L]
30 January 2025, Preprint vi - CC-BY 4.0 Qe 1 0 S PREPRINT

Research Article

Cauchy-Type Identities Through
Collocation Matrices

P. Diaz!, E. Mainar!

1. Departamento de Matematica Aplicada/ITUMA, Universidad de Zaragoza, Spain

We present a broader framework for the Cauchy identity derived from the determinant expansion of
collocation matrices. This approach yields an infinite family of identities, where the original Cauchy
identity stands as a particular case. To illustrate the versatility and depth of this approach, we
provide a range of compelling examples, showcasing the connections and applications of these novel

identities.

1. Introduction

The celebrated Cauchy identity is expressed as:

11 — - > aa@)sa),
A

ij 1 T

where s)(z) and s,(y) denote Schur functions indexed by the partition A, and z = (z1, z2,...) and
y = (y1,y2,...) are sets of variables. This identity reveals deep connections between seemingly

disparate entities, such as determinants, symmetric polynomials, and partition functions. Rigorous
algebraic proofs of the identity can be found in classical references such as [ ang 2],

Among its many interpretations, one of the most illuminating stems from representation theory. The
Cauchy identity can be understood as a result on the characters of the General Linear group (see, for
instance, 31, chapter 38), which makes it a fundamental piece in algebraic combinatorics.

The Cauchy identity has inspired numerous generalizations. Extensions exist for characters of
Orthogonal and Symplectic groups [4, double-Schur polynomials 31, Hall-Littlewood

polynomials ¢!, and ¢-deformations [71, among others. Each of these adaptations reveals new layers

of insight into the interplay between algebraic structures.
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In this paper, we propose a unified framework that encompasses the Cauchy identity and its

variations. By analyzing the determinant expansions of a family of collocation matrices, we derive an

infinite class of identities, with the classical Cauchy identity emerging as a special case.

2. Collocation matrices and Cauchy-type identities

Theorem 1. Let g € C*°, and call R the radius of convergence of the McLaurin series of g. Consider the n-

tuplas X = (z1,...,2,) and A= (a1,...,a,), such that z; # z; and a; #a; for i#j Let

G =(g1,.-.,9n), where gi(z) := g(arx), defined on = € (—R/ay,R/a;). Let us call Mg(X) the

collocation matrix of the system G on the n-tupla X,

Me(X) == (9(ajz:))1<ij<n-

For zj, € (—R/amaz, R/Gmaz ), where apq, = max{|ai|,...,|an|}, we have
Z G sa(a ay)si(z Zn) det Mc(X)
— S$x\a1,...,0p )8\ (L1y.--3Ln) = s
A CA ‘le,...,wn|“/¢zl,...,an|
where, for any partition A = (Ay,...,\n), sx(z1,. . ., ) is the corresponding Schur polynomial, and

G =[N M0), Cri=]]Nn+n-0L
=1 =1

Proof. For zj, € (—R/amaz , R/@maz ) We can identify g(x) with its McLaurin series. Thus,

= 9" (0)
det M (X) = det (g(ajx;)) = det ; o (aj@)
00 (k) 00 n (k1)
) g% (0) . g*(0) , k.
= Z det( o (ajmi)kJ — Z H ™ a," | det (g;/)
Ky yein =0 J Eyykin=0 [ 1=1
o0 n o) (0
2 g0’ (0) (z)] G)
= a,’ | det (z,”V
k> >kn:0¢762;n [H k”(l)' : ( )
0 n_ oK) (0 ,
® Z lH g '( )af”(”] det <wa) sgn(o)
k1> >kn=0gcS, LI=1 ki!
00 n kp)
O] g (0)] kj kj
= det (a,” ) det ( z,”
k1>'Z>:kn:0 lg kl! ( ) ( )
n (A+n—1) 0 o .
O 5 T2 et (a9 7) et ()
by =1 (A +n =)
I(A)<n
(6

G
= |V2v1,...,zn||1/:11,..4,an | Z _)\ 8)\((11, s aan)s)\(wla .o ,wn)a
O

where, on the indicated equalities, we have used the following facts.

geios.com doi.org/10.32388/0A3U42


https://www.qeios.com/
https://doi.org/10.32388/OA3U42

1. We used the letters ki, .. ., k, to represent the non-negative integers specifying the degree of the
terms in the McLaurin expansion for each of the n columns. The sum on the variables
ki,...,k, of the determinants follows from the application of usual properties of determinants.

2. Considering det (wfj), it becomes evident that any term in the sum where k; = k,, for
m,l=1,...,n with [ # m makes no contribution. Therefore, the summation over n-tuples
(k1,...,k,) reduces to a summation over tuples with distinct entries. Consequently, we can
decompose the sum into two parts: the sum over ordered sequences k; > --- > k, and the sum
over all permutations of the elements of each sequence, expressed as (ky(1),Ko(2)5- -5 Ko(m)),

where o belongs to S,,, the permutation group of n elements.

3.Be aware that, for o€ Sy, we have
a(l g(kl
Hll k( —Hl1 l, and det( "“)—det( )sgn()
N !
where sgn(o) denotes the signature of the permutation o, taking the value +1 if o is even and
—1if o isodd.
4. Note that

5. After performing the substitution
kk=XN+n-1, 1=1,...,n,
each sequence k; > --- > k, is transformed into a partition with at most n parts, (A1,...,A,). It
is straightforward to observe that summing over all sequences k; > --- > k, is equivalent to
summing over all partitions A with I(X) < n.

6. We have applied Jacobi’s bialternant formula:
det ( )\ +n— _])

Let us observe that the restriction /(\) < n is unnecessary in the summation, since Schur

Sa(Z1y.-ey2p) =

functions are zero whenever /() > n.J

Remarks. As a first consistency check, observe that any permutation of the variables (a,), - - - ;@) OF
(mg(l), .. .,:c(,(n)) leaves both sides of (1) invariant. Moreover, note that the evident symmetry under the
exchange (ai,...,a,) <> (1,...,&,) on the LHS of (1) is mirrored on the RHS of (1). This is because, under

such exchange, the collocation matrix M¢(X) is transposed, leaving its determinant unchanged.
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Finally, observe that a function g uniquely determines both the left-hand side of (1), through the coefficients
G, and the right-hand side, via the collocation matrix M(X). Consequently, each analytic function g gives
rise to a distinct Cauchy-type identity. This result highlights the versatility of Theorem 1, which will be

further demonstrated in the following illustrative examples.

Example 1. For a single variable z,, and a; = 1, equation (1) is just the McLaurin expansion of g(z). Notice
that for this case, the partitions with one part, [(\) = 1, are the only ones which contribute to the sum. Now,

for |A\| = m, we have
Cr=m!, Gy=g"™(0), detMg(X)=g(z1),

and the McLaurin series of g is recovered.

Example 2. For g(x) = T, we have G, = Cj, and

1
Mg(X) = —— .
&%) ( 1—ajz; >1<i,j<n

Applying (1), we recover the Cauchy identity

1
det ( - ) B 1

- b
|Vz1,.“,zn|“/a1,...,an ‘ i,j 1- a;T;

ZS)\(ala- . '7an)s)\(x17"' axn) =
A

where (2) follows from an equivalent variant of the classic Cauchy determinant identity

s () = Vi W]
Ti — Yj Hi,j(:ri - yj)

Example 3. If g(z) is a polynomial of degree m > n, that is, g(z) = by + by + - - - + b, z™, then
Mg(X) = (Pj(2i) )1<ij<n,
with
Pj(z) = by + biajz + -+ + bpaz™.

We obtain a bounded sum since

G :{C)\B/\, if A1§m7n+1,
* o, i AN >mtl-n,

with B = H?:l bx,+n—1. Thus,

det(P;(z;))
|‘/11,. «aIn ‘ |‘/:ll,. . an ‘

Z Bysa(ai, .-, an)sx(x1,. .. @) =
A

A<m—n+1
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Note that if m < n, we have G = 0, but also det(P;(x;)) = 0, since the polynomials (P, ..., P,) are not

linearly independent. Therefore, the identity holds trivially.

In the particular case where by = - -- = b,, = 1, for which By = 1, we obtain bounded sums that correspond

to finite truncations of the Cauchy identity (2).

As another particular polynomial case, let us consider the sequence of non-negative integers p; > -+ > py,

and g(z) = "1 4+ x#2 + - - - + x#n. In this case we have

G}\:{C)\, 1f~)\:'(u1fn+1,u27n+2,...,un), (3)
0, otherwise.
So, we obtain
det(Pj(z;))
Sy 7n+1,m,un)(a1’ AARE an)s(pl 7n+1,.“,p,n)($17 ceey wn) = ‘ : (4)

‘/11,...,1” ‘ |1/al7~~~7l1n |

The identity (4) can be directly checked by applying the Jacobi’s bialternant formula and basic properties of

determinants. Namely, det(AB) = det(A) det(B), and det(A') = det(A).

Let us call P the set of integer partitions. We define
Preven:={A€P|N+n—lisevenforl=1,...,n},
Proig ={A€P|N+n—lisoddfori=1,...,n}.

These subsets of partitions are relevant since for even (odd) functions g(z) only the partitions

belonging to P, even (Pr,04d) Will contribute to the sum in (1).

Example 4. For g(z) = 1+$2, we have

and

{C)u if)\EPnevena
G, = ’
0, otherwise.

Applying (1), we obtain

Z salar, ... an)sa(z1,. .. 20) = H(ai +aj)(mi+wj)H 12 =

AEPn cven i<j i 1- a; T

where the last equality follows from the Cauchy determinant identity, and the fact that

geios.com doi.org/10.32388/0A3U42


https://www.qeios.com/
https://doi.org/10.32388/OA3U42

Vie a2l = Vayoal [T (@i + 2))- (6)

3,
i<j

Example 5. For g(z) = Tlﬂ’ we have

and
2|A|-n(n—1) .
Gy = { (_1) 4 Cy, if A ¢ Pn,evem
0, otherwise.

Applying (1), and taking into account (6), we obtain

2 -n(n-1) [Li<j(ai + aj)(zi + z;)
—1)7 1 saar,.--,an)80(z1,. 0 20) = )
AE Py cven Hi,j(l +a "Ej)

Note that (7) can be obtained directly from (5) by the change aj, — ia, k= 1,...,n.

Example 6. For g(z) = €%, we have
Me(X) = (€Y% )1<ij<n,

and G = 1 for all partitions. So, we can write

det(e“jmi)

1
Z C_s)\(ala' . '7an)8)\(m17' = 7mn) =

A A fol,...,wn'“/(zl,...,an' ‘
Furthermore, if we consider g(z) = sinh(z), we have
Mg(X) = (sinh(a;z:))1<ij<n,
with

{ 1, ife Pn,odda
Gy =
0, otherwise.

Then, we have:

1 det(sinh(a;z;))
Z —sa(ar,...,an)sa(@1,. .. 2n) = .
AP, oad Cx Ve an | [Var,..an|

Example 7. For g(z) = sin(z), we have
Mg(X) = (sin(a;zi))i<ij<n,

with
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2|A|+n(n+1) .
G/\ — {(_1) 4 3 lf)\EPn,odd;
0, otherwise.

and the following Cauchy-type identity is derived

2|A|4+n(n+1)

(1)~ 1 det(sin(a;z;))
Y s m)na(e ) = .
/\GPnygdd A ‘V:El,- cHIn | H/ah- - oan |

Example 8. For g(z) = In(1 — z), we have
Ma(X) = (In(1 — a;i))1<ij<n

with Gy = Cy/P and Py = [['*) A;. The following identity is obtained:

1 det(ln(l — ajxi))
Z—sA(al,...,an)s)\(ml,...,mn): .
A P)‘ |1/ml,»--,acn‘|‘/al,~-7an|
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