1 − 𝑠)] (C3) 

 

Using the double-angle formula for the sin function and the gamma 
reflection formula to simplify it: 

 

𝑔(𝑠) ∙ 𝑔(1 − 𝑠) =
1
𝜋
∙ [sin(𝜋𝑠)] ∙ Z

𝜋
sin(𝜋𝑠)

[ = 1 (C4) 

 

Thus, for any complex variable of 𝑠 = 𝜎 + 𝑖𝑡, this multiplicative inverse 
behavior always holds. 

 

Hence, given a complex variable of 𝑠 = 𝜎 + 𝑖𝑡, we have 
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⎩
⎨

⎧ 𝑔(𝜎 + 𝑖𝑡) =
(2𝜋)/

𝜋
(2𝜋),1 sin =

𝜋𝜎
2
+ 𝑖

𝜋𝑡
2
> Γ(1 − 𝜎 − 𝑖𝑡)

𝑔(1 − 𝜎 − 𝑖𝑡) =
2

(2𝜋)/
(2𝜋)!,1 cos =

𝜋𝜎
2
+ 𝑖

𝜋𝑡
2
> Γ(𝜎 + 𝑖𝑡)

 (C5) 

 

If we define the modulus and argument to be r and 𝜃  for 𝑔(𝜎 + 𝑖𝑡) , 
because of the multiplicative inverse behavior, the modulus and argument 
of 𝑔(1 − 𝜎 − 𝑖𝑡) must be 1 𝑟⁄  and −𝜃, respectively. 

 

Substituting these into the Riemann zeta function, we have 

 

u
𝜁(𝑠) = ζ(1 − 𝑠) ∙ \𝑟𝑒,>]

𝜁(1 − 𝑠) = ζ(𝑠) ∙ Z
1
𝑟
𝑒!,>[

 (C6) 

 

It can be shown that when 𝜎 = &
#
, the moduli of 𝑔(𝑠)  and 𝑔(1 − 𝑠) are 

equal to 1. 

 

Given 𝜎 = &
#
, the eq. (C1) become: 

 

⎩
⎪
⎨

⎪
⎧ 𝑔 =

1
2
+ 𝑖𝑡> =

√2
√𝜋

∙ (2𝜋),1 sin =
𝜋
4
+ 𝑖

𝜋𝑡
2
> Γ =

1
2
− 𝑖𝑡>

𝑔 =
1
2
− 𝑖𝑡> =

√2
√𝜋

∙ (2𝜋)!,1 cos =
𝜋
4
+ 𝑖

𝜋𝑡
2
> Γ =

1
2
+ 𝑖𝑡>

 (C7) 

 

Using the modulus expression for sin #7
<
+ 𝑖 71

#
$  in table A2 and the 

modulus expression for Γ #&
#
− 𝑖𝑡$ of the eq. (B8), we can get the moduli 

for functions 𝑔 #&
#
+ 𝑖𝑡$ and 𝑔 #&

#
− 𝑖𝑡$: 
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⎩
⎪
⎨

⎪
⎧c𝑔 =

1
2
+ 𝑖𝑡>c =

1
√𝜋

∙ |𝑐𝑜𝑠ℎ(𝜋𝑡) ∙
√𝜋

|𝑐𝑜𝑠ℎ(𝜋𝑡)
= 1

c𝑔 =
1
2
− 𝑖𝑡>c =

1
√𝜋

∙ |𝑐𝑜𝑠ℎ(𝜋𝑡) ∙
√𝜋

|𝑐𝑜𝑠ℎ(𝜋𝑡)
= 1

 (C8) 

 

Here, we have applied the following identity for hyperbolic functions: 

 

5𝑐𝑜𝑠ℎ 6
𝜋𝑡
2 8 ± 𝑖 ∙ 𝑠𝑖𝑛ℎ 6

𝜋𝑡
2 85 =

:𝑐𝑜𝑠ℎ! 6
𝜋𝑡
2 8 + 𝑠𝑖𝑛ℎ

! 6
𝜋𝑡
2 8 =

;𝑐𝑜𝑠ℎ(𝜋𝑡) (C9) 

 

 

These imply that when 𝜎 = &
#
, the scaling factor g(s) and g(1-s) is always 

1, independent of the variable of t, which implies also a reflection 
symmetry of the moduli of zeta function about 𝜎 = &

#
, namely, the moduli 

in the regions of 𝜎 < &
#

 and 𝜎 > &
#

 have a multiplicative inverse 
complementary relationship.  

 

Substituting these into the eq. (C6), finally we get the equations of (53) for 
𝜎 = &

#
. The scaling factor for the modulus of the zeta function keeps 1, while 

g(s) function lets the zeta function rotate continuously, the conjugate pair 
of the zeta functions have opposite rotational signs, but with the same 
moduli.  
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Appendix D: Other Variations of Zeta Function 

 

 

Given any complex function, it is always true: 

 

N 𝜁(𝑠) = 𝜁(𝑠)
𝜁(1 − 𝑠) = 𝜁(1 − 𝑠) (D1) 

 

Multiplying and divided by sin(𝜋𝑠): 

 

⎩
⎪
⎨

⎪
⎧ 𝜁(𝑠) =

sin(𝜋𝑠)
sin(𝜋𝑠)

∙ 𝜁(𝑠)

𝜁(1 − 𝑠) =
sin(𝜋𝑠)
sin(𝜋𝑠)

∙ 𝜁(1 − 𝑠)
 (D2) 

 

where, 𝑠	 ≠ 0, 1. 

 

Using the gamma reflection formula: 

 

n
𝜁(𝑠) =

1
𝜋
∙ [Γ(𝑠)Γ(1 − 𝑠)] ∙ sin(𝜋𝑠) 	 ∙ 𝜁(𝑠)

𝜁(1 − 𝑠) =
1
𝜋
∙ [Γ(𝑠)Γ(1 − 𝑠)] ∙ sin(𝜋𝑠) ∙ 𝜁(1 − 𝑠)

 (D3) 

 

Using the double-angle identity for sin function: 

 

n
𝜁(𝑠) =

2
𝜋
∙ Γ(𝑠)Γ(1 − 𝑠) `sin #

𝜋𝑠
2
$ cos #

𝜋𝑠
2
$a 𝜁(𝑠)

𝜁(1 − 𝑠) =
2
𝜋
∙ Γ(𝑠)Γ(1 − 𝑠) `sin #

𝜋𝑠
2
$ cos #

𝜋𝑠
2
$a 𝜁(1 − 𝑠)

 (D4) 

 

Rearranging: 
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⎩
⎪
⎨

⎪
⎧ 𝜁(𝑠) = �

√2
√𝜋

∙ sin #
𝜋𝑠
2
$ Γ(1 − 𝑠)� �

√2
√𝜋

∙ cos #
𝜋𝑠
2
$ Γ(𝑠) 𝜁(𝑠)�

𝜁(1 − 𝑠) = �
√2
√𝜋

∙ cos #
𝜋𝑠
2
$ Γ(𝑠)� �

√2
√𝜋

∙ sin #
𝜋𝑠
2
$ Γ(1 − 𝑠)𝜁(1 − 𝑠)�

 (D5) 

 

We define the following functional equations: 

 

⎩
⎪
⎨

⎪
⎧ 𝜁(1 − 𝑠) = �

√2
√𝜋

∙ cos #
𝜋𝑠
2
$ Γ(𝑠) 𝜁(𝑠)�

𝜁(𝑠) = �
√2
√𝜋

∙ sin #
𝜋𝑠
2
$ Γ(1 − 𝑠)𝜁(1 − 𝑠)�

 (D6) 

 

Hence, we have 

 

⎩
⎪
⎨

⎪
⎧𝜁(𝑠) =

√2
√𝜋

∙ sin #
𝜋𝑠
2
$ ∙ [Γ(1 − 𝑠)𝜁(1 − 𝑠)]

𝜁(1 − 𝑠) =
√2
√𝜋

∙ cos #
𝜋𝑠
2
$ ∙ [Γ(𝑠)𝜁(𝑠)]

 (D7) 

 

Recalling the integral definition of the Riemann zeta function: 

 

𝜁(𝑠) = 5
1
𝑛"

'

()&

=
1
Γ(𝑠)

r
𝑥"!&

𝑒= − 1

'

8

𝑑𝑥 (D8) 

 

Thus, we have the following equations: 
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⎩
⎪
⎨

⎪
⎧ Γ(𝑠)𝜁(𝑠) = r

𝑥"!&

𝑒= − 1

'

8

𝑑𝑥

Γ(1 − 𝑠)𝜁(1 − 𝑠) = r
𝑥!"

𝑒= − 1

'

8

𝑑𝑥

 (D9) 

 

Substituting eq. (D9) into (D7), we can get another integral expression for 
Zeta function: 

 

⎩
⎪
⎨

⎪
⎧ 𝜁(𝑠) =

√2
√𝜋

∙ sin #
𝜋𝑠
2
$ ∙ r

𝑥!"

𝑒= − 1

'

8

𝑑𝑥

𝜁(1 − 𝑠) =
√2
√𝜋

∙ cos #
𝜋𝑠
2
$ ∙ r

𝑥"!&

𝑒= − 1

'

8

𝑑𝑥

 (D10) 

 

 

When 𝑠 = &
#
+ 𝑖𝑡, both equations become: 

 

⎩
⎪
⎨

⎪
⎧𝜁 =

1
2
+ 𝑖𝑡> =

√2
√𝜋

∙ sin =
𝜋
4
+ 𝑖

𝜋𝑡
2
> ∙ r

𝑥!,1

√𝑥(𝑒= − 1)

'

8

𝑑𝑥

𝜁 =
1
2
− 𝑖𝑡> =

√2
√𝜋

∙ cos =
𝜋
4
+ 𝑖

𝜋𝑡
2
> ∙ r

𝑥,1

√𝑥(𝑒= − 1)

'

8

𝑑𝑥

 (D11) 

 

Using the identity: 

 

cos =
𝜋
4
+ 𝑖

𝜋𝑡
2
> = sin =

𝜋
4
− 𝑖

𝜋𝑡
2
> (D12) 

 

The equations (D11) can be rewritten as: 
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⎩
⎪
⎨

⎪
⎧𝜁 =

1
2
+ 𝑖𝑡> =

√2
√𝜋

∙ sin =
𝜋
4
+ 𝑖

𝜋𝑡
2
> ∙ r

𝑥!,1

√𝑥(𝑒= − 1)

'

8

𝑑𝑥

𝜁 =
1
2
− 𝑖𝑡> =

√2
√𝜋

∙ sin =
𝜋
4
− 𝑖

𝜋𝑡
2
> ∙ r

𝑥,1

√𝑥(𝑒= − 1)

'

8

𝑑𝑥

 (D13) 

 

 

For large t, the asymptotes behavior of the both equations are: 

 

⎩
⎪
⎨

⎪
⎧𝜁 =

1
2
+ 𝑖𝑡> ≈

1

√𝜋
𝑐𝑜𝑠ℎ =

𝜋𝑡
2
> ∙ (1 + 𝑖) ∙ r

𝑥!,1

√𝑥(𝑒= − 1)

'

8

𝑑𝑥

𝜁 =
1
2
− 𝑖𝑡> ≈

1

√𝜋
𝑐𝑜𝑠ℎ =

𝜋𝑡
2
> ∙ (1 − 𝑖) ∙ r

𝑥,1

√𝑥(𝑒= − 1)

'

8

𝑑𝑥

 (D14) 

 

The complex numbers (1 + 𝑖) and (1 − 𝑖) can be written in polar form: 

 

⎩
⎪
⎨

⎪
⎧ 𝜁 =

1
2
+ 𝑖𝑡> ≈ �

√2
√𝜋

𝑐𝑜𝑠ℎ =
𝜋𝑡
2
>� ∙ 𝑒,

7
< ∙ r

𝑥!,1

√𝑥(𝑒= − 1)

'

8

𝑑𝑥

𝜁 =
1
2
− 𝑖𝑡> ≈ �

√2
√𝜋

𝑐𝑜𝑠ℎ =
𝜋𝑡
2
>� ∙ 𝑒!,

7
< ∙ r

𝑥,1

√𝑥(𝑒= − 1)

'

8

𝑑𝑥

 (D15) 

 

 

It is recognized that the integrals in both equations are complex functions. 

 

Multiplying the rotation factors 𝑒,
&
'  and 𝑒!,

&
'  will change its angles. The 

angles obtained by successive multiplications will eventually return to their 
starting point after 8 multiplications, forming a cyclic group of order 8. 
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These rotation operations, having magnitude 1, lie on the unit circle in the 
complex plane and correspond to the 8th roots of unity. 

 

Fig. D1 visualizes the unit circle in the complex plane, multiplication of 1+i 
(normalized) corresponds to one of the 8 equally spaced points on the 
circle, similarly, multiplication of 1-i corresponds also to one of the 8 
equally spaced points on the circle, but anticlockwise. 

 

 
 

Fig. D1. C8 cyclic group when multiplications of (1+i) 

 

It should be noted, in the equations (D4), if we factorize the term 2 and π 
in the following manner: 
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� 2 = 2"!"0& = 2" ∙ 2&!"
𝜋!& = 𝜋!&0"!" = 𝜋!" ∙ 𝜋"!&

 (D16) 

 

Re-factorizing and re-defining the functions of (D6), we can also get the 
original Riemann zeta functional definition of eq. (45). 

 

 


