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We revise the optical effects of the Sagnac type where the moving closed contour is covered by a

photon in the observable invariant time interval   . In lieu of the two-way Einstein synchronization,

an internal one-way synchronization procedure along the contour can be adopted.

For the reciprocal linear Sagnac effect, where the emitter-receiver C* is stationary and the contour is

in motion,   is no longer invariant for the Lorentz transforms, re�ecting a weak form of the relativity

principle. Instead, the relativity principle is preserved and   is invariant for transforms based on

conservation of simultaneity.

In the standard linear Sagnac effect, if the local one-way speed along the optical �ber is assumed to be 

, the photon cannot cover the whole closed contour in the interval  . The missing section represents

a breach in spacetime continuity related to the "time gap" due to relative simultaneity. Our revision

con�rms the well-known result that the Lorentz transforms have limited validity and fail in

interpreting these effects. The more general validity of transforms based on conservation of
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simultaneity, disproves Mansouri and Sexl's contended equivalence between relative and absolute

simultaneity.

The reciprocal linear effect can be used for testing Lorentz and light speed invariance with observable

variations of the �rst order in  .

Corresponding authors: Gianfranco Spavieri, gspavieri@gmail.com; Prof. Espen Gaarder Haug,

espenhaug@mac.com

1. Introduction

The Michelson-Morley optical experiment of 1887 had the aim to detect the famous "ether wind", the

ether being the medium where light propagates according to Maxwell's laws of electromagnetism. No

ether wind was detected and the experiment provided a surprising null result that gave support to

Einstein's theory of special relativity of 1905, where light is assumed to propagate in empty space at the

same speed    relative to any inertial observer in motion (light speed invariance), as described by the

Lorentz transformations (LT).

After decades of controversy, recent advances in optical experiments justify the early criticisms of

Lorentz and light speed invariance, suggesting that a paradigm shift is taking place in relativity theory,

practically unnoticed to most physicists. To measure the one-way speed of light   traveling from point A

to point B, with �xed distance AB  , Einstein adopted a procedure for synchronizing two spatially

separated clocks, one at A and the other at B, assuming that the one-way light speed coincides with the

average round-trip light speed  , where   is the time interval measured by clock A in the light

round-trip from A to B and back to A. Then, with Einstein synchronization, the clock at B is set at 

 when light reaches it.

Epistemologists [1][2][3][4] and physicists soon criticized Einstein synchronization procedure, pointing out

that, since the one-way speed from A to B can be different from the return speed from B to A, Einstein

synchronization leaves undetermined and arbitrary (conventional) the one-way speed. At this point in

the evolution of special relativity, in 1977 the physicists Mansouri and Sexl  [5]  introduced a set of

coordinate transformations in agreement with the requirement of Einstein synchronization, but with a

speed from A to B that can be different from the return speed from B to A, depending on the

synchronization parameter  :
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The transformations (1) from frame S to S  in relative motion with velocity  , are the LT with  , and

the so-called Lorentz transformations based on absolute simultaneity (LTA) with  . The time

transform of the LT and LTA differs by the value of    only. If the speed of light is    on frame S, it is 

 on S . Light speed invariance,  , holds for the LT only.

Hypothetically, on account of the arbitrariness of synchronization and adhering to the conventionality of

the light speed, all these transformations are physically equivalent to the Lorentz transformations.

Hence, as pointed out in mainstream journals, the original postulate that the one-way light speed is  , as

originally introduced by Einstein, has changed and, presently, the universal constant    no longer

represents the local one-way light speed, but the average round-trip light speed 

[5][6]. Then, to different one-way speeds correspond different, but physically equivalent types of Lorentz

transformations. Thus, special relativity can be described either with the standard LT, based on relative

simultaneity, or any other transformations with different synchronization, e.g., the LTA, which have been

used by many physicists, although under different names (e.g., Tangherlini transforms  [7], Selleri

transforms  [8][9][10][11], ALT  [12][13], etc.). Hence, for physicists  [6][5][14][15][16][17][18]  adhering to the

"conventionalist" view of Mansouri and Sexl, the LT and LTA are physically equivalent and

interchangeable and foresee the same relativistic effects, even though they adopt different, conventional

values for the one-way light speed.

In the evolution of special relativity, physicists have discovered and formulated many paradoxes.

Although there is no consensus about the solutions of all paradoxes, most of them are ascribed

unanimously to the nonconservation of simultaneity of the LT. Instead, no paradoxes arise with the LTA.

Of the many 'paradoxes' of the theory, we mention here the important Selleri [8][9][10] paradox related to

the Sagnac [19] optical effect, carried out in 1913 and shown in Fig 1-a. Later, other optical effects of the

Sagnac type have been discovered (such as the linear effect of Fig. 1-b  [20][21]) and physicists favoring

conservation of simultaneity  [8][9][10][12][13][22][23][24][25][26][27][28][29][30][31][32][33][34][35][36]  have been

questioning the conventionalism of Mansouri and Sexl and the validity of the "equivalence" between

relative (LT) and absolute simultaneity (LTA).
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The purpose of our paper is to introduce a one-way internal synchronization applicable to closed

contours (at rest or in motion), make a revision of the effects of the Sagnac type including the recent

reciprocal linear effect  [32][33], and present some of the most important arguments of supporters and

detractors of the LT. Note that high-precision experimental con�rmation of the relativistic effects of

standard special relativity (equally foreseen by both the LT and LTA), involves the average light speed  , as

in the Michelson-Morley experiment, and not the one-way light speed, proven to be not invariant by the

Sagnac effects. We show that the approach of Mansouri and Sexl, with the contended equivalence

between relative (LT) and absolute simultaneity (LTA), has no general validity and is limited to the

following special case:

"The arbitrary synchronization involves two spatially separated clocks and makes use of the two-way

Einstein synchronization procedure, without any reference to other relatively moving inertial frames."

By considering a single propagating photon along a closed contour, as in the Sagnac effects of Fig. 1, we

show in Sections 2, 3, and 4, that, in general, Einstein synchronization, the LT, and Mansouri and Sexl's

approach are unfeasible:

For the recent reciprocal linear Sagnac effect [32][33], the LT and LTA foresee strikingly different values

for some observables and the reciprocity is maintained in the scenario where the relativity principle

holds with the LTA, but not with the LT. Hence, the reciprocal linear Sagnac effect can be used for

testing Lorentz and light speed invariance. This result invalidates the conventionalist claim of the

validity of the physical equivalence between the LT and LTA. Other examples of nonequivalence, such

as the Thomas precession, are given.

As well known  [6][11][12][22][26][27][28][29][30][31][32][33][34], Einstein synchronization and the LT fail

when applied to the closed contour of the Sagnac effects. The failure of the LT indicates that these

transformations are not suitable for describing these aspects of physical reality and, thus, have limited

validity. Instead, possessing a more general validity, the LTAs do not fail and foresee the correct result

for these optical effects.

If the local light speed is   on one section of the linear effect (Fig. 1-b), the local speed on the other

section cannot be  . In fact, in the observed round-trip interval    and at the local speed    on both

sections, a counter-propagating photon covers only the distance  , which is shorter than

the closed contour  . The missing path indicates a breach in spacetime continuity and is related to

the "time gap" of relative simultaneity arising when using the LT. Instead, spacetime continuity is

preserved using the LTA.

c

c

c T c
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Considering the role of coordinates transformations within the mere kinematical perspective, the

one-way synchronization and the effects of the Sagnac type single out the corresponding correct

synchronization parameter (LTA with  ) that leads to a consistent interpretation of relativistic

effects, ruling out relative simultaneity in favor of a scenario preserving the relativity principle with

transformations based on conservation of simultaneity.

2. The circular and linear Sagnac effects and their interpretations

In his experiment, shown in a schematic idealized form in Fig. 1-a, Sagnac measured the one-way speed

of light with an interferometer (or clock C*) on the rim of a circular rotating platform (or disk) where

light (or a photon) travels along an optical �ber. The linear Sagnac effect [20], discussed below, is shown

in Fig. 1-b. In these effects, two counter-propagating photons are traveling on the �ber moving at speed 

, where the device C*, �xed to the �ber, is co-moving with it. Then, C* measures the time interval 

, where    and    represent the round-trip proper time of the co- and counter-

moving photons along the contour of perimeter  , or  , in the circular and linear effects, respectively.

Following Post [37], for the linear effect,   can be written as,

For the circular Sagnac effect, with  , result (2) with  , is usually expressed  [37]  as 

, where   is the platform angular velocity and   is the area enclosed by the light path.

Since the Sagnac effect is of the �rst order in  , in some cases, for simplicity, we may take the factor 

 as   in (2).

Sagnac's experiment indicates that the average one-way speed of light along the rotating �ber is

approximately  , where    is the peripheral speed of the disk. In the following, we shall consider a

single propagating photon, usually the counter-propagating one. The expression for the proper time

interval   can be written as,

where the terms with   refers to the circular effect.
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For the circular and linear Sagnac effects, let us consider the interpretation of the last terms in the �rst

and second line of expression (3) where we take  . To avoid discussions on the inertiality of the

moving clock C* in the circular effect, we may consider the linear effect only, where C* can be always in

uniform motion during the interval  . Still, considering that the circular and linear are equivalent effects,

the argument of Sagnac presented below should hold for both the circular and linear effects.

According to any reference frame, such as S   (where the arm AB is stationary), which sees clock and

photon counter-moving in Fig. 1-a and 1-b, the spatial distance covered is different from that observed by

measuring it along the �ber. In fact, the shorter "spatial" distance  , differs from

the longer �ber "ground" length  , by  , as shown in Fig. 1-a and 1-b. For an observer

instantaneously co-moving with the �ber and C* (Fig. 1-b), the last term in the �rst line of (3) indicates

that, in the interval  , the photon has covered at the average one-way speed  , the "ground" distance 

  along the �ber. Instead, the last term in the second line indicates that, in the same interval  , the

photon has covered at the average speed  , the shorter "spatial" distance  . From the mere

kinematical perspective, in the same time interval    different distances must be covered at different

speeds. Hence, the "ground" light speed along the �ber cannot be the same as the "spatial" light speed.

If we assume space isotropy on S  where the one-way light speed is   , in the case of a �ber in uniform

motion and on account of symmetry, the average speed    measured by C* along    must coincide

with the uniform "ground" local speed along the whole �ber. Thus, according to Sagnac [19], Selleri [8][9]

[10], and many physicists, [12][13][22][23][24][25][26][27][28][29][30][31][32][33][34][35][36], light speed invariance is

invalidated by the experiment because it is   for the observer S  and   locally along the �ber upper

(or lower) section for an observer on the inertial frame of Fig. 1-b co-moving with the �ber. Sagnac's

result and interpretation are in agreement with coordinate transformations based on absolute

simultaneity, such as the LTA, which foresee the one-way light speed   along the �ber, and not the

invariant   foreseen by the LT.

γ ≃ 1

T
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Figure 1. a) On the rotating platform of the circular Sagnac effect, the clock C* located on the circumference

emits two counter-propagating photons (only a single photon is shown) traveling along the rim. C* measures

the difference   in the photons' arrival times after a round trip. The position of C* after the round trip

indicates that the photon has covered the distance  . b) In the linear Sagnac effect, the two photons

are emitted by C*, which is moving with velocity   relative to the stationary frame AB. The counter-

propagating photons travel in an optical �ber that slides frictionless around pulley A and B. c) In the

reciprocal Sagnac effect, the clock C* emitting the counter-propagating photons, is stationary, while the

frame AB moves with velocity   relative to C*.

Objections and rebuttals on the interpretation of the Sagnac experiment can be found in literature and

some are given in Refs. [11][12][13][22][26][27][28][29][30][31][32][33]. Historically, the main objection to Sagnac's

interpretation is that the observer on the rotating platform is on an accelerated frame and not on an

inertial frame. Thus, some physicists suggested that the kinematical problem inherent to the circular

Sagnac effect, requires to be interpreted within the framework of General Relativity. Actually, rather than

solving the simple kinematical problem, this suggestion can be taken as an indication that standard

special relativity theory is incomplete, and a different theory is needed for its solution. This polemic

ΔT
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v

v

qeios.com doi.org/10.32388/O1KDJ0 7

https://www.qeios.com/
https://doi.org/10.32388/O1KDJ0


objection about inertiality became obsolete after the discovery of the linear Sagnac effect (Wang et al. [20]

[21]), which is considered to be equivalent to the circular effect. In the linear effect the interferometer, or

clock, can be always in uniform motion during the round-trip time interval   and, thus, on an inertial

frame. The one-way light speed along a closed contour can be measured by a single clock and, since it is 

 locally along the �ber, detractors of the LT claim that the Lorentz and light speed invariance do not

hold and fail [6][11][12][13][22][26][27][28][29][30][31][32][33][34] in this case.

Practically, all physicists (supporters or detractors of the LT) agree that, from the kinematical perspective,

the LTA (or, for  , the Galilean transforms) correctly interpret the Sagnac effects. Yet, the physical

interpretation of special relativity through more than a century has been evolving and, currently, the

supporters of the LT argue that although the LTAs provide the correct interpretation, it does not

invalidate the LT because, on account of the arbitrariness of synchronization, the LTs are equivalent to

the LTA  [5][6][14][18]. We shall consider in detail the arguments of the detractors and supporters of the

theory about this contended point on " LT-LTA equivalence" and show, instead, why the LT and LTA are

not equivalent and represent different physical realities.

3. Standard two-way Einstein synchronization and one-way

synchronization in special relativity

Epistemologists  [1][2][3][4]  claim that the basic postulates of a meaningful physical theory must be

falsi�able (i.e., testable). Then, if one of its basic postulates is not falsi�able, it may be argued that the

theory is not physically meaningful. If the LT (with relative simultaneity) are equivalent to the LTA (with

absolute simultaneity) and the speed of light is conventional [5], the standard theory of special relativity

based on Einstein synchronization and the LT, has a drawback because its fundamental postulate of the

one-way light speed invariance cannot be tested. Moreover, as mentioned above, Einstein

synchronization fails when applied to moving closed contours. These problems inherent to Einstein

synchronization can be solved by introducing, as we do in the next section, the one-way clock

synchronization procedure.

Standard two-way Einstein synchronization procedure

Referring to Fig. 2, let   be the "ground" distance traversed by the photon, as measured along the

moving optical �ber (refractive index  ) starting from C*. When  , the curvilinear distance 

 coincides with the corresponding distance  , measured from the lab inertial rest frame S , where O

T

c ± v

γ = 1

=s′ sg

n = 1 v = 0

s′ s lab
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 and the arm AB are at rest. Two clocks, C* and C  (not shown), are placed at the same point in Fig. 2-a

and 2-b, but spatially separated in Fig. 2-c. By  , we denote the distance C*C  measured along the �ber

from C* to C . We may apply Einstein synchronization to the usual linear path C*C   of the rod of rest

length   of Fig. 2-c, and also to the paths C*C  of the circular or linear effects of Figs. 2-a and 2-

b, where C  coincides with C*.

When C* is stationary ( ), for the two-way photon round-trip from C* to C   (out trip)

and, after changing direction, back from C  to C* (return trip), the proper time interval measured by C* is

given by,

where    is the invariant average two-way light speed. Assuming space isotropy on frame S , the one-

way light speed on S  is   and  .

lab
0

Δs′ 0

0 0

Δ =s′ Δ0
0

0

v = 0, Δ = Δss′ 0

0

= + = = + ,Ttwo−way Tout Tret
2Δs′

c

Δs′

cout

Δs′

cret
(4)

c lab

lab c = = ccout cret
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Figure 2. Einstein and one-way synchronization. For the circular   and linear   effects, when   and

clock C* is stationary on S , with Einstein synchronization the photon moves from C* to C , changes

direction and gets back to C*. With the one-way synchronization, the photon travels from C* to C  only. If 

, the two synchronizations coincide. When C* is in motion ( ), for the effects   and  , the one-way

synchronization foresees the light speed  , which does not coincide with the speed   of Einstein

synchronization.   For the rod, the one-way light speed is undetermined.   Two mirrors, one at A and the

other at B, are placed in the preferred frame S where the one-way light speed is  . The analogy with Fig. 2-b

for the photon round trip determines the one-way light speed   along the rod co-moving with frame S .

When C* (and the optical �ber, to which C* is �xed) is moving with uniform speed   relative to S , the

"ground" length    C*C   C C* of the �ber is the same, as measured locally along the �ber,

regardless of whether in relative motion or not, and the expression (4) for the invariant average two-way

light speed is valid for all the instances of Fig. 2. Using Einstein synchronization procedure, we may

arbitrarily synchronize the clock at C  by setting,

a) b) v = 0

lab
0

0

v = 0 v ≠ 0 a) b)

≃ c − v c

c) d)

c

c′ ′

v lab

Δ =s′ 0 = 0

0

( = ( = ,Tout)E Tret)E
Δs′

c
(5)
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in agreement with the LT.

Einstein synchronization for the rod of Fig. 2-c. Since we are unable to measure    without �rst

synchronizing the two spatially separated clocks, in this case, the one-way light speed remains

undetermined because of the arbitrariness of the clock synchronization procedure. Then, the

corresponding one-way light speed    along the path C*C   can be conventionally

chosen  [5]  (e.g.,    or  ), as long as (4) is veri�ed (e.g., with    or 

 ).

Determining the synchronization parameter   for the Sagnac effects of Fig. 2-a and 2-b with the one-

way synchronization. When the �ber is in motion, Sagnac's experiments show that the one-way light

speeds,    in the out trip, and    in the return trip, are different from  .

Nevertheless, the interval    in (4) may remain invariant if the average    is invariant because, on

average, the different one-way out trip interval    from C* to C , may be balanced by the one-way

return trip interval   from C  to C* along the same path.

For the Sagnac effects, there is no arbitrariness because    can be measured by the

single clock C*. Then, on account of (2), for a co-propagating photon, the observable interval,

with the known  , provides the correspondent average one-way ground speed 

 along the optical �ber.

Let us consider an inertial frame S   instantaneously co-moving with the �ber, with    the

differential local speed along an elementary "ground" section    of the �ber. For the

circular effect of Fig. 2-a, we have to consider the set of inertial frames instantaneously co-moving with

the �ber at the adjacent in�nitesimal sections  ,  , etc. [27], while for the linear effect of Fig. 2-b, we

may consider just two inertial frames, S  co-moving with the �ber upper section and S  (not shown) co-

moving with the lower section, which has velocity   relative to S . Assuming space to be isotropic and

the one-way light speed to be   on frame S , symmetry implies that any observer instantaneously co-

moving with the �ber "sees" the same ground local light speed, which coincides with the average one-

way ground speed. Thus, the ground local light speed   along the upper section of the co-moving

�ber seen by an observer on S  in Fig. 2-b, is the same as the ground local light speed   seen by an

observer on S  along the lower section of the �ber. Hence, for one-dimensional light propagation along

Tout
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= (c + v)cret γ2
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the contour, symmetry allows us to express  [27]  the transformations (1) in terms of the one-dimension

curvilinear coordinate    and write  ,  ,  .

Integrating   over   along C*C  , with the help of (1) and (6), we �nd,

Thus, the synchronization parameter is determined ( ) and singles out the LTA based on

conservation of simultaneity, invalidating the LT and relative simultaneity. The same result is obtained in

Section 4 using Cartesian coordinates in the form of (1) applied to the linear effect.

Result (7) re�ects the well-known problem inherent to Einstein synchronization when applied to a

moving closed contour. In fact, if we apply Einstein synchronization and set the local ground speed to be 

, after integrating   over   along C*C , in agreement with (5) the clock at C  is foreseen

to display the reading,

which, compared with (6), implies that the clock C  C* is out of synchrony with itself [8][11][12][22][24][26]

[27][28][29][30][31][32][33][34]. Moreover, since also  , we have,

and there is no Sagnac effect. Hence, as recognized also by physicists adhering to the conventionalist

view  [5][6][14][15][16][17][18][34], Einstein synchronization and the LT fail to interpret the Sagnac effects,

when observed along the �ber from the moving device C*. Moreover, we show in Section 4 that the use of

the LT in the linear effect leads to a spacetime continuity breach and, in the case of the reciprocal linear

Sagnac effect, the LT and LTA foresee different observable results, con�rming that they are not

equivalent. In any event, by itself, Einstein synchronization does not determine the one-way light speed.

Thus, results (5), (8), and (9), point out the limited validity of Lorentz and light speed invariance, which

are not applicable to the Sagnac effects.

Extending the one-way internal synchronization procedure to the rod of Fig. 2-c and 2-d.

We denote as "one-way synchronization" the procedure, alternative to Einstein synchronization and

applicable to the effects of Fig. 2-a and 2-b, that we wish to extend to the rod of Fig. 2-c and the example

of Fig. 2-d, as described below. For our procedure, we consider in Fig. 2-d two generic reference frames, S
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 and S, in relative motion and, without introducing the synchronization parameter   of (1), we make use

directly of the results (2) and (3). We assume �rst that the one-way light speed is   on frame S of Fig. 2-d,

where the section AB    has a mirror placed at A and another at B. With the clock C* on frame S

 moving at the velocity   relative to S, when A is passing by C*, a photon is sent from the position of C*

toward the mirror at B and, after being re�ected, travels back to reach C*. The round-trip interval derived

from S provides the same result as in (3),

Let us now consider the analogy between the physical situation of Fig. 2-d and that of Fig. 2-b. For the

example in Fig. 2-b, the result (10) corresponds to the counter-propagating photon emitted by C*,

traveling initially along the �ber's lower section from A C* to B and returning from B to C* on the upper

section. For this photon, the local ground speed along the moving �ber is  , which, on

frame S  co-moving with the �ber, represents the local one-way return speed from B to C* on the �ber's

upper section. However, the motion of this photon is indistinguishable from that of the photon

performing a round trip in Fig. 2-d. Regardless of whether an experiment analogous to that in Fig. 2-b is

actually performed or hypothetically thought of for Fig. 2-d, physical reality is the same for both Fig. 2-b

and 2-d and the invariant round-trip interval   is the same in both cases. Hence, in frame S  of Fig. 2-b

and Fig. 2-d, we must have   for the return ground speed of the photon moving

from B to C*. Furthermore, since in frame S  the two-way average light speed is  , on account of (4), the

one-way light speed in the opposite "out" direction from C* to B, is found to be  ,

which is the speed of the photon seen by S  in Fig. 2-b and Fig. 2-d when traveling from A C* to B.

By exploiting the analogy between Fig. 2-d and Fig. 2-b and assuming S to be the preferred frame, we

have determined the one-way light speed in S . Analogous results are obtained by assuming the one-way

light speed to be   in S , which is now the preferred frame. Hence, what the linear Sagnac effect implies is

that, if the light speed is    in the chosen preferred frame S, the one-way light speed in the relatively

moving frame S  is  , as foreseen by transforms (1) with  . Although, in principle, the

choice of the preferred inertial frame is arbitrary, symmetry considerations may indicate the more

convenient choice. For example, for the description of the circular effect of Fig. 2-a, the frame S  can be

conveniently chosen as representing the preferred frame.

Once the one-way light speed    is known, for a clock at a point P along the

�ber at the distance    from C* in Fig. 2-b or along the   axis of S   in Fig. 2-d, the one-way

′ ε
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synchronization procedure requires setting the clock readings to,

in agreement with experimental evidence (6). The synchronization can be applied along any �nite

section of frame S  of Fig. 2-b and 2-d, where the rod of Fig. 2-c forms a section of frame S . However,

using curvilinear coordinates, the synchronization can be applied along the whole moving �ber  .

Our procedure represents an "internal" synchronization  [5], because the ground one-way speed    is

determined without any reference to the readings of the external synchronized clocks on the preferred

frame S . If we use these S  readings to synchronize the clocks on S , we are performing an "external"

absolute synchronization  [5], which turns out to coincide with our one-way internal synchronization.

Synchronization (11) supports the LTAs, which are the only transformations that can interpret

consistently the Michelson-Morley and Sagnac experiments  [6][8][11][12][22][23][24][25][26][27][28][29][30][31]

[32][33].

4. The linear Sagnac effect, its reciprocal, and the principles of

Einstein and Galilean relativity

4.1. The reciprocal linear Sagnac effect

More evidence supporting the fact that the LT and LTA are not physically equivalent comes from our

recent publications  [32][33]  where we consider a new optical effect (denoted by some physicists as the

"Spavieri-Haugh effect"), which may be considered as a kind of reciprocal linear Sagnac effect.

In the standard linear effect (Fig. 1-b) the invariant interval    is independent of whether the device C*

stays, or not, on the same section (upper or lower) during the interval  . If the principle of relativity is

valid, concerning the invariant proper time interval  , there should be no difference between the

situation when the clock C* moves back and forth relative to the stationary contour as in the standard

effect (Fig. 1-b), or the situation when the contour moves back and forth relative to the stationary clock on

frame S, as in the reciprocal effect of Fig. 1-c and Fig. 3. Actually, calculations show [32] that, for the two

counter-propagating photons,   in (2) is always invariant, the same in the reciprocal linear effect as in

the standard linear effect, thus con�rming the reciprocity of the two effects for  .

= = ,t′ s′

(v)c′

s′

(c − v)γ2
(11)

′ ′

sg

c′
g

lab lab
′

T

T

T

ΔT
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However, for the LT and with   AC* in Fig. 3, in the reciprocal effect the one-way round-trip interval 

  for a single photon is  -dependent ( ) when, in changing the direction of motion, the

contour has the device C* �rst on one section and then on the other. On the contrary, if the LTAs are

adopted and the one-way light speed is    on the rest frame S   of the contour, both    and    are

always invariant and    independent of  [32]. Then, we may formulate, tentatively, a weak form of the

relativity principle for the LT, where   only is invariant, and a strong form for the LTA (or simply the

traditional relativity principle) where both   and   are invariant.

In the framework of the LTA, the relativity principle and the reciprocity of the linear effect hold if the

contour inertial frame S  represents, regardless of changing or not direction of motion, the preferred

frame where Maxwell's equations are valid and the electromagnetic waves travel at speed  . The property

can be extended to the Michelson-Morley interferometer and other electromagnetic phenomena

involving interferometry. In particular, the Michelson-Gale experiment  [38]  of 1925, which provided a

non-null result, can be another indication that the contour of the interferometer can be linked to a

preferred frame, as considered below about the problem of synchronization in the Global Positioning

System.

To prove the nonequivalence of the LT and LTA, we show below that, in the reciprocal effect,   depends

on   for the LT, but is  -independent for the LTA.

X =

T X T = T (X)

c count ΔT T

T X

ΔT

ΔT T

count

c

T
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Figure 3. Interval   in the reciprocal effect.   Clock C* is stationary and initially located on the contour

lower section, while the arm AB of the contour is moving at the speed   relative to C*.   The initial distance 

 of A from C*, is such that the photon emitted from C* reaches B at the same moment when A reaches C*. At

this instant, the contour changes the direction of motion and the photon moves toward C*.   The photon

completes its round trip and reaches C* on the upper section after the interval  .

a) Showing that the LT foresee }  for the reciprocal linear effect.

The calculations for a generic value of   are made in Ref. [32]. If, during the interval  , C* is always on the

same (lower or upper) section,   is invariant. Here, we consider in Fig. 3 the case when the stationary C*

emits the counter-propagating photon initially on the lower section (Fig. 3-a) and, after the contour

changes its direction of motion (Fig. 3-b), receives the photon traveling on the upper section (Fig.3-c). To

simplify calculations, we assume that the original position   AC* is such that the photon reaches B

when, simultaneously, point A reaches C*. At this moment (Fig. 3-b), simultaneously on the inertial clock

frame S, the whole contour changes the direction of motion in the interval  . We also assume, for

simplicity, that the rest length   of the arm AB of the contour is quite large, relative to the dimension   of

T a)

v b)

X

c)

T

T = T (x)

X T

T

X =

η

L R
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the pulleys,  . In this hypothetically ideal linearized case,  , we can neglect the details of

the motion taking place during the interval  .

With reference to Fig. 3-a and considering that B is moving with velocity   relative to the clock frame S,

using the LT, we calculate the interval    for the photon round-trip. Starting from C* and taking into

account the length contraction of the arm AB, the photon reaches B after the time interval determined by

the equation,  , while the moving point A, initially at  , reaches C* after the

interval determined by the equation,  . Then, with  , the equation for the photon

becomes,  , and  , while  . With the photon at B as in Fig. 3-b, the return

time is obtained from the equation  , providing  . Note that, in the return trip, 

 is independent of whether the contour changes or not its direction of motion. Hence, instead of the

expected invariant    (3) of the standard linear effect, in the reciprocal effect the

round-trip time interval is

Different values for    are obtained for different  [32]. By taking into account the effect of

relative simultaneity with the LT, the same result (12) is obtained if derived from the contour frame S ,

where the light speed is   when S  is in uniform motion before and after the interval  .

b)   is  -independent when derived in the framework of the LTA.

Assuming conservation of simultaneity, according to the relativity principle the result is the same

whether the clock is moving relative to the contour or vice versa. In the standard linear effect the one-

way light speed is assumed to be   on the stationary contour frame S . Therefore, assuming again that

the one-way light speed is   on the moving S  , before and after the small interval  , C* is seen from S

  to be in relative motion and, when calculated from the contour frame S , the result for the

invariant   is just the one derived for the standard linear effect.

Let us con�rm that   is invariant by deriving it also from the frame S of the stationary clock. We derive 

  from the frame S of the clock, using, for simplicity, the �rst order approximation in  . The exact

result, calculated from the frame S to all orders in  , can be derived without problems assuming that

the contour frame S   is the preferred frame where the LTAs are adopted (before and after the

negligible interval    ). Since the one-way speed of light along AB is   on the moving preferred frame S

, according to the LTAs, which now coincide with the Galilean transformations, the corresponding

light speed on frame S is  . Then, the photon reaches B at the time determined by the equation, 

L >> R T >> η

η
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, while A reaches C* at the time determined by the equation,  . With 

, the equation for the photon becomes,  , and we have  . According to

the LTA, on the clock frame S the return light speed from B to C* is again  . Then, with the photon at

B, as in Fig. 3-b, the return time is obtained from the equation  , providing 

. Hence, for the reciprocal effect, the LTAs foresee the approximated round-trip time invariant

interval,

the same as for the standard linear effect, as foreseen by the relativity principle, but different from the

result (12) foreseen by the LT.

The difference between (12) and (13) is due to the "time gap"   of relative simultaneity between the two

frames in relative motion, as shown explicitly in the examples below.

4.2. Measuring the round-trip interval   with the clock C* �xed now to the contour, which

changes velocity relative to the inertial frame S.

a) Deriving   from the rest frame S  in the framework of the LTA.

In this case, we derive the round-trip interval  , measured by C*, from the rest frame S   of the

contour, where clock C* is �xed at the distance   from point A, as shown in Fig. 4. S  and the inertial

frame S are in relative motion before and after the small interval  .

Assuming the local light speed to be    on S , the counter-propagating photon leaves C* in the

direction of B and performs the round-trip C*B, BA, AC* to return to C*. The arm AB and frame S are in

relative motion and, if the relative velocity does not change, the round-trip interval measured by C* is 

. However, when the photon reaches point B, the contour changes the direction of motion

relative to S. Therefore, the contour is moving with velocity   relative to the inertial frame S during the

out trip from C* to B, and with velocity   during the return trip from B to C*. Vice versa, frame S is seen

in relative motion from S , as in Fig. 4 (before and after the small interval  ).
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Figure 4. Interval   calculated from the contour rest frame S  when C* is �xed to the contour and the

inertial frame S is moving at the velocity  .   Clock C* is �xed at the distance   from A. The photon emitted

from S* moves at speed   toward B.   When the photon reaches B, the contour changes its direction of

motion relative to S. After the negligible interval  , the contour rest frame is still an inertial frame and the

photon moves at speed   from B toward A.   After reaching A, the photon moves toward C* and completes its

round trip in the interval  .

Since conservation of simultaneity is assumed, the relative change of motion occurs simultaneously on

both S  and S. As usual, we neglect the interval   taken by the contour to change velocity, assuming

that  . Then, before and after changing velocity, the contour is an inertial frame, S , on which

the one-way light speed is  .

Therefore, from Fig. 3-a, on (S )   we have  , and, from Figs. 3-b and 3-c, on (S

)  we �nd   , with the expected invariant result,

T cont
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corresponding to the proper time measured by C* for the one-way round trip of the photon, independent

of its state of motion.

Together with the invariance of the clock's proper time, even when accelerating, the invariant result (14)

should be holding for circular or other shapes of contours and, in general, for models of elementary

particles or atomic systems where a particle performs a closed trajectory in the interval  . The invariant

result (14) implies that S  (before and after the interval  ) stands as a preferred frame where Maxwell's

equations are valid and the electromagnetic waves are con�ned to traveling at the one-way speed   along

the closed contour. Consequently, if the LTA and conservations of simultaneity are valid, the invariant 

 of (14) must be foreseen from any other inertial frame of reference. However, we show below that result

(14) is not foreseen by the LT.

b) Deriving   from frame S assuming light speed invariance with the Lorentz transformations.

The calculations performed from the inertial frame S are straightforward and, with 

, the results are,

where, in (15),    represents the time interval derived from frame S and 

  represents the proper time reading of C* foreseen by the LT. The term 

 in (15) corresponds to the "time gap" between the two frames (S and (S ) ) due

to relative simultaneity (see also Section 4, Eq. (23) and (32) below) foreseen by the time transform of the

LT (1). As in the case of the reciprocal effect, the result    in (15), foreseen by the LTA, differs from 

 in (15) foreseen by the LT.

Let us consider the case when  . Then, according to the LT, clock C* measures the following

intervals,

indicating that, due to the effect of relative simultaneity, as seen from clock C* on S , the photon

covers in the proper time interval   the distance  , which is greater by   than the
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size   of the contour.

The difference between results (14) and (16), represents the Spavieri-Haug relative-simultaneity effect

foreseen by standard special relativity when the contour reverses its velocity. The corresponding space, 

, and time,  , variations represent a spacetime discontinuity foreseen by the LT, but not by the

LTA. The analogous spacetime discontinuity, or breach in spacetime continuity, for the standard linear

Sagnac effect, is discussed below.

In conclusion, the difference between (12) and (13) (and (15) and (14)) is related to the "time gap"    of

relative simultaneity. Since the difference is observable, it implies that relative (LT) and absolute

simultaneity (LTA) can be discriminated experimentally. Possible experimental setups for the test of

Lorentz and light speed invariance using the reciprocal effect are described in Refs.  [32][33]. The

unexpected results of the reciprocal effect con�rm that the predictions of the LT and the LTA for the

round-trip interval   are different, and that, in general, the LT and LTA are by no means equivalent and

re�ect different physical realities. The conventionalist thesis of Mansouri and Sexl is valid in the special

cases when the two-way Einstein synchronization between spatially separated clocks is applicable and

the one-way light speed is undetermined, as in Fig. 2-c. However, in the case of the Sagnac effects the

one-way light speed is determined by the one-way internal synchronization that, for a closed contour,

relies on the use of a single clock. Hence, the strategy to adopt the LTA for "solving" the paradoxes that

arise with the "equivalent" LT, implemented for decades by supporters of the LT, fails with the Sagnac

effects, particularly in the case of the reciprocal linear effect. Unfortunately, this �awed strategy has

delayed considerably the correct interpretation of the various paradoxes and optical experiments.

4.3. The linear Sagnac effect: Spacetime continuity requires to adopt conservation of

simultaneity with the corresponding local speed   along the moving optical �ber.

We revise the linear Sagnac effect of Fig. 1-b, focusing on the special case when the device C* moves from

the lower to the upper section in the interval  , as discussed in detail in Refs. [26][27][29]. We consider the

case of a counter-propagating photon that leaves the clock C* and returns to it after the round-trip time

interval  . To simplify the calculations, we assume as usual that the interval  , taken by C* to move

around the pulley of radius  , while moving from the lower to the upper �ber section, is negligible and

much less than  , which implies  .

Let us denote by S  the inertial rest frame of C* when on the �ber lower section and by S  the rest frame

when on the upper section. The round-trip interval   (3) measured by C* co-moving with the �ber, is,

2L
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and we gave above the interpretation of the two terms of (17), which we consider once more below.

We denote by   the "ground" local light speed on S . Then,   represents the "ground" local light

speed along the �ber ground section that is at rest on S  on the lower section. Similarly, we denote by 

 the ground local light speed on S . A priori,   and   do not necessarily coincide, depending on

the theory and the kinematical relation revealed by experimental evidence. As a way to check the

consistency and completeness of the theory, with the LT or the LTA, we need to verify what is the ground

local speed on both the lower and upper sections and the ground �ber total length covered by the photon

in the interval  . For this purpose, it is convenient to consider the following case where, in the interval  ,

C* moves from the lower to the upper section.

Single frame description with the LT from S} . With C* initially on the frame S   of the lower section

(Fig. 1b), the initial position of C* relative to A, can be chosen in such a way (AC*  ) that

the counter-propagating photon leaving C* reaches B when, simultaneously, A reaches C*, as indicated in

Fig. 5. Assuming   as seen from C* on the clock frame S , the time interval taken by the photon to

reach B is,

which is the same time interval    taken by A to reach C*. Since    and    are "ground"

kinematical quantities measured on S ,   represents the �ber "ground" section covered by the photon at

the local "ground" speed  . Hence, the �ber ground length covered at speed   by the photon in the

out trip   from C* to B, is 

For the return trip on the upper section, the situation is shown in Fig. 5, where we introduce the second

clock C , co-moving on the �ber upper section with the inertial frame S  moving with velocity   relative

to the arm AB. Clock C   is set at    at point A when coinciding with C*. Of course, the time

intervals measured by C  after   are the same intervals that C* would measure after having moved to

the upper section. In any case, it should be clear that we are dealing with time intervals measured on

inertial frames, corresponding to the invariant proper time intervals of C*, within the approximations

made.

Denoting by   the relative velocity between S  and S , the corresponding LT [26][27] and some of its

relations with the AB frame S, are,
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The return trip time interval seen from S  is obtained from the equation  , and,

where the proper time interval    is equally foreseen by the time transforms (1) of the LTA

and LT (at   ). The S  spatial distance covered by the photon in the return trip is,

less than   because, as seen from S , clock C*  is moving at speed   toward the photon approaching at

speed  . Then, as seen from the single frame S , in the round trip   (17) the photon covers, at speed  , the

total distance,

In (23) the term   is the "time gap" from S  to S  due to relative simultaneity

foreseen by the time transform of the LT in (19). Thus, as seen from S   or any other single frame, the

spatial distance covered is  , less than the total ground �ber length  , and the uncovered

path   is shown for the circular and linear effects in Fig. 1-a and 1-b.

Description with the LT involving the two frames S  and S . In the out trip, the ground distance covered

is  , as given by (15). The return trip   is given by (21). According to the LT, the return light

speed is   on S  and  . For the observer on S ,

indicating that the photon does not cover the whole path    in the return trip. The total ground path

covered at speed   by the photon,   on S  and   on S , is exactly,

essentially as in (23).

x′

w

=

=

( − wt )  = ( − )γw x′′ ´´ t′ γw t′′ wx′′

c2

2v/(1 + / )  = (1 + /v2 c2 γ−2
w w2 c2)1/2

(19)

γw

(1 + w/c)γw

=

=

(1 + / )γ2 v2 c2

(1 + v/c =γ2 )2
1 + v/c

1 − v/c

(20)

′′ w = L/γ − ct′′ t′′

T ′′
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Tret

=

=

=
L

γ(c + w)
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= = ,T ′
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T ′′
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γw

γL(1 − v/c)2

c

(21)

=T ′
ret γ−1

w T ′′
ret

= 0x′
C

′
′′

c = = ≃ L(1 − 2v/c) < L,T ′′
ret

L

γ(1 + w/c)

L(1 − v/c)γw

γ(1 + v/c)
(22)

L ′′ ′ w

c ′′ T c

c + c ≃ L + L(1 − 2v/c) ≃ 2L − cδ < 2L.Tout T ′′
ret t′ (23)

δ = wL/ = 2γvL/t′ γwγ
−1 c2 c2 ′ ′′

′′

2L − cδt′ ≃ 2L

≃ 2γvL/c = cδ ≃ vTt′

′′ ′

= LL′′ γ−1 T ′
ret

c ′ = /cT ′
ret L′ ′

= c = γL(1 − v/c ≃ L − cδ < L,L′ T ′
ret )2 t′ (24)

L

c L′′ ′′ L′ ′
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Hence, both observers S   and S   agree that, at the ground local speed  , the photon cannot cover the

whole �ber length   in the round-trip interval  . This result implies a breach in spacetime continuity

by   because the missing path   has not been covered in the interval  . Result

(25) shows once more that Einstein synchronization fails because, as derived in (8), foresees that at the

photon speed  , the resulting round-trip interval is  , and not   as in (17).

Figure 5. In the linear Sagnac effect, clock C* is at rest on the inertial frame S  and clock C  is at rest on the

inertial frame S . S  and S  are in motion with opposite velocities   relative to the frame AB of the contour and

coincide at A at  . After being emitted earlier by C* on the �ber lower section (Fig. 1-b), the photon

reaches B when A reaches C* and, as observed from C* on frame S , the photon has covered the distance  .

According to the LT, the photon is at K  at   and covers the shorter distance   in the return

trip. The missing section K B   has not been covered for   . According to the LTA, the

photon is at B at  , when C  is at A and covers the whole distance   in the return trip.

′′ ′ c

2γL T

cδt′ 2γvL/c = cδt′ +Tout Tret

c ( = Δ /c ≃ 2L/cTout)E s′
g T

′′ ′

′ ′ ′′ v

=t′ t′′

′′ L/γ

′ = 0t′ γL(1 − v/c)2

′ =cδ = 2γ(v/c)Lt′ > 0t′

= 0t′ ′ L/γγw
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4.4. Imposing spacetime continuity in deriving  .

In the return trip from B to C* on the upper section, in terms of "ground" kinematical quantities, clock

C'* measures the observable interval    from the instant  , when it coincides with A, to

the moment when the photon reaches it. Assuming    undetermined, also the ground distance    is

undetermined, but light propagation along the closed contour imposes a constraint: spacetime continuity

requires the total ground length of the �ber, covered by the photon in the round trip interval  , to be 

. Since the distance   has been covered in the out trip, the remaining distance,

must be covered at speed   in the return trip.

With the help of (21) and (20),

and, from (26), we �nd   to be,

According to the approach of Mansouri and Sexl [5] of (1), for the transformations from S  to S  in terms of

the synchronization parameter  , we have [5][29],

where we have set    on frame S . For counter-propagation 

  and, by setting    in (27), the equation determines the value  ,

implying that the resulting synchrony, re�ecting the interpretation of the linear Sagnac effect consistent

with spacetime continuity, is that of the LTA with absolute simultaneity. With    given by (27) on S , 

  on S , and the help of (20), the total ground length covered is 

, as expected.

Adopting the LTA with conservation of simultaneity in the linear Sagnac effect
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In the previous Section, we assumed the one-way light speed to be   on the frame S  of the �ber lower

section. Nevertheless, considering that the relativity principle holds when the preferred frame is the

contour frame S , let then be S   S  the preferred frame and introduce the LTA transformations

from S to the frames S  and S . The curvilinear transformations (already used in [27]) along the length 

 of the optical �ber may be expressed as,

As seen from frame S (Fig. 2-b), starting from the origin of S , light can travel along the �ber the distance 

 to the generic point on the upper or lower section. The corresponding distance seen from the �ber

is  . In the circular Sagnac effect, after a counter-propagating photon

covers the whole circumference traveling the distance  , we �nd 

 in agreement with (17). For inertial frames in Cartesian coordinates,

the corresponding LTA (1) can be written as,

where, relative to S, the equation of the �rst line is replaced by the equation of the second line when 

 changes sign and direction at B. In this case, with   for the relative velocity, the LTAs between S

 and S  coincide with the Galilean transformations,

From (30) we �nd the ground light speed  , at which the photon covers the length 

  in the interval    (6). No inconsistencies arise (such as spacetime breach) by describing the

Sagnac effects with the simpler transformations LTA based on conservation of simultaneity.

4.5. Short review of the arguments in favor and against the LT.

The current main argument against Sagnac's interpretation.

Supporters of standard special relativity agree that the LTAs interpret all the relativistic effects of the

theory and that the LTA can be used, in lieu of the LT, to describe the Sagnac effect and "solve" the Selleri

and other paradoxes [8][9][10], [6], [5]. Their main argument for claiming that the LT and LTA are equally

valid is that they differ by the arbitrary synchronization parameter   only [5], and thus they are physically

c ′′

count = count

′ ′′
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= γ(s − vt)  = .s′ t′ t

γ
(29)

′

s = ct

= γ(c − v)t = (c − v) =s′ γ2 t′ c′t′
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= T = / = γ2πr/[ (c + v)]T ′ s′ c′ γ2
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equivalent and interchangeable. Hence, according to them, the LTs are still valid if the paradoxes of the LT

can be "solved" with the LTA.

Arguments against the equivalence of the LT and the LTA, showing the limited validity of the LT.

�. For the result (17) of the linear Sagnac effect we have the following two interpretations. As seen by

the ground observer C* co-moving with the �ber of ground length  , in the interval 

  the counter-moving photon covers at the ground local light speed    the

whole �ber ground length  . Instead, for the observer on the lab frame S   (where space is

isotropic) the spatial distance covered by the particle is  , as can be seen also for

the circular effect of Fig. 1-a, and, consequently, with  , the one-way light speed is 

. Hence, since   is the same and the two distances   and   are different, also the relative

local speeds of the photon must be different and are   locally along the moving �ber and 

 locally in the frame S  in relative motion. Hence, light speed invariance is invalidated, as Sagnac

claimed.

�. The reciprocal linear Sagnac effect indicates that the LT and LTA foresee different values for the

observable  . In fact,   is  -dependent for the LT in (12), (15), and (16), while   is invariant

and  -independent for the LTA (13). Then, the LT and LTA are not equivalent and represent different

physical realities, invalidating the current main argument supporting the LT.

�. In the case of the linear effect of Fig. 5, the requirement of spacetime continuity for the photon

covering the whole �ber length   in the interval  , supports conservation of simultaneity (LTA)

and invalidates relative simultaneity (LT).

Note that the spacetime discontinuity of the LT has been pointed out more than 50 years ago by Landau

and Lifshitz [39] by stating:

". . .However, synchronization of clocks along a closed contour turns out to be impossible in

general. In fact, starting out along the contour and returning to the initial point, we would

obtain for   a value different from zero . . ." .

In relation to Fig. 5, the inconsistencies of the LT emerge when the effective "ground" section, covered by

the photon in the round-trip interval   is pointed out.

For the LT, the total ground length covered in the interval   by the photon at the local speed  , is (25),

≃ 2LLground

T ≃ 2L/(c + v) ≃ c + vcg

Lground lab

≃ 2L(1 − v/c)Lspace

T ≃ 2L(1 − v/c)/c

c T Lground Lspace

≃ c + vcg

c lab

T T = T (X) X T

X

2γL T

dxo

T

T c

2γL − 2γvL/c = 2γL − cδ < 2γL.t′
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Hence, the photon does not cover the "missing" section of Fig. 5,

where   represents the delay, or time gap, between S  and S due to relative simultaneity. In

Fig. 5, it seems as if the photon "jumps" from B to K  traversing the missing path at in�nite speed.

If the local ground speed is   on the �ber's lower section, the local ground speed on the upper

section can no longer be  , but  , for the photon to be able to cover also the missing

section in the return interval  .

If the differential local ground speed is    along the whole �ber length, after integrating 

 over  , we have,

in disagreement with observation (3).

�. The Thomas precession  [40]  related to the electron spin. In Ref.  [32]  we consider the different

symmetries of the LT and LTA. Exploiting the symmetry of the transformations along the electron

orbit, Jackson's  [41]  derivation shows that the Thomas precession is foreseen by the LT. Repeating

the derivation using the LTA, we show that, due to the different symmetry, the LTAs foresee no

Thomas precession [32]. Once more, the LT and LTA foresee different results.

�. If the LTAs interpret consistently and solve the paradoxes of the LT, while the LTs do not, it is an

indication that the LT and LTA are different and physically non-equivalent, rather than "equivalent".

Conceptually, the fact that the LTAs do solve the paradox, does not change the reality that the LTs do

not.

�. GPS (Global Positioning System). We consider here the GPS argument by Gift  [42], as described in

Ref. [27], favoring absolute, rather than relative simultaneity.

"As considered by Gift [42], Ashby [43], and other authors, the existence of the ECI (Earth Centered Inertial

frame) is supported by the fact that it clari�es the problem of clock synchronization on the Earth. Indeed,

for achieving the clock synchronization with Einstein synchronization in the GPS and maintaining

accuracy, the GPS must apply a Sagnac velocity correction to the propagation of its electromagnetic

signals. This can be understood by considering that, if the speed of light is   locally in the ECI frame, it

turns out to be    on the rotating Earth surface (at the distance    from its center) because of the

tangential velocity  . Thus, the GPS algorithm seems to be supportive of the ECI frame and

cδ = 2γvL/c,t′ (32)

δ = 2γ(v/ )Lt′ c2 ′ ′′

′

= cc′′

c = (c + w)c′ γ2
w

Tret

c

d = d /ct′ s′ s′

≃ 2L/c,T = cc′

c

c ± v R

v = ωR
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absolute synchronization for maintaining global accuracy among synchronized clocks. The result is a

world-wide network of precisely synchronized clocks that are within 4 nanoseconds of “perfect

synchronization” with global simultaneity within the GPS [42]."

In support of Gift's argument, we may say that the non-null result of the Michelson-Gale

experiment [38] is generally interpreted as a Sagnac effect capable of detecting the angular velocity of the

Earth  [44][45]. In fact, if the inertial frame of the Michelson-Gale interferometer is taken to be the ECI

frame, the rotation of the interferometer coincides with Earth's rotation. Ideally, we can conceive a

Michelson-Gale interferometer of the size   (the cross-section area of the Earth) perpendicular to the

Earth's axis of rotation. Then, on account of the implications of the Sagnac effects described in Section 4,

the ECI frame stands for the preferred frame where Maxwell's equations are valid and the one-way light

speed is   and, on the surface of the rotating Earth the light speed must be  , as required for the GPS

synchrony and foreseen by the LTA.

In short, considering the various inconsistencies of the LT in relation to the Sagnac effects and the other

several arguments presented above, with regard to the "LT-LTA equivalence", we may say that there is

suf�cient evidence showing that the LT and LTA are not equivalent.

5. Conclusions

The one-way internal synchronization procedure along a closed contour is viable and applicable either

when the device C* and the contour are at rest or in relative motion. In the case of relative motion, the

validity of Einstein synchronization and the LT of standard special relativity is limited to the case

considered by Mansouri and Sexl  [5]  where synchronization between two spatially separated clocks is

arbitrary (Fig. 2-c). As well known, the LTs are not applicable, or nonintegrable, on a moving closed

contour and the transformations that interpret consistently the invariant one-way round-trip interval 

 for light propagation along the moving contour, are those based on conservation of simultaneity. Thus,

generally speaking, the one-way internal synchronization and the Sagnac effects rule out the LT and

favor the Lorentz transforms based on absolute simultaneity (LTA).

The nonequivalence between the LT and LTA becomes apparent even in the reciprocal linear effect (Fig.

1-c) where, relative to the inertial frame of the device C*, the contour frame changes the direction of

motion in the interval  . In this case, the LTs fail to foresee reciprocity for the one-way invariant interval 

, which is now  -dependent ( ), suggesting a weak form only of the relativity principle.

πR2

c c ± v

T

T

T X T = T (x)
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Instead, the relativity principle is completely feasible with the LTAs, which foresee full reciprocity for the

invariant   and  .

In the standard linear Sagnac effect, the use of the LT indicates that, in the interval  , the photon does

not cover the "missing" section   of the �ber length  , where   represents the delay, or

relative simultaneity time gap, between the frames S  and S . The existence of a missing section reveals a

breach in spacetime continuity due to relative simultaneity. Instead, there is no missing path with the

LTA based on conservation of simultaneity and spacetime continuity.

To solve the paradoxes and remove the unusual consequences of the LT in some physical situations [5][6]

[8][12][13][22][23][24][25][26][27][28][29][30][31][32][33], conventionalist physicists [5] adopt the LTA, claiming that

the paradoxes do not invalidate the LT because the two transforms, LT and LTA, are physically equivalent

and interchangeable on account of the arbitrariness of synchronization and the conventionality of the

one-way light speed. Still, considering that the reciprocal linear Sagnac effect and other physical effects

render apparent the nonequivalence of transforms with different synchronies ( ), the sole transforms

capable of interpreting consistently the various paradoxes and light propagation along closed moving

contours, are the LTAs. Outside the limited conventionalist context where the LT and LTA can be

considered equivalent, in the more general scenario of nonequivalence and by means of the reciprocal

Sagnac effect, Lorentz and light speed invariance can be tested and the one-way speed of light is

measurable in principle, as required by epistemologists.

In short, we may conclude that:

�. In Einstein's second postulate, what is constant is no longer the one-way light speed, but the

observable round-trip speed of light (i.e., the average light speed   during the round-trip from C* to

C  and then back to C*) [6].

�. For the description of physical phenomena (e.g., light propagation along a closed moving contour), a

preferred (not absolute) frame S, where the one-way light speed is    and Maxwell's equations are

valid, can be conveniently chosen. However, the one-way synchronization and spacetime continuity

require the transformations from S to any other relatively moving frame, to be based on

conservation of simultaneity (e.g., LTA).

Optical experiments, supporting the Lorentz transformations (LT) and light speed invariance in 1905,

disprove today their validity and that of relative simultaneity. The LTAs interpret without paradoxes the

T ΔT

T

cδ = 2γvL/ct′ 2γL δt′

′ ′′

ε

c

0

c
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optical and all the other experiments supporting standard special relativity  [5]  and represent a viable

alternative to the LT in the scenario where the principle of relativity is holding.
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