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Abstract

The basic assumption underlying various quantum information tech-
nologies, such as quantum computation and quantum communication, is
that qubits are physical objects. However, this assumption is false. A
qubit is a quantum superposition, which is a purely mathematical entity
in a Hilbert space for description of a two-level quantum system. There
is no theoretical or experimental evidence for quantum superpositions in
general, and for qubits in particular, having physical counterparts in the
real world, although quantum systems themselves are all physical objects.
Nevertheless, quantum superpositions failing to be physical objects does
not necessarily imply quantum mechanics failing to be correct. Hilbert
spaces differ essentially from the three-dimensional Euclidean space; the
latter is the model of space in which we live and measure physical quan-
tities. Associated with time or space coordinates, measurements of all
quantum systems must be performed in the real world. However, precise
time and space coordinates are not attainable by measurement. Based on
a comparison between the Euclidean space and Hilbert spaces, this paper
shows that no quantum systems in the real world can realize qubits, and
hence, quantum information technologies are not physically realizable;
their so-called advantages over classical information technologies make
little sense.

Keywords: Qubit, Quantum computation, Quantum communication, Quantum
information, Unattainability of precise time and space coordinates

1 Introduction

For so-called quantum information technologies, such as quantum computa-
tion and quantum communication, the notion of “quantum bit”, or “qubit” for
short, plays a role purportedly analogous to the well-known notion of “bit” in
classical information technologies [1]. Unlike a bit, which represents classical
information and is either 0 or 1 but cannot be both simultaneously, a qubit,
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treated as a physical object for representing so-called quantum information, is
supposed to be both 0 and 1 at the same time, purportedly making quantum
information technologies much superior to their classical counterparts. The so-
called advantages of quantum information technologies sound very attractive. In
the past several decades, various attempts to realize such technologies consumed
a huge amount of funding and investment.

Expressed by an abstract vector (↵,�) in a two-dimensional Hilbert space
over the field of complex numbers, where ↵ and � satisfy

|↵|2 + |�|2 = 1,

a quantum superposition, denoted by | i, is a purely mathematical entity, which
represents the general state of a two-level quantum system before measurement
in current quantum theory. In the literature of quantum computation and quan-
tum information [1], the general state | i is referred to as a qubit, given by

| i = ↵ |0i+ � |1i (1)

with mutually exclusive properties of the system corresponding to the orthonor-
mal basis vectors denoted by |0i and |1i. The real numbers |↵|2 and |�|2 are
probabilities of finding the system in a specific state when a measurement is per-
formed. The state is |0i with probability |↵|2; otherwise it is |1i with probability
|�|2.

In general, a Hilbert space describes a quantum system in mathematical
terms; its elements are vectors representing various possible states of the sys-
tem. Thus, as a purely mathematical entity, a quantum superposition merely
serves as a mathematical description of a quantum system in current quantum
theory, while not necessarily having a physical counterpart in the real world.
Nevertheless, quantum superpositions failing to be physical objects must not
be considered as quantum mechanics failing to be correct. Needless to say, the
correctness of quantum mechanics, which is an extremely successful scientific
theory with many applications in practice, will not be a↵ected at all by incor-
rectly interpreting quantum superpositions as physical objects.

However, by treating qubits as physical objects, some two-level quantum sys-
tems are widely believed to be capable of realizing qubits for processing quantum
information in quantum computation and quantum communication. The door
to such quantum information technologies is opened by Bell experiments for
testing Bell inequalities against quantum mechanics [2]. The entangled state
in Bell experiments is given by a quantum superposition. The legitimacy of
treating quantum entanglements or quantum superpositions in general as phys-
ical entities should have been tested by Bell experiments; unfortunately, in Bell
experiments, it is taken for granted [3]. This is a fatal logical flaw and largely
responsible for ineligible applications of quantum mechanics, including so-called
quantum information technologies.

This paper aims to show that no quantum systems in the real world are
capable of realizing qubits. Needless to say, quantum systems themselves are all
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physical objects, but quantum superpositions in general, and qubits in partic-
ular, have no physical counterparts in the real world. The above conclusion is
a consequence of a well-established mathematical fact following from the prop-
erties of the three-dimensional Euclidean space, i.e., precise time and space
coordinates are not attainable by measurement. Unfortunately, this important
fact is entirely omitted in current quantum theory. After all, instead of Hilbert
spaces, the model of space in which we live and measure physical quantities is
the Euclidean space. Nevertheless, for measurements of macroscopic objects,
the unattainability of precise time and space coordinates is hardly noticeable
and may be safely ignored.

In Section 2, the Euclidean space and Hilbert spaces are compared, then
based on the comparison, the omission of the unattainability of precise time
and space coordinates in current quantum theory is elucidated. In Section 3,
the reason why neither single quantum objects nor composite quantum systems
can realize qubits is further elucidated. In Section 4, the paper is concluded
with a brief discussion of the presented results and future studies.

2 Euclidean Space and Hilbert Space

The unattainability of precise time and space coordinates is a well-established
mathematical fact, which follows from the properties of metric topologies for the
three-dimensional Euclidean space and its subspace equipped with the corre-
sponding distance functions. The mathematical model of space in which we live
and measure physical quantities is the Euclidean space, endowed with a metric
that is the distance function d between two arbitrary points r = (r1, r2, r3) and
r0 = (r01, r

0
2, r

0
3). By adopting the statement given in the Theorem of Pythagoras,

the distance function is defined as

d(r, r0) =
q
(r1 � r01)

2 + (r2 � r02)
2 + (r3 � r03)

2.

By definition, d(r, r0) = 0 if and only if r = r0. Similarly, the mathematical
model of time elapsed in the real world is the set of nonnegative real numbers.
This set is typically represented by the interval [0,1). For ease of exposition,
the interval might be considered as a subspace of the Euclidean space endowed
with the corresponding metric, namely, the distance function given by |s–t|,
where s, t are nonnegative real numbers.

Of course, the Euclidean space and its subspace endowed with the corre-
sponding distance functions are not Hilbert spaces equipped with metrics in-
duced by inner products. Hilbert spaces are models for description of quantum
systems. Evidently, metrics associated with various Hilbert spaces in quantum
mechanics di↵er essentially from the distance functions defined for the Euclidean
space and its subspace. Needless to say, all physical quantities are necessarily
measured in space and time in the real world rather than in Hilbert spaces
devised for describing quantum systems.

Although probabilistic predictions of quantum mechanics formulated based
on Hilbert spaces are always in agreement with measurement results obtained
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by experiment, Hilbert spaces cannot capture the unattainability of precise time
and space coordinates. By definition, elements of a Hilbert space in quantum
mechanics are possible states of a quantum system rather than points with
precise coordinates in the Euclidean space or its subspace.

On the other hand, if a physical quantity concerning a quantum system can
be measured, it is necessary for the measurement of the physical quantity to
be associated with precise time or space coordinates; the association can be
implicit, in the sense that the time or space coordinates may not necessarily
appear explicitly in the state function of the system. For instance, when the
space coordinates represent a direction along which a quantum object (such as
a photon) moves in space, or an orientation of an apparatus (such as a polarizer
for measuring the polarizations of photons), the time coordinate usually will not
appear in the state function explicitly.

Nevertheless, while the state function may or may not depend on a time or
space variable explicitly, the physical quantity is necessarily measured in time
and space. In general, measurements of quantum systems must be explicitly
associated either with time or with space. This fact, together with the unattain-
ability of precise time and space coordinates, is crucially important for us to
understand why qubits are not physical objects, as will be further elucidated in
the next section.

Clearly, no metric in any Hilbert space is devised to measure time or space.
In contrast, the distance function adopted from the Theorem of Pythagoras is
the only available tool for us to measure the distance between two arbitrarily
given points in space. Similarly, the length of an arbitrarily given time interval
must be measured by using the corresponding metric, namely, the distance func-
tion defined for a subspace of the Euclidean space consisting of all nonnegative
real numbers. Now, it is not di�cult to see why the unattainability of precise
time and space coordinates is entirely omitted in the current quantum theory:
Precise time or space coordinates associated with measurements of quantum
systems are taken for granted!

As can be readily seen, because precise time and space coordinates are not
attainable by measurement, which is exactly the cause of quantum randomness
exhibited in outcomes obtained in experiments with quantum objects, quantum
mechanics is not inherently probabilistic; the omission of the unattainability
of precise time and space coordinates can explain why predictions of quantum
mechanics are random rather than deterministic, although quantum-mechanical
predictions are always correct.

Unfortunately, omitting the unattainability of precise time and space coor-
dinates already resulted in serious consequences nowadays: In current quantum
theory, quantum superpositions describing some two-level quantum systems are
mistaken for physical objects with a glamorous new name called “qubits”, as if
they were physical resources “out there” in the real world to be exploited for
developing so-called quantum information technologies.
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3 Quantum Systems and Qubits

In the literature of quantum computation and quantum information [1], two
mutually exclusive properties of a quantum system are considered as correspond-
ing to the superposed states of a qubit needed to process so-called quantum
information. The system may be either a single quantum object or composed
of multiple quantum objects. In this section, it is shown that neither single
quantum objects ( Subsection 3.1) nor composite quantum systems (Subsection
3.2) can realize qubits.

3.1 Single Quantum Objects and Qubits

The three-dimensional unit sphere, called the Bloch sphere, is considered in
the literature of quantum computation and quantum information as a geometric
representation of a single qubit in general [1]. With this geometric representa-
tion, (1) can also be expressed as

| i = cos ✓

2
|0i+ ei'

sin ✓

2
|1i

after ignoring a global phase factor. Thus, | i is represented by a point (✓,') on
the sphere. However, this geometric representation and various operations per-
formed on | i illustrated within the picture of the Bloch sphere are all irrelevant
to actual measurements of quantum systems in the real world.

To see this, let |0i and |1i be |"i and |#i, respectively, which are the eigen-
vectors belonging to the Pauli spin matrix

�̂z =


1 0
0 �1

�
.

The eigenvectors span a two-dimensional Hilbert space in which a spin-1/2 par-
ticle lives. Consider the direction represented by an arbitrarily given z-axis in
the notation �̂z. Clearly, this direction must be specified by the corresponding
coordinates in the Euclidean space rather than in the Hilbert space. Actually,
every direction in the space modeled by the Euclidean space can be determined
by the coordinates of a unique point r on a unit sphere D. Having nothing to
do with the Bloch sphere, the unit sphere D is a subset of the Euclidean space
given below.

D = {r : d(r, 0) = 1},

where d(r, 0) is the distance between r and the origin. Evidently, the distance
function d is not the metric induced by the inner product h·|·i defined for the
corresponding Hilbert space; where h·|·i is an ordinary scalar product of vectors,
except the entries in h·| are complex conjugated.

Equipped with the distance function d, the Euclidean space is a metric space
with its open subsets forming a metric topology. The neighborhood of a point
r is a subset V (r) of the Euclidean space, such that r 2 U ⇢ V (r), where U is a
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member of the metric topology. For every su�ciently small real number � > 0,

V (r) \B(r, �) = B(r, �) 6= {r},

where B(r, �) is an open ball with center r and radius �, such that d(r, r0) < �.
Consequently, so long as � > 0, there always exist uncountably many points
di↵erent from and arbitrarily close to r in B(r, �), and hence the distance be-
tween each of such points and r given by d is strictly greater than zero. In other
words, r is not an isolated point of every V (r). Note that r considered above
can be arbitrary.

As a result, by using the distance function d, we cannot obtain any desired
point r. Instead of the desired point r, we can only obtain a neighborhood
V (r) as an approximation. The approximation is, at best, an infinitesimal
spatial volume. In this sense, precise coordinates are unattainable. Nevertheless,
the approximation is much better than the omission of the unattainability of
precise coordinates while taking such coordinates for granted in current quantum
theory.

To be specific and without loss of generality, consider a sequence (qk)k�1 of
identically prepared spin-1/2 particles as an example. According to quantum
mechanics in its current form, when described by the state given by the quantum
superposition | i, any particle in (qk)k�1 has no definite spin in any direction
but has two states |"i and |#i in every direction before measurement. For
arbitrarily given particles qi and qj in (qk)k�1 where i 6= j, measuring the
spins of qi and qj along purportedly the same direction specified by the z-axis
yields two deterministic outcomes, which may not necessarily be identical, but
correspond to either |"i with probability |↵|2 or |#i with probability |�|2.

As can be readily seen, the randomness exhibited in the outcomes is due to
the unattainability of precise space coordinates. Because precise coordinates for
representing directions in space cannot be obtained by measurement, the exact
directions are approximated by small volumes containing the corresponding co-
ordinates. The particles qi and qj are actually measured in unknown directions
zi and zj with their precise but practically unattainable coordinates contained
in the corresponding small volume, which also contains the coordinates of the
z-axis; the directions zi, zj and z are almost surely di↵erent. Clearly, there is
no experimental evidence for the claim that every single particle in (qk)k�1 has
two states in every direction. Therefore, such particles cannot realize qubits.

The above analysis also applies to quantum systems when their measure-
ments are explicitly associated with time. As already mentioned, time elapsed
in the real world is modeled by the set of nonnegative real numbers, which is
a subspace of the Euclidean space equipped with the metric given by |s � t|,
and an “open ball” with center t > 0 and radius � is simply an open inter-
val (t � �, t + �), where � < t. Therefore, the unattainability of precise time
coordinates must be taken into account.

As elucidated above, mistaking qubits as physical objects is mainly due to
omitting the unattainability of precise time and space coordinates. In addition
to the unattainability of precise time and space coordinates, there is also an
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important physical constraint imposed on measuring single quantum objects:
The same single quantum object can at most be detected or measured only once.
Unfortunately, this constraint is violated by Bell inequalities, which attempt to
provide a more complete description of the physical world than the quantum-
mechanical description, although actual measurements performed in real exper-
iments will not violate the constraint. Note the di↵erence between Bell inequal-
ities and Bell experiments; as an alternative description of the physical world,
Bell inequalities are not Bell experiments. Note also the di↵erence between
“preparing quantum systems identically” and “measuring time or space coordi-
nates precisely”; it is impossible to obtain precise time or space coordinates by
measurement, no matter how identically quantum systems are prepared. Be-
cause the unattainability of precise time and space coordinates is omitted in the
current quantum theory, identically prepared quantum systems of the same kind
are confused with the same quantum system. Such confusion is also responsible
for mistaking qubits for physical objects.

3.2 Composite Quantum Systems and Qubits

Unlike single quantum objects, composite quantum systems may be mea-
sured repeatedly without being destroyed. In general, measurements of such
systems are explicitly associated with time. Because precise time coordinates
are unattainable by measurement, which is su�cient to rule out the possibil-
ity of finding quantum systems that possess mutually exclusive properties at
the same time, when we explain the outcomes of measuring such systems, the
unattainability of precise time coordinates must not be omitted. Unfortunately,
this is not the case.

Consider composite systems composed of non-Abelian anyons [4]. Systems
of this kind can only exist, or more precisely, be constructed in two-dimensional
spaces, which are subspaces of the three-dimensional Euclidean space. The
construction is guided by numerical studies [4]. Using non-Abelian quantum
phases of matter, such systems are purportedly capable of encoding qubits in
a non-local manner, so it is widely believed that the systems might be used
for so-called topological quantum computing, which could topologically protect
quantum information not only from imperfections in the implemented proto-
cols but also from interactions with the environment [5]. By encoding qubits
in the so-called topologically-protected way, systems of this kind are considered
as promising candidates for building topological quantum computers [6]. How-
ever, the possibility of using some specific systems of this kind (i.e., Majorana
fermions in two-dimensional p + ip Fermi superfluids) for topological quantum
computation has been questioned recently [7]. In fact, because qubits are not
physical objects, no quantum systems in the real world have the capability of
realizing or encoding qubits; composite systems are not exceptions, even though
they can be repeatedly measured without being destroyed. Any e↵ort to realize
qubits is doomed to failure.

As purely mathematical entities in Hilbert spaces for description of quan-
tum systems, quantum superpositions in general and qubits in particular do not
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necessarily have physical counterparts in the real world; there is no theoretical
or experimental evidence for the opposite. Any claimed experimental evidence
for qubits having physical counterparts in the real world stems from confusing
mathematical entities with physical objects. For measurements of composite
systems, the confusion is due to the omission of the unattainability of precise
time coordinates. Therefore, topological quantum computation, just like all
other quantum information technologies, is not an eligible application of quan-
tum mechanics, and hence cannot be realized physically. Eligible applications
of quantum mechanics will not involve anything in any way that does not exist
physically.

4 Discussion and Conclusion

With a metric induced by an inner product defined for states of a quan-
tum system, a Hilbert space in quantum theory is the model for the description
of the system in terms of mathematics. Mathematically, each quantum sys-
tem is described by a quantum superposition, which is a purely mathematical
entity in a Hilbert space without any physical counterpart in the real world.
Unfortunately, quantum superpositions for the description of some two-level
systems are mistaken for physical objects called qubits. Nevertheless, quantum
superpositions failing to be physical objects does not necessarily imply quantum
mechanics, as a supremely successful scientific theory with a large number of
practical applications, failing to be correct.

By assuming that qubits have physical counterparts in the real world, “quan-
tum circuits” composed of various “quantum gates” are devised for processing
so-called quantum information. Various performance indexes of quantum infor-
mation technologies are all estimated based on the assumption that qubits are
physical objects. Relying on Hilbert spaces for description of the corresponding
quantum systems, the estimated indexes, such as the speed of quantum com-
puting, the channel capacity of quantum communication, and the fidelity of
quantum data compression, purportedly demonstrate the so-called advantages
of quantum information technologies over their classical counterparts. However,
because quantum information technologies are all based on the notion of qubit,
which does not exist physically, such technologies are not eligible applications of
quantum mechanics; by no means will eligible applications of quantum mechan-
ics involve anything in any way that does not exist physically. Consequently,
“quantum gates” and various estimated performance indexes of quantum infor-
mation technologies are not physically meaningful.

The model of space in which we live and measure physical quantities is the
Euclidean space equipped with the metric given by the usual distance function.
The model of time elapsed in the real world is a subspace of the Euclidean space
endowed with the corresponding metric, which is the distance function defined
on the set of nonnegative real numbers. The metrics above are the only available
tools for us to measure the distance between two points in space or the length
of a time interval between two instants in the real world.
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In sharp contrast to the distance function defined for the Euclidean space or
its subspace, metrics induced by inner products defined for Hilbert spaces have
little use for measuring spatial distances or lengths of time intervals elapsed in
the real world. Because precise time and space coordinates are not attainable
by measurement, we have to be content with some approximation, which is, at
best, an infinitesimal spatial volume or an infinitesimal time interval. Compared
with omitting the unattainability of precise time and space coordinates, hav-
ing such an approximation is much better than taking precise but practically
unattainable time and space coordinates for granted.

The state of a quantum system may also depend on some parameter, which
is not a variable representing time or space, but its values form a continuum.
For instance, the relative phases of di↵erent quantum states are parameters of
this kind; their values are real numbers constituting a continuum. Just like
precise time or space coordinates, precise values of continuous parameters can-
not be obtained by measurement, but they are simply taken for granted. The
unattainability of such values may be safely ignored in experiments with macro-
scopic objects. However, if the state of a quantum system relies on a continuous
parameter, the following questions then arise themselves naturally: When such
systems are measured by experiment, if the unattainability of precise values of
the parameter is omitted, will the omission cause serious consequences? If the
answer is yes, then what are the consequences? These questions are certainly
important and should be answered by future studies.
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