
4 February 2025  ·  CC-BY 4.0

Peer Review

Review of: "Performant Automatic BLAS
O�oading on Uni�ed Memory
Architecture with OpenMP First-Touch
Style Data Movement"

Petros Anastasiadis1

1. Electrical and Computer Engineering, National Technical University of Athens, Greece

The paper introduces SCILIB-Accel, a tool designed for automatic BLAS o�oading on NVIDIA Grace-

Hopper GPUs utilizing their uni�ed memory architecture. By intercepting CPU BLAS calls through

Dynamic Binary Instrumentation (DBI), it enables the execution of legacy code using CPU BLAS

without modi�cations. Then, it evaluates three data movement strategies: Mem-Copy, Counter-Based

Migration, and the proposed Device First-Use, which migrates data pages to GPU memory upon �rst

access, utilizing the NUMA hierarchy of Grace-Hopper chips, and retains them for subsequent uses.

Performance evaluations using the MuST and PARSEC applications demonstrate that SCILIB-Accel,

using the Device First-Use policy, outperforms native CUDA ports and achieves up to a 3× speedup

over CPU execution (in a 2X Grace CPU server).

In general, this study provides valuable insights into the backend performance characteristics of

NVIDIA Grace-Hopper's uni�ed memory architecture, detailing access bandwidths from the CPU and

GPU to both CPU memory and GPU High-Bandwidth Memory (HBM). This information is interesting

in the context of understanding and optimizing data movement in high-performance computing

applications. Additionally, the paper targets a real problem: automatically intercepting and o�oading

BLAS calls without requiring code modi�cations or recompilation signi�cantly simpli�es the porting

process for legacy codebases, which is often a labor-intensive endeavor. Finally, by comparing data

movement strategies—namely Mem-Copy, Counter-Based Migration, and the proposed Device First-

Use—the paper provides practical guidance for scientists aiming to optimize performance in uni�ed

memory systems for other applications as well.

Qeios

qeios.com doi.org/10.32388/NXU60O 1

https://www.qeios.com/
https://doi.org/10.32388/NXU60O


However, this paper has some major shortcomings that must be �xed to improve the quality of the

publication. I list these in descending order of importance: 

First, the paper su�ers from numerous grammatical and vocabulary errors, and its data presentation

is suboptimal. For instance, certain tables would be more e�ective as �gures, some textual

information could be better conveyed in tables, and the captions for tables and �gures lack su�cient

detail. These issues signi�cantly impair readability, which is particularly problematic for a journal

publication exceeding 20 pages. To address this, I recommend the following changes to improve the

paper's readability and overall quality.

1. Proofreading and Language Enhancement: Utilize spellcheck and grammar tools to identify and

correct errors. Additionally, employing a language-improvement tool can enhance clarity and

coherence.

2. Data Presentation Optimization: Convert the system and benchmark characteristics description

(Section 4.1, page ~14) into a table format for better readability.

3. Enhanced Captions: Expand table and �gure captions to 1-2 sentences that clearly explain the

content and signi�cance of each corresponding visual element.

Additionally, the literature review in the paper is notably lacking in coverage of existing work on

o�oading BLAS operations to GPUs from legacy CPU codebases. In addition

to cuBLASXt/NVBLAS,   o�oading a problem from CPU memory + LAPACK layout to GPUs has been a

focus of a lot of previous work, such as in  Qilin, MAGMA, SuperMatrix, StarPU, PaRSEC (older

approaches, some with di�erences in data layout), with the most recent being  BLASX,  XKBLAS,

and CoCoPeLia/PARALiA/Uncut-GEMMs. These approaches primarily utilize memory copy o�oading

and implement optimizations such as domain decomposition, tiling, overlap, and task scheduling that

signi�cantly improve performance and may surpass the page-based strategies proposed in this study.

Although the current work's contribution of automated interception and conversion of CPU BLAS calls

to GPU operations is valuable regardless, acknowledging these prior e�orts would provide a more

comprehensive context. Speci�cally for  XKBLAS,    their implementation o�ers a complete suite of

BLAS routines and supports LD_PRELOAD for automatic replacement of CPU BLAS calls, so it should be

both in the literature review and the evaluation section of the paper.

In a similar direction to the above, I would like some clari�cations on the mem-copy approach, which

basically treats the Grace-Hopper system as an older CPU-GPU system with discrete memories. My

qeios.com doi.org/10.32388/NXU60O 2

https://www.qeios.com/
https://doi.org/10.32388/NXU60O


understanding from Listing 1 is that the author allocates GPU bu�ers, copies data from the CPU before

every BLAS call, and copies back the results afterwards (not sure about deallocation? If the bu�ers are

not reused, it should be done at every invocation). This is expected to be worse than page migration

since it is extremely ine�cient (see BLASX, XKBLAS, PARALiA) and should be done with a GPU

software bu�er/heap that is reused to avoid alloc/dealloc entirely. The same is true for data copies: to

achieve performance, you must keep the data in the GPU for subsequent invocations (in the same way

that device �rst-touch does) as long as the CPU does not interfere during iterative execution. On top of

these, decomposing the domain and adding communication/computation overlap can further improve

performance (see BLASx, CoCoPeLia). While all these diverge from the simple “drop-in replacement”

that this work o�ers, it should at least be discussed as a programmability-performance tradeo� and

by using  XKBLAS as a baseline implementation for the mem-copy approach (it should work on

Hopper). 

Finally, the evaluation section of the paper could be improved. Firstly, converting Tables 3, 4, and 5

into graphical representations would enhance data visualization, making it easier for readers to

interpret the results. Secondly, reporting performance metrics solely in terms of execution time is less

informative than using metrics like  FLOPS, which allow for comparisons against theoretical peak

performances. For instance, the Grace CPU in the Grace-Grace server (S1) has a peak FP64

performance of approximately 7.1 TFLOPs, while the Hopper GPU in system S2 o�ers up to 34 TFLOPs

(or 67 TFLOPs with tensor cores, which should be utilized automatically by underlying cuBLASDgemm

calls). While I am not sure how these translate to zgemm/ztrsm performance, the reported ~3x

performance improvement from S1 to S2 warrants a more detailed analysis to understand the

underlying factors contributing to this di�erence.

Declarations

Potential competing interests: No potential competing interests to declare.

qeios.com doi.org/10.32388/NXU60O 3

https://www.qeios.com/
https://doi.org/10.32388/NXU60O

