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This study introduces a novel methodology for analyzing the evolution of scienti�c topics through

the lens of information geometry. Using mutual entropy-based distance metrics, the approach

captures dynamic relationships between scienti�c concepts over time, o�ering insights beyond

traditional keyword-based analyses. The proposed framework quanti�es the in�uence of

publications, institutions, and countries on topic dynamics using normalized velocity matrices and

geometric compression measures of knowledge networks. Applying the methodology to data sets

from ArXiv and JSTOR, we identify patterns in topic evolution, agent impact, and interdisciplinary

in�uences, emphasizing the utility of entropy-based information-theoretical metrics in

understanding the complex dynamics of scienti�c discourse. The �ndings highlight applications in

strategic planning for academic journals, funding agencies, and research institutions, enabling

data-driven decision-making to foster emerging research trends and interdisciplinary

collaborations.

1. Introduction

The �eld of scienti�c research is in a constant state of �ux. Keeping up to date on emerging trends and

hot topics is essential for journals, researchers, and policymakers to navigate the rapidly evolving

landscape of knowledge production[1][2]. The exponential growth of scienti�c literature and the

increasingly interdisciplinary nature of research have introduced unprecedented complexity to

scienti�c discourse. While traditional methods such as bibliometric analysis have been instrumental
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in tracking trends, they often fall short of capturing the intricate, dynamic interactions between

concepts, disciplines, and research communities[3][4]. This complexity requires the development of

innovative methodologies that can complement and extend the capabilities of existing approaches.

Recent advances in information theory o�er a promising pathway to understand and quantify the

underlying structures of scienti�c knowledge[5][6]. Using computational topology and information-

theoretical metrics, researchers can explore the geometry and topology of knowledge networks to

reveal latent patterns, structural de�ciencies, and knowledge gaps. These methods, such as persistent

homology and simplicial complexes, have been successfully applied to co-occurrence networks,

feature spaces, and text corpora, demonstrating their potential to uncover hidden relationships and

bridge knowledge gaps[7][8][9][10]. The study of information topology not only enhances our

understanding of knowledge production but also potentially provides actionable insights into the

di�usion and evolution of information across disciplines.

This study introduces a novel methodology to analyze the dynamics of scienti�c topics within

knowledge networks. Speci�cally, we utilize the variation of information (VI) distance metric[11], a

measure grounded in information theory, to quantify multiscale geometric-topological properties and

higher-order interactions. Unlike non-Euclidean metrics, such as those derived from Bregman

divergences, which require customized tools[12], the Euclidean nature of the VI metric allows us to

apply well-established computational frameworks, simplifying its integration into existing pipelines.

Our approach enables the exploration of topic volume compression as a form of simplicial complex

volume dynamics and facilitates the identi�cation and analysis of knowledge brokers—agents that

bridge gaps within knowledge networks.

By applying this methodology to datasets from ArXiv and JSTOR, we aim to demonstrate its utility in

quantifying the e�ects of bridging knowledge gaps, assessing interdisciplinary in�uences, and

identifying the impact of various agents, such as institutions and journals. The results underscore the

potential of information-theoretical tools to inform strategic decision-making in research funding,

interdisciplinary collaborations, and journal policy planning.

In the following sections, we detail the theoretical underpinnings, methodological implementation,

and empirical �ndings of this study. By addressing both the geometry and topology of knowledge

networks, we contribute to advancing our understanding of how scienti�c knowledge evolves and how

stakeholders can e�ectively navigate its dynamic landscape.
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2. Methods used

We employ an information-theoretical metric, represented by the equation: 

This metric is derived from mutual information    and the joint Shannon entropy  ,

which quantify the relationship between two stochastic variables    and    representing the term

frequencies of two distinct concepts. Given a probability   for a concept   to be

cited exactly   times in a set of   documents from an  -document corpus for the period until

time  , the mutual information and the joint entropy are calculated as: 

Here,   and   denote the joint and marginal probability distributions,

respectively.

The metric  , known as the variation of information (VI) or the shared information distance,

exhibits metric properties such as the identity of indiscernibles, symmetry, and the triangle

inequality[11][13][14][15]. When two concepts share an identical set of documents with the same term

frequencies,  ; conversely, when concepts never cooccur in any document,  .

Notably, including    in the de�nitions of    and    provides a common

normalization constant, ensuring a consistent scale for comparing distances   across di�erent

pairs of concepts within a �xed document corpus. However, comparing distances between concepts at

di�erent times when the size of the relevant documents is changing necessitates an additional

normalization factor: 

where   is the total number of documents in the corpus published up to time  .

The properties of    as a metric are intuitive and robust for comparison. The triangle inequality, in

particular, implies that if two concepts (or clusters) are both close to a third, they cannot be too far

apart from each other. This property allows us to infer potential relationships between concepts, as
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proximity to a common third concept suggests likely closeness. Such qualities make the VI metric a

powerful tool for exploring complex relationships and predicting links within a network of concepts.

The symmetric similarity matrix, derived from pairwise distance calculations for a selected set of

concepts, encapsulates information about the topological properties and complexity of the

corresponding knowledge network. Our �ndings indicate that temporal changes in normalized or

non-normalized pairwise distances,  , expressed in terms of velocity matrices, provide

additional insight into the temporal evolution of the network.

We compute the velocity matrix by taking the di�erences between elements of the distance matrices at

di�erent time points  . Using a constant time interval  , set to one year, reduces noise

and computational overhead. For simplicity, we will also set    in the following notation. To

ensure comparability across di�erent scales of distance values, we calculate the relative speed for each

element in the velocity matrix as follows: 

The result from Eq.  (5), the velocity matrix  , contains only negative elements, representing the

increasing mutual information between concepts as new documents emerge. By computing a

Minimum Spanning Tree (MST) of this velocity matrix, we can identify elements and patterns

corresponding to the most active connections within the network of concepts at each time step.

Notably, the vertex degree distribution in such spanning tree networks follows a power-law

distribution, a characteristic often observed in social science studies and indicative of scale-free

network behavior.

It should be mentioned that using non-normalized distances    in Eq.  (5) introduces positive matrix

elements, capturing relaxation dynamics within the concept network while preserving the

convergence patterns observed in the tree-spanning networks of normalized velocity matrices. This

observed relaxation suggests that, without reinforcement from new publications, certain connections

may gradually weaken over time due to the increasing total number of documents in the corpus. By

applying normalization, we remove the in�uence of database growth, enabling the analysis to focus

solely on network compression driven by entropic forces introduced by new publications.

The e�ect of excessive knowledge network compression, driven by additional information in

emerging publications, can be quanti�ed through the geometric properties of the network. This
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approach provides a means of measuring the high-dimensional impact of these sources on the

structure of the knowledge network. The metric   enables us to interpret the knowledge network with 

 concepts (nodes) as an  -dimensional simplex with a well-de�ned volume[16]: 

To evaluate the impact on the shape of the knowledge network with    concepts from a particular

subset of documents, we calculate the normalized relative di�erence of the topic volume (see

Appendix 6): 

where  ,    is the topic volume obtained from all documents, and   is the volume derived

from a �ltered subset of documents that excludes publications associated with speci�c agents

identi�ed through document metadata. The resulting di�erence is normalized by the number of

relevant documents    associated with the agent, where each publication contains at least two

concepts of the considered  -dimensional topic. When   approaches zero, the agent’s impact

is negligible, suggesting that the �ltered and un�ltered volumes are nearly identical. In contrast, a

higher value of   re�ects a stronger in�uence of the agent, with the �ltered volume   being

signi�cantly larger than the un�ltered volume  , indicating a noticeable compression of the

structure of the knowledge network due to the presence of the agent’s publications.

In the following section, we �rst analyze the dynamics of topic network compression by calculating

various parameters of normalized and nonnormalized velocity matrices, as well as examining the

evolution of network volume as a function of emerging documents. Second, we assess the structure

and quantify the impact of agents, such as journals and countries, using the normalized relative

volume measure. Examples are drawn from topics in physics and international relations to illustrate

these analyses.
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2.1. Dataset description

For our analysis of physics-related topics, we used 421,524 research papers from the high-energy

physics and astronomy sections of the ArXiv preprint server (http://arxiv.org) covering the period

1990–2018. For international relations topics, we analyzed 10,370 documents from the JSTOR

platform (http://constellate.org) published between 2010 and 2024, focusing on issues related to

international security. For the ArXiv dataset, the concept frequency information was obtained from

the ScienceWise platform (now ProphyScience, https://www.prophy.science/)[17]. All JSTOR

documents were preprocessed using Google BigQuery to extract keyword metadata sections, and the

cleaned collection of keywords was matched with the frequencies of n-grams (uni-, bi- and trigrams)

extracted from the full texts of the documents. The metadata for all publications used in our analysis

was enriched with information from the Web of Science database by matching DOIs and publication

titles.

3. Results

Developing a carefully constructed scienti�c ontology as a comprehensive collection of scienti�c

concepts is crucial for keyword-frequency text analysis[18][19]. This discussion will not explore the

methods and challenges of creating such a dictionary; for a detailed review on this topic, we

recommend consulting[20]. However, once established, this scienti�c dictionary enables the

construction and analysis of a complete distance matrix encompassing all known scienti�c concepts.

However, recurrently recalculating a large-distance matrix to extract network dynamics across the

entire scienti�c domain proves computationally ine�cient. In addition, scienti�c ontologies

continually evolve with the introduction of new concepts that de�ne novel models, methods, or

experiments. Consequently, regular updates to existing distance matrices become essential.

One possible approach to reduce computation time is to select a subset of concepts closely related to a

speci�c seed concept, which we will refer to as a ’topic.’ This approach signi�cantly reduces

computational scope, since the size of the relevant distance matrix is determined by the degree

centrality of the seed concept in the entire network, typically much smaller than the total number of

nodes (concepts). In practice, the collection of concepts on this topic can be obtained using the

following �ltering algorithm.

qeios.com doi.org/10.32388/O5NMBG 6

http://arxiv.org/
http://constellate.org/
https://www.prophy.science/
https://www.qeios.com/
https://doi.org/10.32388/O5NMBG


The typical number of relevant concepts obtained from the proposed algorithm when    and 

 for the ArXiv and JSTOR collections is on the order of hundreds. Calculating a single velocity

matrix under these parameters using a c2-standard-16 machine type in Google Cloud Compute

Engine takes less than an hour. The calculations were performed with Wolfram Mathematica 13.2 on

Linux, while GCP Cloud MySQL 5.7 was used to host the database.

For example, following this algorithm when the parameters are set to   and  , we extract

268 related concepts for the "Reheating" seed concept associated with cosmic in�ation in 2018.1 In

Figure 1, we present the semantic landscape of the related topic by illustrating a 2D Delaunay mesh of

a corresponding graph[21].

n = 5%

b = 0.98

n = 5% b = 0.98
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Figure 1. Two-dimensional Delaunay mesh of the normalized "Reheating" topic distance matrix,

calculated for 2002 (left) and 2018 (right). Blue triangles represent areas where all three vertices are

connected by edges with distances below the speci�ed normalized cut-o� distance   (solid

black lines). Yellow triangles indicate areas where at least one edge distance exceeds the cut-o�

(dashed red lines). White triangles correspond to areas where all edge distances are above the cut-o�.

Analyzing the network dynamics associated with the non-normalized velocity matrix for the

"Reheating" topic, we observe a typical pattern of vertex order dynamics that remains consistent

across multiple topics. Figure 2 presents the vertex order distributions for the positive and negative

components of the velocity matrix, calculated using Eq.(5) for non-normalized distances. In this

context, vertex order re�ects the dynamic connectivity of a concept, indicating whether its mutual

information with other concepts in the network is increasing or decreasing. As illustrated in Figure 2

(left), converging subnets tend to have smaller connectivity orders than their relaxation counterparts,

highlighting the local character of topic updates. Each concept in the topic simultaneously belongs to

both converging and relaxation subnetworks, with its dynamic connectivity order changing in

response to signals from new publications. Since Algorithm  1 �xes the number of concepts within a

topic, the number of possible links between concepts is also �xed. This constraint results in an almost

symmetric distribution of vertex orders in the convergent and divergent components of the velocity

matrix at any given time.

= 0.939042a~
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Figure 2. Kernel-smoothed vertex order probability distribution for the positive and negative

components of the velocity matrix associated with the evolution of the "Reheating" topic (left).

Evolution of the power-law exponent for vertex order distributions in the spanning tree network of the

convergent (negative) and divergent (positive) components of the velocity matrix (right). The same

colors in both plots indicate the same years.

The velocity matrix calculated using normalized VI distances contains only negative elements,

indicating the continuous convergence of distances within the corresponding knowledge network as

the number of emerging documents increases. Each node in the normalized velocity graph has a

connectivity order equal to the total number of nodes in the topic, resulting in a uniform distribution

of the connectivity order of the vertex in the spanning tree network derived from the normalized VI

distances. However, the distribution of relative velocities within the matrix is not uniform. As shown

in Figure 3 (left), the velocity distribution in the early stages of topic development is broader

compared to later stages. Over time, the relative velocities between concepts decrease and eventually

become nearly uniform. From Figure 3 (right), we can observe that the size of the topic volume

calculated using Eq.  (7) is a function of the total number of relevant documents, and this size

decreases as new documents emerge.
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Figure 3. The dynamics of the velocity distribution in the ’Reheating’ knowledge network topic (left)

and the evolution of the critical exponent for the corresponding spanning tree networks, calculated

with a one-year time step. The comparison of changes in the topic’s relative simplex volume over time

(black dashed line) is shown alongside the total number of related documents (blue line) published

annually in ArXiv.

This behavior re�ects the natural evolution of a topic as new publications gradually reduce the

variability of conceptual relationships, stabilizing the structure of the knowledge network. In the early

stages, when the topic is less developed, introducing new concepts and connections leads to

signi�cant adjustments in the network geometry. The most relevant connections are established as

the topic matures, and the network exhibits slower and more uniform changes that continuously

compress the size of the topic. This trend highlights the self-organizing nature of knowledge

networks, where initial dynamism gives way to a stable structure as the topic approaches a state of

equilibrium.

Using the topic volume as the volume of a multidimensional simplex allows for a comprehensive

assessment of the impact of selected publications on the geometry of the studied topic, considering all

possible connections between concepts simultaneously. The impact structure can also be retrieved

from the analysis of the generalized ’velocity’ matrix-like approach when we trace not timely changes

but the e�ect that a speci�c group of documents makes on the structure of the studied topic.

Document metadata allows for broad classi�cation, and our approach allows us to quantify the impact

of some generalized class of documents that we associate with some abstract ’agent’. It can be an

author, journal, publisher, grant agency, institution, country, or geographical region. We can identify

the impact of a speci�c topic on another topic, as long as we can identify relevant groups of documents

in a particular database.
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In Figures 4 and 5, we present the relative volume changes of the topics "Reheating" and

"International Security" attributed to documents associated with di�erent countries and publishing

companies. To calculate the impact at the country level, we classi�ed the ArXiv documents by the

a�liation of the corresponding author recorded in the Web of Science database and computed the

relative volume using Eq. (7). However, the obtained document-country associations do not account

for coauthor a�liations, which means that our results are limited to the primary a�liations of the

corresponding authors. This limitation highlights an avenue for future re�nement of the method by

incorporating a broader range of metadata to capture a more comprehensive picture of the in�uence

of documents.

Figure 4. The impact on the ’Reheating’ topic knowledge network with   concepts from journals

(left) and countries (right), measured as the relative change in the topic’s simplex volume based on the

number of relevant documents published in ArXiv from 1990–2018.

We do not face the mentioned ambiguity in the case of publisher- or journal-related collections, as

these associations are more straightforward and unambiguous. Each document is uniquely attributed

to a speci�c journal or publisher, allowing for a precise analysis of their in�uence on the topic’s

structure. This direct correspondence ensures that the calculated relative volume changes genuinely

re�ect the impact of these publishing entities without the need to account for overlapping

contributions or multiple a�liations.

n = 268
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Figure 5. The value of the impact on the "International security" topic knowledge network with 

 concepts from documents related to countries (right) and publishers (left), measured as

relative topic simplex volume change per document published in the period 2010-2024.

Analysis of the structure of publisher and journal impact can provide valuable insights into how the

dissemination of knowledge through speci�c channels shapes the evolution of scienti�c topics. For

example, it can reveal whether certain publishers or journals specialize in fostering particular

research areas or play a signi�cant role in diversifying related concepts within a topic. These �ndings

improve our understanding of the academic ecosystem and help identify key contributors to the

growth and development of speci�c domains.

n = 148
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Figure 6. The structure of the largest impact made on the "Reheating" topic network structure from

documents whose corresponding author has an a�liation in the United States of America. The node of

the highest connectivity and its related vertices are extracted from the graph di�erence spanning tree

network (left) and the Delaunay complex for this network (right).

The impact on the geometry of a topic made by an external agent can be analyzed using a similar

approach to that employed to quantify dynamic changes in the corresponding network topology. By

calculating the di�erence between the distance matrices - one derived from all relevant documents

and another from a subset that excludes publications associated with a speci�c agent - we obtain a

generalized velocity matrix. This matrix allows us to extract both the overall structure of the impact

and its most signi�cant contributions.

As an example, Figure 6 illustrates the largest contribution to the topic "Reheating" from publications

categorized under "United States" (i.e., where the corresponding author is a�liated with an

institution in the United States). The subgraph for the corresponding topic highlights this

contribution. Additionally, the Delaunay complex computed over the spanning tree of the generalized

velocity matrix provides a comprehensive view of changes in the information topology of the studied

topic. In Figure  6 (right), the multidimensional structure of the contribution and the relative

magnitude of the changes are depicted. Notably, the triangle formed by the concepts "E-folding,"

"Slow roll," and "Curvaton" represents the most discussed terms within the "United States"

document category.
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4. Conclusions and outlook

This study presents a novel framework for analyzing the dynamics of scienti�c topics and their

evolution within knowledge networks using information-theoretical metrics. Using the variation of

information (VI) metric and normalized velocity matrices, the methodology captures temporal and

structural changes in concept networks, providing insight into the mechanisms driving knowledge

production and dissemination. The approach provides a robust tool for quantifying the in�uence of

various agents—such as countries, journals, and institutions—on the geometry of these networks.

The key �ndings of this research include:

Dynamic Knowledge Compression: The analysis reveals that as topics evolve, knowledge networks

exhibit self-organizing behavior, transitioning from high variability in conceptual relationships to

a stable structure characterized by reduced topic volume. This pattern re�ects the natural

convergence of scienti�c concepts as new publications emerge.

Agent-Speci�c Impacts: By associating changes in topic volume with speci�c agents, the

methodology quanti�es the in�uence of authors, institutions, journals, and nations on shaping

topic dynamics. This capability highlights the role of prominent contributors and dissemination

channels in the advancement of speci�c research areas.

Scalability and Adaptability: The approach demonstrates its e�ectiveness across diverse datasets,

from physics-related topics in ArXiv to international relations topics in JSTOR, showcasing its

adaptability to di�erent disciplines and research landscapes.

The practical implications of these �ndings extend to academic journals, funding agencies, and

research institutions, enabling data-driven decision-making in resource allocation, trend prediction,

and fostering interdisciplinary collaborations. The use of normalized geometric metrics also allows

for cross-comparison of topic dynamics across databases, providing a standardized measure of agent

impact.

Looking ahead, future research should address the universality of these �ndings in diverse datasets

and disciplines. Incorporating additional normalization techniques and expanding metadata analysis

could further re�ne the accuracy and applicability of the proposed framework. Furthermore, the

integration of dynamic clustering algorithms and advanced visualization techniques could enhance

the interpretability of knowledge network structures and their evolution.
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By establishing a quantitative framework for understanding and navigating the complex landscape of

scienti�c discourse, this study contributes to the advancement of the �eld of knowledge network

analysis and strategic planning in science policy and research management.

Open science practices

Current research uses JSTOR and ArXiv (http://arxiv.org), which are publicly available sources of

information containing metadata and texts of scienti�c documents. In JSTOR

(https://constellate.org/), the texts of the documents are parsed, and uni-, bi-, and trigrams are

extracted, making it possible later to match available dictionaries and collect the ontologies term

frequencies. The scienti�c dictionary provided by the ScienceWise platform for scienti�c analysis is

not openly available due to the terms of the conducted agreement with this platform.

Appendix A: Vertex connectivity order distributions in the velocity

matrix

This study introduces the velocity matrix, a tool for quantifying temporal changes in the topic

distance matrix, o�ering insights into the dynamic evolution of conceptual relationships within a

topic network. Calculated from non-normalized distances, this matrix includes positive and negative

elements that re�ect changes in interconcept distances over time intervals. Positive values indicate

increasing distances, suggesting a weakening of mutual relationships or divergence in the topic’s

structure, while negative values signify decreasing distances, implying strengthening relationships or

convergence.

By separately analyzing the positive and negative components of the velocity matrix, concepts with

the highest relative velocity in divergent and convergent subnets can be identi�ed. Applying a

minimum-spanning tree algorithm to the weighted adjacency matrix of the negative velocity matrix

highlights the most interconnected and rapidly converging concepts. These concepts represent key

sources of information context or the main spreaders within the topic network. Similarly, analysis of

the weighted adjacency matrix of the positive velocity matrix using the maximum spanning tree

algorithm reveals the concepts that are most divergent, representing areas where conceptual

relationships are weakening or fragmenting. These divergent concepts may correspond to emerging

subtopics, shifting research priorities, or outliers that challenge established paradigms within the

topic network.
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Vertex orders in converging and divergent spanning tree networks are distributed according to a

power law  , indicating the presence of scale-free network structures. The value of the   exponent

can be interpreted as the inverse "temperature" of the corresponding network. A lower value of 

  corresponds to a heavier tail in the distribution, indicating that certain concepts exhibit high

connectivity. This high connectivity may arise from their intensive usage or, conversely, from the less

frequent usage of these concepts in the literature.

Figure A1. Log-log plot for vertex orders within the “Reheating” related spanning tree network of the

positive and negative parts of the velocity matrix for 2017-2018. The x-axis represents the vertex order

(degree), and the y-axis shows the number of nodes. The vertex order distribution follows a power-

law  . The exponents were obtained from linear regression (  - red line) and model-

derived[22] (  - green line).

The presence of positive elements in the velocity matrix is primarily an artifact of the growth of the

data set, as the increasing number of documents in�ates the entropy and distances between concepts.

To mitigate this e�ect, normalization of the topic distance matrix with respect to the dataset’s

maximum entropy,    (where    is the number of documents), ensures size invariance. This

normalization removes positive elements, isolating genuine convergence patterns and revealing

conceptual compression driven by new publications and strengthened relationships.

Appendix B: The Relative Simplex Volume

To quantify the impact of speci�c collections of documents associated with certain agents on the

geometry of a knowledge network, we calculate the normalized relative change of a topic volume 

. This measure provides a robust comparison of topic volumes derived from full and �ltered

k−α α

α

k−α αanalytic

αmodel

Nlog2 N

Δ /V
~
n Nr
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document corpora, accounting for di�erences in dataset sizes and preserving the network’s structural

properties. The relative change of a topic volume of a dimension   is de�ned as a relative di�erence: 

 where   and   are the simplex volumes of the network of   concepts calculated from the full and

�ltered document sets, respectively, containing   and   total documents. In a �ltered data set, we

leave only those documents that are not related to the speci�c agent (e.g., country, journal, author,

etc.). The volumes   and   are calculated based on the normalized distances  , where 

 represents the size of the actual set of documents[11]. This normalization accounts for the size of the

data set and ensures consistency in comparing network volumes across data sets.

The normalized relative volume change is calculated using Eqs. (6) and (B1) as: 

 where   is the number of relevant documents related to the considered agent and topic,

and    and    are    Cayley-Menger matrices. The large sizes of the data sets and,

consequently, the values of   or    in the distance normalization factors create challenges for the

numerical calculations of the Cayley-Menger determinants due to the very small values of the matrix

elements. To address this, we used the property   to extract the normalization

factors   from the determinant in Eq. (6).

The expression in Eq. (B2) provides a �nite quantitative measure of the geometric compression of a

topic due to the in�uence of a selected subset of publications. Normalization by the number    of

documents in such a subset allows us to compare the impact of agents of di�erent sizes and measure

the average creativity of associated knowledge production. By capturing these e�ects, it o�ers a

generalized perspective on estimating how scienti�c publications shape the structure of the

knowledge network.

Footnotes

1 For more information, see https://en.wikipedia.org/wiki/Cosmic_in�ation.
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