
24 January 2025, Preprint v1 · CC-BY 4.0 PREPRINT

Research Article

Superposition in Transformers: A Novel Way
of Building Mixture of Experts

Ayoub Ben Chaliah1, Hela Dellagi1

1. Independent researcher

Catastrophic forgetting remains a major challenge when adapting large language models (LLMs) to new tasks

or domains. Conventional fine-tuning often overwrites existing knowledge, causing performance degradation

on original tasks. We introduce Superposition in Transformers, a novel architecture that leverages autoencoders

to superimpose the hidden representations of a base model and a fine-tuned model within a shared parameter

space. By using B-spline-based blending coefficients and autoencoders that adaptively reconstruct hidden

states based on the input data distribution, our method effectively mitigates catastrophic forgetting and

enables a new paradigm of “in-model” superposition. This approach preserves original model capabilities

while allowing compact domain-specific expertise to be added, and it supports dynamic switching between

model states during inference.

1. Introduction

Large language models (LLMs) such as GPT-3 [1] and GPT-4 [2] have shown remarkable performance on various

language tasks. However, adapting these models to new tasks or domains often leads to catastrophic forgetting,

where newly learned information overwrites older knowledge [3]. This challenge becomes critical in continual

learning or domain adaptation settings, where preserving performance on original tasks is essential [4][5].

Most existing Mixture of Experts (MoE) [6] methods expand parameter count significantly by introducing

distinct expert modules and gating networks [7][8]. Parameter-efficient fine-tuning approaches such as

Adapters [9] or LoRA [10] often rely on modifying or appending new weights to the base model [11][12][13]. In

contrast, our method produces a single merged set of parameters—via B-spline blending—while training

autoencoders to reconstruct the original hidden states on demand. During training, both the base and fine-tuned

model parameters are accessed in a frozen manner to generate hidden states, but in the end, only the new

blended model parameters (plus the autoencoders) remain. This design merges the capabilities of two experts

into one compact parameter space and mitigates catastrophic forgetting by preserving each model’s knowledge

in a superposed, reconstructable form.

The contributions of this paper are as follows:

Qeios

qeios.com doi.org/10.32388/OGJ9K5 1

https://www.qeios.com/
https://doi.org/10.32388/OGJ9K5

Autoencoder-Based Superposition: We demonstrate how autoencoders can reconstruct hidden states from

either the base or fine-tuned model, effectively gating the representation space to prevent catastrophic

forgetting.

Jointly Learned B-Spline Blending: By training blending coefficients jointly with the autoencoders, we find a

balance that preserves each model’s capabilities while introducing minimal new parameters.

Parameter Efficiency and Practicality: This approach retains the majority of each model’s parameters in

frozen form and only learns relatively small auxiliary modules, making it feasible for real-world use.

Future Directions: We discuss possible expansions of this framework, such as merging specialized experts for

chain-of-thought reasoning or leveraging token-level signals to dynamically switch hidden states within the

same forward pass.

2. Background and Related Work

Our work lies at the intersection of several key research areas in neural networks, including Mixture of Experts

(MoE) models, parameter-efficient transfer learing, and neural network compression. Additionally, we draw

from studies on superposition and polysemantic neurons in language models.

Mixture of Experts. MoE models dynamically allocates different experts to different inputs, improving capacity

and specialization. While effective, MoE methods often increase parameter count and rely on gating

networks [8]. Our method similarly aims to leverage multiple “expert” models but does so via a shared

parameter space and lightweight autoencoder modules.

Parameter-Efficient Transfer Learning. Recent techniques like Adapters [9] and LoRA [10] reduce the cost of

fine-tuning large models by injecting small trainable components. We differ in that we freeze both the base and

fine-tuned models; instead of adding new layers directly on top of them, we blend their hidden states and

reconstruct them adaptively. This approach can be viewed as orthogonal to Adapters or LoRA, potentially

combining well with these methods.

Superposition and Polysemantic Neurons. In neural networks, superposition refers to efficiently encoding

multiple features or tasks within the same parameter space [14]. Large LLMs often exhibit polysemantic neurons

—units that respond to multiple unrelated concepts [15]. Recent research into feature interpretability has shown

that sparse autoencoders (SAEs) can transform model activations into more interpretable feature spaces,

helping to disentangle polysemantic neurons into monosemantic units [16][17][18]. By leveraging these learned

features, researchers have identified significant similarities across latent spaces in different LLMs, suggesting a

shared representational structure [16]. Our approach promotes polysemanticity by forcing the network to

encode the states of two distinct models in overlapping neurons, constrained by autoencoder bottlenecks.

qeios.com doi.org/10.32388/OGJ9K5 2

https://www.qeios.com/
https://doi.org/10.32388/OGJ9K5

Neural Network Compression and Model Merging. Prior methods for merging or compressing models [19]

[20] generally aim to reduce memory overhead. By contrast, our framework focuses on preserving both original

models in a single parameter space without overwriting. The added overhead is small (primarily the

autoencoders and the blending coefficients) compared to training or storing two separate models.

Preventing Catastrophic Forgetting. Preventing catastrophic forgetting, where models lose previously learned

knowledge when fine-tuned on new tasks, has been a critical area of research in transfer learning [5]. Our

method addresses this by freezing the base and fine-tuned models, thus preserving their original knowledge.

The B-spline blending coefficients and autoencoders provide a flexible mechanism for combining knowledge

from both models without overwriting their respective features. This approach shares similarities with

knowledge distillation techniques but focuses on preserving knowledge across layers rather than compressing it

into a smaller model.

3. Proposed Method

3.1. Overview

We merge a base model and a fine-tuned model into a single “superposed” model . To do

this, we:

Blend Hidden States per Layer using , which we compute via B-spline interpolation.

Insert Autoencoders at selected layers to reconstruct the blended states either as or , based on input

labels or domain cues.

Train Jointly the B-spline control points, layer biases, and autoencoder parameters so that each layer’s

 best preserves domain-specific details when guided by the autoencoder reconstruction loss.

3.2. Blending Model Weights Using B-Splines

3.2.1. Motivation

Averaging or naively mixing model weights can degrade performance, as it does not adapt to which features are

critical to each model. Instead, we blend hidden states directly, allowing each layer to remain mostly intact

(frozen). The -values are learned with a mechanism that encourages smooth transitions across layers.

3.2.2. Formulation

For layer , let and be the hidden states from the base and fine-tuned models, respectively. We define

Mbase Mfine Mmerged

α(l)

h
base

h
fine

α(l)

α

l h
base
l h

fine
l

= (1 − α(l)) + α(l) ,hl h
base
l h

fine
l

qeios.com doi.org/10.32388/OGJ9K5 3

https://www.qeios.com/
https://doi.org/10.32388/OGJ9K5

where are trainable control points for a B-spline of degree and is a layer-specific bias term.

The B-spline basis functions ensure smoothly varying . We freeze the weights of both and

, focusing on learning only , , and the autoencoders.

3.3. Merged Model Architecture

3.3.1. Merging Models Post-Training

After training, one option is to produce a single model whose parameters reflect a final hard merge of the two

original models:

where and are the layer parameters. This yields a standalone model with minimal overhead.

Alternatively, one may keep the B-spline plus autoencoders as a gating system that dynamically adapts to

inputs.

3.3.2. Forward Pass with Merged Model

During inference, the model computes hidden states for each layer via blended embeddings and self-attention

(incorporating) and optionally applies an autoencoder to refine , reconstructing the hidden states that

best suit the input’s domain. This structure preserves each model’s domain knowledge while introducing

minimal overhead.

3.4. Autoencoders for State Reconstruction

3.4.1. Architecture

At each selected layer , an autoencoder compresses the blended hidden state into a bottleneck and

reconstructs it: and .

We train it to match with either or . We skip embedding layers and the final layer norm to maintain

alignment with the original model heads.

3.4.2. Minimizing Information Loss

Because and the autoencoder parameters are trained jointly, naturally adjusts so that the autoencoder can

accurately reconstruct either or . This synergy ensures that if reconstruction error is high, shifts to

a region that better preserves salient features from the respective domain.

α(l) = clamp((l) + , 0, 1)∑
i=1

N

ciBi,k bl

{ }ci k bl

(⋅)Bi,k α(l) Mbase

Mfine { }ci { }bl

= (1 − α(l)) + α(l) ,θl θbase
l

θfine
l

θbase
l

θfine
l

α(l) hl

l hl

= Encoder()zl hl = Decoder()ĥl zl

ĥl h
base
l h

fine
l

α α

h
base
l h

fine
l

α(l)

qeios.com doi.org/10.32388/OGJ9K5 4

https://www.qeios.com/
https://doi.org/10.32388/OGJ9K5

3.4.3. Role of Autoencoders in Encouraging Polysemanticity

Each autoencoder’s bottleneck forces the network to encode crucial details from both models within a limited

dimension. This encourages polysemantic neurons, since the same hidden units may now carry signals relevant

to both tasks. A narrower bottleneck heightens polysemantic pressure but can also degrade domain-specific

detail; a wider bottleneck reduces polysemantic pressure but can maintain more domain specificity.

3.4.4. Extending to a 2D-alpha Model (Optional)

One can extend to a vector for per-dimension blending. In this scenario, local features (extracted by

convolution layers) and global features (captured by a low-rank adapter) are combined in the autoencoder. The

2D-alpha approach delves deeper into exploring the impact of the autoencoder on the polysemantic nature of

neurons within a transformer block. While more expressive, it also increases complexity and may demand

careful tuning to avoid overfitting.

α(l)

qeios.com doi.org/10.32388/OGJ9K5 5

https://www.qeios.com/
https://doi.org/10.32388/OGJ9K5

Figure 1. Overview of a GPT-2 Merged Model Architecture.

3.5. Training Procedure

3.5.1. Objectives

We optimize two core objectives: a standard language modeling loss , preserving fluency and coherence and

the reconstruction error between and the target hidden state or . An additional alpha regularization

term may be applied to keep smooth or centered.

3.5.2. Loss Functions

We generally use:

LLM

ĥl h
base
l h

fine
l

LAlphaReg α

L = + +λLMLLM λReconLRecon λAlphaLAlphaReg

qeios.com doi.org/10.32388/OGJ9K5 6

https://www.qeios.com/
https://doi.org/10.32388/OGJ9K5

where , , and balance the relative importance of each component. is typically Mean

Squared Error (MSE) or L2 distance over the hidden states. encourages the control points of the B-

spline-based blending coefficients to adhere to desirable properties. It ensures smooth and interpretable

blending, avoiding overfitting to noisy representations.

3.5.3. Optimization

We freeze all parameters of and . The trainable variables are the B-spline control points and

biases as well as the autoencoder weights and biases per selected layer.

By iterating through mini-batches, we compute hidden states from both models (frozen), blend them via to

produce and use an autoencoder to reconstruct into either or . We then backpropagate the

reconstruction error to update and the autoencoder parameters. The final forward pass for language modeling

also contributes to , ensuring that fluency is maintained.

3.5.4. Role of Labels

Labels indicating whether an input belongs to the base or fine-tuned domain can guide which hidden state the

autoencoder targets. While optional in principle, these labels can significantly speed up convergence and

improve accuracy of reconstruction for each domain.

4. Experiments and Results

In this section, we evaluate the proposed merged model, by integrating a base GPT-2 [21] model and a fine-tuned

GPT-2 model trained on French text. We focus on demonstrating how the autoencoders enable the superposition

of transformer blocks from different fine-tunes, allowing the merged model to effectively combine

representations from both models. Our analysis includes performance metrics, hidden state reconstruction and

the emergence of polysemantic neurons.

4.1. Experimental Setup

We compare a Base Model (GPT-2 trained on English data), a Fine-Tuned Model (GPT-2 fine-tuned on a French

corpus) and the Merged Model which combines the base and fine-tuned models using layer-wise blending with

learned values and incorporates autoencoders to enable superposition. For evaluation, we used two datasets,

an english dataset that contains a subset of the GPT-2 training data (6,000 samples repeated with range(3) in

the 1D experiment and repeated with range(2) in the 2D experiment) and a french dataset (18,000 French

Wikipedia articles for the 1D model and 12,000 French Wikipedia articles for the 2D model). 10% of the combined

samples are reserved for validation.

In the case of the 1D-alpha GPT2 model the number of parameters per autoencoder is:

λLM λRecon λAlpha LRecon

LAlphaReg

Mbase Mfine { }ci

{ }bl

α(l)

hl hl h
base
l h

fine
l

α

LLM

α

qeios.com doi.org/10.32388/OGJ9K5 7

https://www.qeios.com/
https://doi.org/10.32388/OGJ9K5

. The

bottleneck size used in the 1D-alpha model experiment is 576, resulting in approximately 1.7 million additional

parameters per autoencoder.

4.2. Results of the 1D model

4.2.1. Perplexity per language

Tables 1 compares the perplexity of the models using French and English inputs : The perplexity results show

distinct performance characteristics for the models. For French inputs, the fine-tuned model has a significantly

lower perplexity (29.57) compared to the base model (132.02), indicating its suitability for French. Conversely,

the base model performs best on English inputs with a lower perplexity (28.88), suggesting it was primarily

optimized for English.

The merged model demonstrates closer perplexity to the base model in English (43.14 vs. 28.88) and is

comparable to the fine-tuned model in French (33.20 vs. 29.57), indicating its effectiveness in bridging the

performance across both languages.

Model Language Perplexity

Base Model

English 28.88

French 132.02

Fine-Tuned Model

English 54.42

French 29.57

Merged Model

English 43.14

French 33.20

Table 1. Perplexity of the models on the evaluation datasets.

The merged model demonstrates closer perplexity to the base model in English (43.14 vs. 28.88) and is

comparable to the fine-tuned model in French (33.20 vs. 29.57), indicating its effectiveness in bridging the

performance across both languages.

4 × dimension of the hidden state × bottleneck size + dimension of the hidden state + bottleneck size

qeios.com doi.org/10.32388/OGJ9K5 8

https://www.qeios.com/
https://doi.org/10.32388/OGJ9K5

4.2.2. Overall Performance

To empirically demonstrate the advantages of our Superposition in Transformer technique, we conducted

experiments comparing Superposition Merging with linear interpolation and task arithmetic techniques. The

perplexity of the autoencoder-merged model (M-PPL=47.01) was markedly lower than that of the linearly

interpolated model (I-PPL=60.29) and the task arithmetic model (I-PPL=61.30) during the last epoch of

training, suggesting a higher confidence in predicting the next token. The merged model initially showed higher

perplexity than both task arithmetic and linear interpolation models but then achieved lower values as training

progresses (figure 2).

Similarly, the next-token prediction accuracy was also improved with Superposition Merging (M-Acc=0.3270)

compared to linear interpolation (I-Acc=0.3039) and task arithmetic (I-Acc=0.2957).

Figure 2. Perplexity evolution across epochs for different merging methods.

Additionnaly, we examined the Jensen-Shannon Divergence JSD values over different epochs during training.

The JSD drops sharply from M-JSD=82.9 to M-JSD=45.5 in the first two epochs. This drastic reduction indicates

that the merged model’s output distribution quickly diverges from the initial average of the base and fine-tuned

models. After this initial drop, the JSD values fluctuated between approximately M-JSD=36.5 and M-JSD=44.2,

suggesting that the merged model settles into a relatively stable output distribution that is distinct from the

simple average.

These quantitative results strongly suggest that Superposition Merging, facilitated by the learning capabilities of

autoencoders, offers a more robust and effective method for combining the strengths of independently trained

qeios.com doi.org/10.32388/OGJ9K5 9

https://www.qeios.com/
https://doi.org/10.32388/OGJ9K5

models. Unlike traditional methods that can lead to a homogenization of expertise, our approach shows

promising potential for achieving a genuine superposition, where the merged model can effectively leverage the

unique skills of each expert model within their respective domains. This opens up exciting possibilities for

creating more versatile and powerful AI systems by intelligently combining specialized knowledge.

4.3. Results of the 2D model

4.3.1. Hidden States in Layer 4

To evaluate how the autoencoders enable the adaptive blending of representations in the 2D-alpha model, a t-

SNE analysis is conducted on the hidden states from layer 4. Similar to the 1D-alpha model analysis, figure 3

effectively illustrates the model’s capability to align reconstructed hidden states with the appropriate model

based on input language. Specifically, for English inputs, the reconstructed states from the merged model are

closely aligned with the base model, indicated by the use of ” ” markers in the graph. Conversely, for French

inputs, these states align more closely with the fine-tuned model, which is depicted using ”x” markers. This

distinction visually underscores the model’s adaptive capacity to toggle between the base and fine-tuned model

states depending on the language context.

Figure 3. t-SNE visualization of layer 4 hidden states from the merged model and expert

models for English and French inputs (2D-alpha).

∘

qeios.com doi.org/10.32388/OGJ9K5 10

https://www.qeios.com/
https://doi.org/10.32388/OGJ9K5

4.3.2. Neuron Utilization and Polysemantic Neurons

Model Sparsity (%) Polysemantic Neurons (%)

Base Model 0.0166 1.8229

Fine-Tuned Model 0.0154 2.0833

Merged Model 0.0179 3.3854

Table 2. Sparsity and proportion of polysemantic neurons in layer 4 of the models.

The 2D-alpha model demonstrates enhanced neuron utilization (table 2). The increase in sparsity is minimal

and potentially arbitrary due to the model’s small size.

The percentage of polysemantic neurons is computed using a threshold value of 0.05. This threshold delineates

neurons based on the normalized difference in their average activations across different language contexts (e.g.,

English vs. French). Neurons with a normalized difference below this threshold are considered polysemantic

because they react similarly across linguistic contexts, suggesting a shared semantic load. However, using such a

fixed threshold might not reliably capture the full spectrum of neuron functionality or their sensitivity to

different contexts. Given the potential limitations of using a fixed threshold for identifying polysemantic

neurons, the comparative analysis of neuron diversity and activation employs a more dynamic approach.

4.3.3. Comparative Analysis of Neuron Diversity and Activation

To gain deeper insights into how the 2D-alpha merged model utilizes neurons compared to the base and fine-

tuned models, we conducted an analysis of neuron diversity and activation across layers. Instead of defining

polysemicity with a single threshold, this analysis evaluates the diversity of neuron responses through a

MiniBatchKMeans clustering algorithm,. The diversity is quantified using entropy measures derived from the

distribution of neurons across clusters formed based on their activation patterns. This method provides a deeper

insight into how neurons respond to different linguistic inputs, reflecting a broader range of neuron

functionality than can be detected by a simple threshold-based method.

Note: In the 2D-alpha model, the autoencoders were used starting from layer 4 until layer 10. Figures 4 and 5

clearly illustrate the contrast between layer 3 and the subsequent layers 4, 5, and 6.

The reduction in diversity metrics (figure 4) shows that neurons encode overlapping or generalized features.

While layers without (e.g. layer 3) autoencoders retain higher diversity due to the presence of specialized

qeios.com doi.org/10.32388/OGJ9K5 11

https://www.qeios.com/
https://doi.org/10.32388/OGJ9K5

neurons, the autoencoder forces neurons to unify and encode features relevant across multiple tasks or contexts.

This suggests a shift from task-specificity to multi-purpose functionality—a hallmark of polysemantic neurons.

Figure 4. Comparison of average neuron diversity across layers for the base, fine-tuned,

and merged models.

Figure 5. Comparison of mean neuron activation across layers for the base, fine-tuned, and

merged models.

qeios.com doi.org/10.32388/OGJ9K5 12

https://www.qeios.com/
https://doi.org/10.32388/OGJ9K5

The lower average activation magnitudes observed in pre-autoencoder layers reflect a shift towards encoding

distributed, low-magnitude representations. This subtle encoding strategy ensures that the autoencoder can

reconstruct activations effectively while maintaining compactness. Distributed, low-magnitude activations are

more likely to encode polysemantic features, as they provide flexibility and reuse across tasks.

5. Limitations

While our method demonstrates promising results, several limitations should be noted. Currently, this approach

might does not support dynamic state switching within a single input. Achieving this may require additional

mechanisms, such as token-level state signaling, which remains unexplored. Additionally, our experiments

focus solely on merging two models—one base model and one fine-tuned model. Extending this approach to

handle more than two models, such as combining multiple experts or integrating diverse knowledge domains,

may pose scalability challenges and require modifications to the blending and reconstruction processes.

6. Future Work

Tuning Bottleneck Hyperparameters: Experimenting with different bottleneck sizes can help balance the

trade-off between generalization and task-specificity.

Analyzing Cross-Layer Interactions: Investigate how the presence of an autoencoder in one layer influences

subsequent layers. Does the polysemanticity induced in one block propagate through the network?

Enable Language Switching Within a Single Context: A promising direction is enabling the model to alternate

between languages within a single context, such as generating output that seamlessly switches between

English and French while maintaining coherence and fluency. This could be particularly valuable for tasks

requiring multilingual communication, such as translation or conversational agents operating in diverse

linguistic environments. Special tokens or contextual cues could signal the model to adjust its

representations dynamically, ensuring that the transitions between languages preserve the original intent

and meaning of the sentence.

Merging Specialized Experts: We plan to explore merging a symbolic reasoning expert with a domain

knowledge expert. This would enable the model to switch between symbolic processing and contextual

understanding dynamically. This idea is analogous to the language switching above, as it allows seamless

transitions between different modes of cognition while preserving the overarching context.

Single Pass Generation: Similar to the language switching experiment, special tokens or cues could be used to

signal the model to switch states within a single generation sequence.

Example Scenario:

Input: ”Solve for : . Then, explain the significance of the solution in real-world applications.”x 2x + 3 = 7

qeios.com doi.org/10.32388/OGJ9K5 13

https://www.qeios.com/
https://doi.org/10.32388/OGJ9K5

Expected Behavior:

First Part (Symbolic Reasoning): The model uses the symbolic reasoning expert to solve the equation.

Second Part (Domain Explanation): The model switches to the domain knowledge expert to provide an

explanation.

7. Conclusion

The proposed method represents a significant advancement in enabling large language models (LLMs) to

integrate knowledge from multiple domains or tasks without sacrificing foundational capabilities or requiring

extensive parameter growth. By leveraging autoencoders and blending mechanisms, the approach facilitates

efficient knowledge integration making it a practical and resource-efficient enhancement to LLMs.

Experimental results highlight improvements in perplexity reduction, reconstruction accuracy, and hidden state

alignment with base and fine-tuned models. Techniques like t-SNE visualizations further validate the model’s

ability to adapt representations dynamically. This adaptability enables seamless processing of diverse inputs and

enhances multi-domain integration.

Beyond merging two models, this method promises broader applications, such as multilingual processing,

seamless language switching, and integrating symbolic reasoning with domain knowledge.

Looking ahead, this approach paves the way for the development of models capable of integrating diverse skills

and knowledge domains, representing a step toward more flexible, powerful, and general-purpose AI systems.

The potential applications are vast and exciting.

Appendix A. Training Algorithms

A.1. Loss Functions

The losses involved in the different architectures combines:

Reconstruction Loss

This loss measures how well the autoencoders reconstruct the blended hidden states. It uses both Mean Squared

Error (MSE) and the L2 distance between the reconstructed hidden states and the target hidden states.

L represents the number of layers in the transformer model.

Language Modeling Loss

This loss measures the standard language modeling objective using cross-entropy between the predicted logits

and the next token in the sequence.

LRecon

= [E []+]LRecon ∑
l=1

L

λMSE −∥
∥ĥl h

target
l

∥
∥

2

2
λL2 −∥

∥ĥl h
target
l

∥
∥2

(1)

LLM

qeios.com doi.org/10.32388/OGJ9K5 14

https://www.qeios.com/
https://doi.org/10.32388/OGJ9K5

Alpha Regularization Loss

The alpha regularization loss encourages the control points of the B-spline-based blending coefficients to

adhere to desirable properties. It ensures smooth and interpretable blending, avoiding overfitting to noisy

representations. It includes three components:

Smoothness Loss: Ensures that adjacent control points are close to each other, minimizing abrupt changes in

blending behavior

N represents the number of control points in the B-spline interpolation.

Centrality Loss: Penalizes deviations of the control points from a central value (e.g., 0).

Mean Bias Loss: Penalizes deviations of the mean layer-wise bias from zero to encourage balanced

adjustments across layers.

where is the mean of the layer-wise bias.

Variance Bias Loss: Encourages the variance of the layer-wise bias to match a desired target variance .

where is the variance of the layer-wise bias.

The total alpha regularization loss is:

The Total Losses

The total 1D loss combines the language modeling loss and the reconstruction loss. Each component is weighted

to balance their contributions during training.

The total 2D loss combines all the aferomentionned losses weighted to balance their contributions during

training.

= E[− log (|)]LLM ∑
t

Pθ wt w<t (2)

LAlphaReg

=LSmoothness ∑
i=1

N−1

∥ − ∥ci ci−1
2
2 (3)

=LCentrality ∑
i=1

N

∥ ∥ci
2
2 (4)

=LMeanBias μ2
b

(5)

μ2
b

σ2
target

=LVarianceBias (−)σ2
b

σ2
target

2 (6)

σ2
b

= + + +LAlphaReg λSmoothnessLSmoothness λCentralityLCentrality λMeanBiasLMeanBias λV arianceBiasLV arianceBias (7)

= +L1D λReconLRecon λLMLLM (8)

= + +L2D λReconLRecon λLMLLM λAlphaRegLAlphaReg (9)

qeios.com doi.org/10.32388/OGJ9K5 15

https://www.qeios.com/
https://doi.org/10.32388/OGJ9K5

A.2. 1D-alpha Model Training algorithm

Algorithm 1. Merging Two LLMs with B-spline Weight Blending and Autoencoders

qeios.com doi.org/10.32388/OGJ9K5 16

https://www.qeios.com/
https://doi.org/10.32388/OGJ9K5

A.3. 2D-alpha Model Training algorithm

Appendix B. Additional results of the 1D-alpha Model experiment

B.1. Visualization of Hidden States in Layer 4

To further illustrate how the autoencoders enable the superposition of representations, we perform a t-SNE

visualization of the hidden states from layer 4. Layer 4 is chosen as an early intermediate feature specialized

qeios.com doi.org/10.32388/OGJ9K5 17

https://www.qeios.com/
https://doi.org/10.32388/OGJ9K5

block.

Figure 6. t-SNE visualization of layer 4 hidden states from the merged model and expert

models for French inputs.

qeios.com doi.org/10.32388/OGJ9K5 18

https://www.qeios.com/
https://doi.org/10.32388/OGJ9K5

Figure 7. t-SNE visualization of layer 4 hidden states from the merged model and expert

models for English inputs.

Analysis

The t-SNE projection in Figures 6 and 7 provide a visual representation of how the merged model’s layer 4

hidden states are reconstructed based on the input data. Specifically:

English Inputs: The reconstructed hidden states of the merged model (blue points) cluster closely with the

hidden states of the base model (green points). This indicates that for English inputs, the autoencoders adjust

the blended hidden states to align with the base model’s representations.

French Inputs: The reconstructed hidden states of the merged model (red points) cluster near the hidden

states of the fine-tuned model (orange points). This shows that for French inputs, the autoencoders

reconstruct the hidden states to resemble those of the fine-tuned model.

This behavior demonstrates that the autoencoders effectively condition the merged model’s internal

representations based on the input language. By reconstructing the hidden states to match the appropriate

expert model, the merged model can adaptively process different languages within a unified framework.

Implications for Superposition

The t-SNE visualization highlights the role of autoencoders in enabling superposition:

qeios.com doi.org/10.32388/OGJ9K5 19

https://www.qeios.com/
https://doi.org/10.32388/OGJ9K5

Adaptive Representation: The merged model produces hidden states that are contextually aligned with the

relevant expert model, showcasing its ability to adapt representations based on input data.

Efficient Parameter Usage: By superimposing the representations within the same parameters, the model

avoids redundancy and efficiently utilizes its capacity.

B.2. Evaluation of Hidden State Trajectories

To evaluate the behavior of the 1D Merged Model, we analyzed the trajectories of hidden states across selected

layers in both English and French language samples. This analysis helps to visually understand how the merged

model acts given different input. Principal Component Analysis (PCA) was used to project the high-dimensional

hidden states into a 2D space, preserving the primary variance for visualization. The hidden states were

extracted for layers 3, 4, 5, 6, and 7 from the base, fine-tuned, and merged models so the markers in figure (8)

indicated the start (layer 3) and end (layer 7) points, and annotations denoted the layers.

Figure 8. PCA visualization of hidden state trajectories from the base, fine-tuned, and merged models across layers 3

to 7 for English and French inputs.

References

1. ^Brown TB, Mann B, Ryder N, Subbiah M, Kaplan J, Dhariwal P, Neelakantan A, Shyam P, Sastry G, Askell A, Agar

wal S, Herbert-Voss A, Krueger G, Henighan T, Child R, Ramesh A, Ziegler DM, Wu J, Winter C, Hesse C, Chen M, Sig

ler E, Litwin M, Gray S, Chess B, Clark J, Berner C, McCandlish S, Radford A, Sutskever I, Amodei D. Language Model

s are Few-Shot Learners. arXiv preprint arXiv:2005.14165, 2020. Available from: https://arxiv.org/abs/2005.14165.

2. ^OpenAI. GPT-4 Technical Report. arXiv preprint arXiv:2303.08774, 2023. Available from: https://arxiv.org/abs/23

03.08774.

qeios.com doi.org/10.32388/OGJ9K5 20

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://www.qeios.com/
https://doi.org/10.32388/OGJ9K5

3. ^McCloskey M, Cohen NJ (1989). "Catastrophic interference in connectionist networks: The sequential learning pro

blem". Psychology of Learning and Motivation. 24: 109–165.

4. ^Rusu AA, Rabinowitz NC, Desjardins G, Soyer H, Kirkpatrick J, Kavukcuoglu K, Pascanu R, Hadsell R (2016). "Prog

ressive neural networks". arXiv preprint arXiv:1606.04671. Available from: https://arxiv.org/abs/1606.04671.

5. a, bKirkpatrick J, Pascanu R, Rabinowitz N, Veness J, Desjardins G, Rusu AA, Milan K, Quan J, Ramalho T, Grabska-

Barwinska A, Hassabis D, Clopath C, Kumaran D, Hadsell R (2017). "Overcoming catastrophic forgetting in neural

networks". Proceedings of the National Academy of Sciences. 114 (13): 3521–3526.

6. ^Jacobs RA, Jordan MI, Nowlan SJ, Hinton GE (1991). "Adaptive mixtures of local experts". Neural Computation. 3

(1): 79–87.

7. ^Shazeer N, Mirhoseini A, Maziarz K, Davis A, Le Q, Hinton G, Dean J (2017). "Outrageously large neural networks:

The sparsely-gated mixture-of-experts layer". International Conference on Learning Representations.

8. a, bYun L, Zhuang Y, Fu Y, Xing EP, Zhang H. Toward Inference-optimal Mixture-of-Expert Large Language Model

s. arXiv preprint arXiv:2404.02852, 2024. Available from: https://arxiv.org/abs/2404.02852.

9. a, bHoulsby N, Giurgiu A, Jastrzebski S, Morrone B, de Laroussilhe Q, Gesmundo A, Attariyan M, Gelly S. Parameter-

efficient transfer learning for NLP. International Conference on Machine Learning. 2019.

10. a, bHu EJ, Shen Y, Wallis P, Allen-Zhu Z, Li Y, Wang S, Chen W (2021). "Lo{RA}: Low-rank adaptation of large lang

uage models". International Conference on Learning Representations.

11. ^Wang Y, Agarwal S, Mukherjee S, Liu X, Gao J, Awadallah AH, Gao J (2022). "AdaMix: Mixture-of-Adaptations for

Parameter-efficient Model Tuning". arXiv preprint arXiv:2205.12410. Available from: https://arxiv.org/abs/2205.1

2410.

12. ^Zadouri T, Üstün A, Ahmadian A, Ermiş B, Locatelli A, Hooker S. Pushing mixture of experts to the limit: Extremely

parameter efficient moe for instruction tuning. arXiv preprint arXiv:2309.05444, 2023. Available from: https://arxi

v.org/abs/2309.05444.

13. ^Wu J, Hu X, Wang Y, Pang B, Soricut R (2023). "Omni-SMoLA: Boosting Generalist Multimodal Models with Soft

Mixture of Low-rank Experts". arXiv preprint arXiv:2312.00968. Available from: https://arxiv.org/abs/2312.00968.

14. ^Elhage N, Hume T, Olsson C, Schiefer N, Henighan T, Kravec S, Hatfield-Dodds Z, Lasenby R, Drain D, Chen C, Gro

sse R, McCandlish S, Kaplan J, Amodei D, Wattenberg M, Olah C (2022). "Toy Models of Superposition". arXiv prepr

int arXiv:2209.10652. Available from: https://arxiv.org/abs/2209.10652.

15. ^Olah C, Cammarata N, Schubert L, Goh G, Petrov M, Carter S. "Zoom In: An Introduction to Circuits". Distill. 2020.

16. a, bBricken T, Templeton A, Batson J, Chen B, Jermyn A, Conerly T, Turner N, Anil C, Denison C, Askell A, Lasenby R,

Wu Y, Kravec S, Schiefer N, Maxwell T, Joseph N, Hatfield-Dodds Z, Tamkin A, Nguyen K, McLean B, Burke JE, Hum

e T, Carter S, Henighan T, Olah C. Towards Monosemanticity: Decomposing Language Models With Dictionary Lear

ning. Transformer Circuits Thread. 2023.

qeios.com doi.org/10.32388/OGJ9K5 21

https://arxiv.org/abs/1606.04671
https://arxiv.org/abs/2404.02852
https://arxiv.org/abs/2205.12410
https://arxiv.org/abs/2205.12410
https://arxiv.org/abs/2309.05444
https://arxiv.org/abs/2309.05444
https://arxiv.org/abs/2312.00968
https://arxiv.org/abs/2209.10652
https://www.qeios.com/
https://doi.org/10.32388/OGJ9K5

17. ^O'Mahony L, Andrearczyk V, Muller H, Graziani M (2023). "Disentangling Neuron Representations with Concept

Vectors". arXiv preprint arXiv:2304.09707. Available from: https://arxiv.org/abs/2304.09707.

18. ^Huben R, Cunningham H, Riggs L, Ewart A, Sharkey L. "Sparse autoencoders find highly interpretable features in

language models". International Conference on Learning Representations, 2024.

19. ^Li T, Deng L, Lin S, Li M, Huang D, Xie Y (2020). "Train big, then compress: Rethinking model size for efficient tra

ining and inference of transformers". International Conference on Machine Learning.

20. ^Matena W, Raffel C. "Merging models with fisher-weighted averaging". International Conference on Learning Re

presentations, 2022.

21. ^Radford A, Wu J, Child R, Luan D, Amodei D, Sutskever I (2019). "Language Models are Unsupervised Multitask Le

arners". OpenAI.

Declarations

Funding: No specific funding was received for this work.

Potential competing interests: No potential competing interests to declare.

qeios.com doi.org/10.32388/OGJ9K5 22

https://arxiv.org/abs/2304.09707
https://www.qeios.com/
https://doi.org/10.32388/OGJ9K5

