
29 January 2025, Preprint v1 · CC-BY 4.0 PREPRINT

Research Article

Host-Guided Data Placement—Whose Job
Is It Anyway?

Devashish R. Purandare1, Peter Alvaro1, Avani Wildani1, Darrell D. E. Long1, Ethan L. Miller1

1. University of California, Santa Cruz, United States

The increasing demand for SSDs coupled with scaling di�culties have left manufacturers scrambling for

newer SSD interfaces which promise better performance and durability. While these interfaces reduce the

rigidity of traditional abstractions, they require application or system-level changes that can impact the

stability, security, and portability of systems. To make matters worse, such changes are rendered futile

with introduction of next-generation interfaces. Further, there is little guidance on data placement and

hardware speci�cs are often abstracted from the application layer. It is no surprise therefore that such

interfaces have seen limited adoption, leaving behind a graveyard of experimental interfaces ranging from

open-channel SSDs to zoned namespaces.

In this paper, we show how shim layers can to shield systems from changing hardware interfaces while

bene�ting from them. We present Reshim, an all-userspace shim layer that performs a�nity and lifetime

based data placement with no change to the operating system or the application. We demonstrate Reshim’s

ease of adoption with host-device coordination for three widely-used data-intensive systems: RocksDB,

MongoDB, and CacheLib. With Reshim, these systems see 2–6 times higher write throughput, up to 6

times lower latency, and reduced write ampli�cation compared to �lesystems like f2fs. Reshim performs

on par with application-speci�c backends like zenfs while o�ering more generality, lower latency, and

richer data placement. With Reshim we demonstrate the value of isolating the complexity of the placement

logic, allowing easy deployment of dynamic placement rules across several applications and storage

interfaces.

1. Introduction

As the demand for datacenter SSDs soars, scaling �ash keeps getting harder, with density increases

adversely impacting the performance and device lifetime [1]. To make matters worse, nand-�ash SSDs

cannot perform in-place updates and have large erase units, requiring valid data relocation to free up space.

These garbage collection operations impact performance and device lifetime due to internal data movement

Qeios

qeios.com doi.org/10.32388/OJQTZ1 1

https://www.qeios.com/
https://doi.org/10.32388/OJQTZ1

and write ampli�cation. Even log-structured, append-only systems, which are designed to match device

characteristics, are limited by traditional interfaces and fail to reach their full potential. With application

logs, misaligned on �lesystem logs, further misaligned on device logs, the “log-on-log problem” [2] causes

performance and lifetime degradation with redundant garbage collection at multiple levels.

Two key placement strategies can help log-structured systems take full advantage of nand �ash. First, a

lifetime-aware placement that clusters data with a similar lifetime (i.e. whose creation and deletion have

temporal locality) can minimize data relocation on erase, improving overall performance as well as device

endurance. Second, an a�nity-aware placementthat clusters data produced by a single application together

and places independent data streams on separate device resources can provide performance isolation,

reducing tail latency. These strategies can (in principle) be realized in the current state of the art: �ash

manufacturers have introduced storage interfaces such as Zoned Namespace SSDs (zns) [3], and Flexible

Data Placement (fdp) [4], which allow the host to direct data placement on the ssd via placement directives of

a variety of forms, ranging from placement hints at one extreme to assuming responsibility for placement

and garbage collection at the other.

But exactly which layer should handle such abstraction-breaking host-device coordination features? One

answer is the application itself, which knows best about its own data access patterns. This approach is

fragile and risky. Implementing device-speci�c optimization in application space requires specialized

expertise, and these e�orts are likely to be made obsolete in the face of API changes. The other answer is the

�lesystem, which su�ers from the opposite problem. While implementing support for device-speci�c

placement directives in the operating system would shield applications from complexity and provide much

better generality and reuse, �lesystems provide interfaces that are too narrow to take advantage of

application-level semantics with regard to lifetime and a�nity. The cost of generality means failing to take

advantage of device characteristics.

In this work, we argue that the responsibility for exploiting emerging device-side placement directives

should fall neither on the application programmer nor on the kernel developer, but rather on the users or

systems that understand the application-device mapping. Typically, neither application developers nor

�lesystem developers are aware of the exact storage architecture their work will be deployed on, and hence

cannot make e�ective optimization decisions. For every application, for every device, there is a space of

possible placement directives that may be factored apart from the application and �lesystem. Strategies to

optimize placement based on lifetime and a�nity (application properties) utilizing the features provided by

devices (from hints to full management of regions) can be expressed in a separate shim layer that interposes

between application and OS. Many con�gurations (indeed, the product of devices and applications) must be

implemented, but these are easier to implement in isolation than within applications or operating systems.

qeios.com doi.org/10.32388/OJQTZ1 2

https://www.qeios.com/
https://doi.org/10.32388/OJQTZ1

By isolating complexity of each interface in a module decoupled from applications and �leystems, we can

shield all other layers of the system from change.

Our shim layer approach opens up a generalizable interface that is application-agnostic, but can be

optimized per application. We can isolate the complexity of varying interfaces and hint generation in

pluggable userspace modules, allowing quick and easy changes to work with changing interfaces. Our

library, Reshim presents a blueprint for dealing with the complexity of host-device coordination, allowing

dynamic placement decisions without requiring application or �lesystem rewrites. Reshim is a dynamic

library that unlocks the bene�ts of host-device coordination without requiring application rewrites or

custom �lesystems. Our key insight is that shim layers can o�er the performance of custom solutions, the

compatibility of �lesystems, while reducing the complexity of using modern interfaces.

Our contributions:

We demonstrate how shim layers can provide both performance and compatibility while reducing

application and �lesystem complexity.

We evaluate Reshim on three widely used applications (RocksDB, MongoDB, and CacheLib) across two

types of interfaces (zns and kernel hints); more applications and interfaces than any previous e�ort.

To our knowledge this is the �rst work to present a generalized theory of data placement, showcasing

a�nity and lifetime as the important parameters over temperature-based approaches of the past.

We deploy Reshim with heuristic and learning-based hints, showcasing extensibility which is di�cult to

achieve in �lesystems or applications.

Reshim is fast: we see 2–6 times higher write throughput, up to 6 times lower latency, and reduced

garbage overhead over �lesystems and application backends.

Type of SSD Multi-Stream Open-Channel Zoned Namespaces Flexible Data Placement

Introduced 2016 2017 2021 2022

Linux Kernel Support Deprecated Deprecated —

Hint Interface fcntl() liblightnvm libzbd,libnvme libnvme

Filesystems — — f2fs, btrfs —

Applications AutoStream RocksDB RocksDB Cachelib, RocksDB

Table 1. The history of interfaces for host-managed data placements provides a bleak picture, with new interfaces

demonstrating 1–2 applications before being deprecated for lack of use.

✓

qeios.com doi.org/10.32388/OJQTZ1 3

https://www.qeios.com/
https://doi.org/10.32388/OJQTZ1

2. Bene�ts of host-guided data placement

To motivate the need for techniques that o�er wider compatibility than application-speci�c approaches

while maintaining their performance, we show a simple experiment:

On a Western Digital Ultrastar DC ZN540 SSD [5], we performed sequential write tests with �exible IO

tester (�o) [6] scaling up to 14 threads (the maximum open zones supported by the drive). We ran the tests

on zonefs [7], a block-layer representation of the zns interface, and f2fs [8], a �ash-optimized �lesystem.

We made sure that the writes on zonefs went to di�erent zones, while on f2fs we provided the sequential

write and the extreme lifetime hints. To ensure parity, we used Direct IO, instructing f2fs to skip the bu�er

cache (zonefs does not support write bu�ering).

As we see in Figure 1, a lightweight mapping layer with the right hints (map each �le to a separate zone) can

provide full device throughput, while f2fs is limited to 30–50% of the bandwidth. We analyzed the results in

perf[9] and break them down by the cpu cycles spent by our test in each scenario. Despite O_DIRECT, f2fs

needs to cache writes to map them to various segments. Such caches result in frequent internal data

structure updates and syncs. This overhead adds up with in-kernel locking operations resulting in f2fs

spending more time in sync (34.43%) than in write calls (12.72%). The added overhead results in 2–3

 higher latency and lower throughput. While in zonefs, since the �lesystem is aware that these are writes

to separate zones, it does not need to cache or sync to the device, utilizing the full bandwidth of the device

bu�er.

4TB

×

qeios.com doi.org/10.32388/OJQTZ1 4

https://www.qeios.com/
https://doi.org/10.32388/OJQTZ1

Figure 1. Writes to zonefs can get the full bandwidth while f2fs sees degradation in both latency and throughput.

However, it is important to note that f2fs is a full-�edged �lesystem while zonefs is closer to a raw block

device. Such overhead imposed by �lesystems can be greatly reduced by designs which are aware of the log-

structured nature of incoming data as well as the underlying device.

So how can a host help in such coordination?

2.1. Picking the right layer for coordination

Traditionally, support for host involvement has been performed either at the application or the �lesystem.

We argue that both these approaches have major limitations.

Why not rewrite the application?

1. Rewriting applications is expensive: Rewriting applications for a speci�c architecture requires signi�cant

engineering e�ort. For instance, the zenfs10 project, which optimizes RocksDB for zns, is a multi-year

qeios.com doi.org/10.32388/OJQTZ1 5

https://www.qeios.com/
https://doi.org/10.32388/OJQTZ1

e�ort with thousands of lines of code. It has been unusable since February 2024 due to RocksDB

updates. Such e�orts need to be redone with every new interface.

2. Applications are storage-unaware: Applications typically use the �le interface and are abstracted from

the nature of storage. They are unaware of system usage or other applications, resulting in any e�orts

of resource acquisition and hinting being ine�ective.

3. Modifying applications limits layering and portability: Even if an application is customized end-to-end to

use custom interfaces, it cannot then e�ectively address multiple types of devices. Breaking away from

the �le abstraction can hurt tooling operating on the data like replication and backup utilities.

What about a �lesystem?

A �lesystem can shield application from hardware interface changes. However, �lesystems present their

own set of limitations:

1. Filesystems are application-unaware: Mainstream �lesystems are designed to be independent of the

applications running on top of them and �nd it di�cult to generate useful hints unless communicated

by the application. Currently, no standard interfaces exist: for example, f2fs can utilize hints from the

multi-stream SSD interface and map it to zones, but with three hint levels across all applications, it is

insu�cient.

2. Filesystems are hard to modify: As �lesystems reside in the kernel, they are hard to modify and upgrade.

Fixing zns-related bugs in f2fs, for instance, requires upgrading to a newer version of the Linux kernel,

which is impractical for data centers as it requires migration and downtime and may cause issues with

other applications. Adding complexity to the kernel can give rise to crashes and security vulnerabilities.

3. Filesystems require broad compatibility: Adapting a �lesystem for zns, for instance, should not limit

support for other types of SSDs. As we see in Figure 2, the increasing complexity can result in increased

bugs in the kernel, reduced performance, and an increased attack surface.

While some of these issues could be addressed, for example, with a FUSE11 �lesystem, it would still require a

per-architecture per-application �lesystem to utilize host-device hint mechanisms fully. Such usage of

FUSE would be similar to our proposed shim layer but with the added complexity of managing per-

application �lesystems. Further, repeated kernel-crossings communicating between modules, mappings,

and hint generation could negate any performance bene�ts from modern storage interfaces.

Not only do extra interfaces to �lesystems increase bugs, due to their in-kernel nature they add security

vulnerabilities. Rather than adding bloat to the kernel, as we see in Figure 2, we can isolate the complexity in

a small audit-able layer, greatly reducing attack surface while improving performance.

qeios.com doi.org/10.32388/OJQTZ1 6

https://www.qeios.com/
https://doi.org/10.32388/OJQTZ1

Figure 2. With diversifying hardware, the complexity of �lesystems keeps increasing, increasing the attack

surface in the Linux Kernel. Here, Reshim’s approach of using zonefs can minimize the complexity, and hence

the potential for bugs by using a signi�cantly simpler �lesystem.

The Middle Road: Shim Layers

A shim layer can abstract interface changes from the applications and �lesystems while enabling low-

overhead recon�guration to get the bene�ts of modern SSDs. In this architecture, simplicity is maintained

in the application and the �lesystem, while the added complexity of hinting is isolated in a con�gurable

layer—enabling low-cost, relatively-low-e�ort adoption.

With the goal to allow low-cost adoption of modern SSDs, an ideal shim layer should require:

1. No changes the applications or operating system: To simplify adoption, a shim layer should not need any

changes to the application, any kernel modules, or recon�guration of the system.

2. Broad compatibility: The shim layer should be able to work across di�erent applications and utilities.

3. E�ciency and e�ectiveness: A shim layer should unlock performance bene�ts without adding more

overhead than an tuned application or �lesystem.

4. Extensible: The hint generation should be con�gurable, adding the ability to add custom logic, including

systems that learn dynamically.

We built Reshim to stay true to these principles, and we demonstrate that such a layer is not only feasible; it

can outperform other techniques. With Reshim, we propose the addition of a layer to break traditional

layering abstractions, as it can isolate changes across layers without impacting the compatibility and

portability of the application.

qeios.com doi.org/10.32388/OJQTZ1 7

https://www.qeios.com/
https://doi.org/10.32388/OJQTZ1

3. Reshim Architecture

Reshim is a dynamic library that allows interposition on application calls, modifying them if necessary, to

embed placement directives or redirect them to di�erent regions on an SSD. Reshim allows transparent hint

injection or redirection of data based on the decision made by the placement engine. As Reshim has insight

into the application and the storage architecture, it can generate more e�ective hints than applications or

�lesystems in isolation. Further, users can modify the hint generation easily without having to rewrite,

recon�gure, or recompile the application or the �lesystem.

Reshim performs three tasks necessary for host-device coordination, which act at the di�erent layers of the

modern stack—the application, the storage engine, and the device. Due to the di�ering philosophies in

hardware, we designed each of these components to be customizable and replaceable with con�guration

changes. For instance, in the zns protocol, the device is partitioned into equal-sized append-only zones. The

host is responsible for picking zones, managing bu�ers and garbage collection when it needs to free up

space. This approach requires the device manager which is implemented in reshim-engine. Approaches like

multi-stream and fdp on the other hand, simply require a directive on where to place the data, the device

manager can be skipped for those devices.

For Reshim we present implementations for both of these approaches with demonstration on zns drives

with the Western Digital Ultrastar DC ZN540 SSD and the ability to use kernel hint interfaces for multi-

stream SSDs on �lesystems that support these interfaces. Currently, fdp directives are only supported

through NVMe commands, and since most applications do not implement direct NVMe writes (outside of

exceptions like CacheLib [10]), we plan to look at fdpsupport as future work.

As seen in 3, Reshim has 3 major components:

1. Application Call Interception.

2. Data Placement Engine.

3. Device Manager: Backend.

In this section, we will go over each of these components.

qeios.com doi.org/10.32388/OJQTZ1 8

https://www.qeios.com/
https://doi.org/10.32388/OJQTZ1

Figure 3. Simpli�ed Reshim architecture: Reshim intercepts application calls, generates placement plans,

resolves them to a particular protocol and �nally manages data placement.

3.1. Application Call interception

Shim techniques have seen a renaissance as fast-changing hardware, special-purpose processing and

changed memory hierarchies become common in our systems. It is no surprise therefore that we see a

proliferation of techniques that allow shimming libc calls like eBPF[11], FUSE[12], WASM[13], virtual

machines, and dynamic libraries[14] being widely deployed. While Reshim can be implemented with any of

these techniques, we focused on LD_PRELOAD to eliminate added kernel crossings, allow us to implement

an all-userspace system and minimize performance degradation. Dynamically linking with the application

allows us to modify libc calls before they are sent through the kernel, allowing a simple IO path through the

Kernel, while the complexity resides in userspace. LD_PRELOAD is used by projects ranging from custom

allocators to debugging tools[15][16].

Table 2 presents the design space of shim techniques, and we chose the one with the best performance, and

while its limitations could leave certain application ports out, the principles we discuss could be realized

with other techniques or even a custom libc. Simplicity of implementation, userspace nature, and runtime

linking make our approach easy to use, requiring no recompilation, no changes to the application, and no

changes to the system. We discuss the limitations of our approach and alternatives in Section 3.4.

qeios.com doi.org/10.32388/OJQTZ1 9

https://www.qeios.com/
https://doi.org/10.32388/OJQTZ1

Added Kernel Static Kernel Per-Application Shim Performance

Crossings Linking Changes Con�guration Setup Degradation

LD_PRELOAD – – – Yes Runtime Minimal1

eBPF Yes Yes Yes Yes In Advance 10 [17]

WASM – Yes – Yes In Advance 2.5 [18]

FUSE Yes Yes Yes – In Advance 1.8 [19]

PTrace Yes Yes Yes Yes In Advance 2.0 [20]

syscall_intercept – – – Yes Compile time Signi�cant1

Table 2. We chose the LD_PRELOAD approach for Reshim as it requires no change to the application, kernel, or

special privileges, ensuring that data security and system stability is not a�ected.

1 LD_PRELOAD and syscall_intercept added and of userspace overhead per syscall in our tests

respectively.

Reshim is designed to be dynamically linked with the application at runtime using LD_PRELOAD, which

allows libreshim to be loaded before other objects while executing a binary. Reshim uses this functionality to

selectively override various libc calls, using Reshim calls instead. In hint-based interfaces Reshim injects

placement directives received from the placement engine. Here hint-based approaches like fdp or multi-

stream SSDs require just a placement identi�er, while host-managed approaches like zns require the host to

take over data placement, garbage collection, and resource management. For hint-based approaches,

Reshim works on top of an existing storage system that supports hints, like f2fs. For host-managed

approaches, Reshim implements its own device manager with reshim-engine and provides placement

information per �le. When used with reshim-engine, Reshim captures the content of calls the application

issues, copying the data to its bu�er cache before persisting it based on hints.

In both cases, Reshim needs to maintain a certain level of bookkeeping to supply directives per �le. With

System calls that use �le descriptors which are ephemeral and issued per-session, Reshim needs to

maintain a mapping of �les to their descriptors to e�ectively understand which �le a call is operating on.

Since Reshim does not have a runtime independent of the application, it leverages speci�c calls to maintain

state, spin up background tasks for garbage collection, and persist its metadata.

∼ ×

∼ ×

∼ ×

∼ ×

∼2 µs ∼2 ms

qeios.com doi.org/10.32388/OJQTZ1 10

https://www.qeios.com/
https://doi.org/10.32388/OJQTZ1

When working on top of a �lesystem, Reshim issues the open() system call to the underlying �lesystem,

getting the kernel-issued �le descriptor (fd), and then assigns a unique identi�er (uuid) to the �le,

maintaining two mappings: path→uuid (the pathMap) and uuid→fd (the fdMap) in separate hash tables. The

fdMap is automatically updated on each open() and close() call and never persisted, while the pathMap is

updated on creates (seen through open(), rename(), and unlink()) and persisted on sync.

Data-intensive applications are often multi-threaded and can result in separate threads accessing the same

�le descriptor concurrently. This can quickly lead to contention on lookups, especially as Reshim is reactive,

being invoked on an intercepted call. For this purpose, Reshim uses dashmap[21], a concurrent hashmap, for

its data structures. On the �rst intercepted call, Reshim spins up multiple threads of its own for hint

generation, metadata persistence, and placement logic depending on the con�guration.

Reshim’s interception varies depending on whether the interface is hint-based or host-managed. The logic

is greatly simpli�ed for hint-based interfaces:

3.1.1. Reshim in hint-based systems

In hint-based interfaces like multi-stream and fdp, Reshim does not need reshim-engine, so its interception

requires limited state tracking, operating once per created �le.

1. First call: On the �rst system call by the application, Reshim blocks and sets up necessary state,

allocating memory for metadata tables, spinning up background threads for metadata persistence and

hint generation. But �rst, Reshim checks for metadata to see if the application is resuming from a

previous session with Reshim, and populates the necessary data structures.

2. open(): Reshim checks if the path exists in the pathMap, if found, it forwards the call to the underlying

�lesystem, gets a fd, and adds an entry to the fdMap with the stored uuid before returning the fd. If not

found, it provisions a new uuid and updates both maps and returns �lesystem issued fd.

If the �le is opened in write mode, Reshim provides the path to the hint generation logic, and issues the

necessary fcntl() and fadvise() calls with the hints returned by the placement engine.

3. close(): removes the entry associated with the fd in fdMap and syncs persisted pathMap before

forwarding close()to the �lesystem.

4. unlink(): Reshim updates both maps to remove the uuid on a successful return of the unlink call from

the underlying �lesystem.

5. fsync(): With fsync and its variants (fdatasync,

sync_�le_range), Reshim syncs pathMap on a successful return from the underlying �lesystem.

6. rename(): On a successful rename, Reshim updates pathMap with the new path.

qeios.com doi.org/10.32388/OJQTZ1 11

https://www.qeios.com/
https://doi.org/10.32388/OJQTZ1

3.1.2. Reshim in host-managed systems

Host-managed interfaces like zns require deeper support than issuing just the required placement hint, and

we implement reshim-engine, a lightweight device management engine to enable management of �ash.

Some setup tasks are similar between hint-based and host-managed interfaces, but in the case of host-

managed interfaces, Reshim needs to ensure a lot more than simply issuing the right hint advise system call.

It needs to notify the reshim-engine to perform the needed task, not dissimilar to what a lightweight virtual

�lesystem would do.

1. First call: The �rst call is the same as hint-based systems, but in addition to restoring states, Reshim

spins up reshim-engine, allowing it to allocate its metadata structures and write bu�ers for the

bu�ering logic. While this can block for a few milliseconds, we observed that it provides signi�cant

performance bene�ts as no future calls invoke memory allocation.

2. open(): Open performs the same tasks as described previously, however, in the host-managed case,

instead of issuing a hint system call, Reshim requests a stream from the hint generation logic, mapping

the current �les to the stream as discussed in Sections 3.2 and 3.3.

3. close(): removes the fd from fdMap and streamMap. Requests reshim-engine to �ush data associated

with the fd.

4. unlink(): Removes all references to the �le, requests reshim-engine to mark associated data for

cleanup.

5. write(): On the write call and its variants, Reshim forwards the bu�er to reshim-engine with the uuid

which handles writing the data to the device, on a successful return from reshim-engine, it returns

success to the application.

6. read(): On the read call and its variants, Reshim translates the read to uuid and o�set before forwarding

the request to reshim-engine, and returns the data it gets back.

7. fsync(): On sync, Reshim persists its own mapping and forwards the request to reshim-engine to ensure

the bu�ered data is persisted.

8. rename(): is unchanged from hint-based logic.

In addition to the previously discussed calls Reshim needs to modify other calls to guarantee persistence,

prevent extra allocation, and maintain a consistent state. Reshim performs the following actions on each of

these calls:

fallocate(): In host-managed mode, these calls are suppressed as reshim-engine uses a �ush on sync

optimization.

qeios.com doi.org/10.32388/OJQTZ1 12

https://www.qeios.com/
https://doi.org/10.32388/OJQTZ1

ftruncate(): In host-managed mode, these calls only update the metadata as in-place updates on host-

managed interfaces are not allowed unlike hint-based SSDs.

readahead(): Asks reshim-engine to readahead for the given range into its bu�ers.

mmap(): this call is unsupported for host-managed mode (outside read-only open), as host-managed

devices cannot support the in-place updates made by the call. We forward these calls without change to a

capable �lesystem which runs alongside Reshim.

As we see with mmap(), Reshim allows speci�c �les not to be intercepted using the hint mechanism. reshim-

engine uses this for �les that require in-place updates—manifest and con�guration �les, as well as special

purpose �les like LOCK�les, device �les, and procfs entries. This ensures that applications work with

minimal modi�cations and do not get any unexpected errors, utilizing the default path for anything not

implemented by reshim-engine. Since most log-structured systems need a small amount of in-place

updatable �les, reshim-engine maps them to in-place update-friendly conventional zones and puts the log-

structured data, which makes up most of the data by volume, on sequential zones.

Once the calls are intercepted, Reshim requests a hint or a placement directive from the placement engine.

Designed as a module this component is replaceable, allowing hand-tuned or automated hints across

applications and interfaces.

3.2. Data Placement Engine

For a good placement plan, data relationships need to be considered based on two important properties:

Data A�nity: Semantically-related writes grouped together maximize bandwidth through isolation.

Lifetime grouping: Data that shares a common lifetime should be grouped together to minimize data

movement to free up space.

For isolation, a good placement engine must separate independent write streams from across applications

and within applications (such as data logs, write-ahead logs, checkpoints, and manifests) into separate

groups. Such grouping will eliminate the interleaving of streams on device bu�ers and �ash, improving

performance due to device-level isolation and parallelism. Additionally, the system must group data by its

expected lifetime, reducing the garbage collection overhead.

A major issue with implementing support for host-guided placement is the lack of usable Kernel

abstractions. The RWH_HINT interface, leftover from multi-stream SSD days, allows four separate data

streams: hot, cold, warm, and unde�ned. So far, only one application (RocksDB) uses them, and they are

supported on a single �lesystem (f2fs). These rigid interfaces mean e�ective placement requires custom

�lesystems or kernel bypass. With Reshim, we hope to change this, Reshim implements a �exible internal

qeios.com doi.org/10.32388/OJQTZ1 13

https://www.qeios.com/
https://doi.org/10.32388/OJQTZ1

hint representation, with resolvers for translating these hints into currently supported APIs, and ability to

extend support to future APIs. reshim-engine demonstrates the utility of richer interfaces and can unlock the

full potential of the placement logic (see Section 4).

3.2.1. Hints in Reshim

Recognizing that grouping of data needs to be more than just a handful of write-temperature streams,

Reshim introduces two abstractions: streams and within them multiple lifetime-groups. A stream represents

a single logical writer, which performs writes for a set of related data. This could be writing to a write-ahead

log, a data log, or performing compaction of existing data. A lifetime-group on the other hand is a temporal

subset of a stream, grouping blocks within a stream which are written together. Streams are application-

speci�c, while lifetime groups are stream-speci�c.

As seen in Figure 4, an application could have di�erent data streams—a write-ahead log, a data log in form

of sorted string tables, and a separate writer for checkpoints. Thus, unlike traditional temperature-based

hints, Reshim accounts for data for both, a�nity and lifetime. We designed Reshim’s internal hint

representation to be simple and extensible, allowing easy translation into the available hint formats and any

future changes.

Figure 4. Reshim hints are organized into streams of writers based on a�nity with groups

of �les based on lifetime.

Reshim’s get_hint() API is called with a resolver, which can resolve hints into kernel hints, reshim-engine

hints, or placement identi�ers depending on the con�guration (see Section 3.2.3) allowing it to work with

existing hint systems as well as reshim-engine. Hint generation is the only part of Reshim that sees changes

per application, these changes can be user-de�ned or automated. Streams can be added by users familiar

with application semantics and workload or generated automatically based on observation. Resolvers are

easy to write, they simply map this two-level hierarchy into what is suitable for the device interface.

qeios.com doi.org/10.32388/OJQTZ1 14

https://www.qeios.com/
https://doi.org/10.32388/OJQTZ1

3.2.2. Providing Hints: Users vs. Automation

For e�ective data placement, the placement engine needs to decide how to assign streams for newly created

�les, and how to assign a lifetime-group for each new block in the �le. As we focus on log-structured

applications, we can assign the lifetime group temporally, assigning a new group to blocks at �xed intervals

of time or space. As cleanup of the log happens, older data is compacted and written to the tail of the log,

allowing adjacent groups to be cleaned up together.

Distinguishing streams of incoming data from an application is more complex. We demonstrate two

techniques, tapping into heuristics and automation. For the heuristic approach, we analyze the operation

and the documentation of a particular application and provide rules for sorting �les. This approach is

particularly e�ective in applications like RocksDB which provide distinct locations and �le extensions for

longer lived sorted string tables, and short-lived write-ahead log. If manual tuning is not preferred, hints

can be automated. Reshim captures data such as paths, opening �ags, and observed workload, and can train

a variety of algorithms on it for prediction of a stream. In Section 4 we demonstrate this with batch-based

mini KMeans [22] to dynamically pick streams based on observed workload.

In traditional systems such as applications or �lesystems, such �exibility is di�cult, as the placement logic

will need to be in the kernel or within the application, and cannot be changed without recompiling the entire

system.

3.2.3. Resolving Reshim hints into interface hints

To e�ectively use Reshim’s hints across multiple interfaces, we implement resolvers which can translate the

internal representation into an interface-speci�c hint. Translation to other formats can be lossy, especially

in cases like the Linux kernel hint interface (based on multi-stream ssd), which provides four values to

from.

Multi-stream: Here, we ignore the placement groups, assigning each Reshim stream to kernel stream

(hot, cold, warm, unde�ned), and in case of more than four writers, we map multiple streams to each

hint level, maintaining a diminished level of write isolation.

Zones: For zns, we implement reshim-engine to demonstrate the full potential of our approach. Reshim

maps new zones to each stream and ensures that placement-groups are laid out sequentially within a

zone.

Placement identi�ers: Here we discard streams, using fdp placement identi�ers with Reshim’s lifetime-

groups. Since there is limited virtualization support for fdp and we could not acquire fdp drives, we plan

to evaluate this in future work.

qeios.com doi.org/10.32388/OJQTZ1 15

https://www.qeios.com/
https://doi.org/10.32388/OJQTZ1

The advantage of decoupling hint interface from the application or �lesystem is that should a new hardware

interface or software API be introduced, the only change this logic would need is a new resolver to map

internal representation to the new format. Armed with placement directives and intercepted calls, we can

now forward host-managed device support to reshim-engine, another pluggable module to demonstrate

what such a system can be capable of.

3.3. Device Manager—the reshim-engine

As host-managed devices assign more responsibility (and hence, more power) to the data management

system on the host, we decided to implement a lightweight storage engine to demonstrate the strengths of

Reshim’s approach.

With zns, Reshim’s storage backend, reshim-engine takes over management of �ash, presenting a virtual

�lesystem interface to support reads and writes. Rather than writing wrappers for device interfaces, we use

zonefs [7], a �lesystem wrapper in the kernel for zoned devices, which allows using system calls rather than

NVMe commands to manage zns SSDs. reshim-engine performs three main tasks: data layout, bu�ering, and

garbage collection.

3.3.1. Data Layout

Inspired by zns’ design, reshim-engine’s data layout maps streams to individual zones. To support arbitrary

�le sizes, reshim-engine implements an extent-based logic, allowing user-con�gurable extents from to

hundreds of megabytes with the only restriction that they be powers of 2. These extents are �ushed to the

stream-mapped zone. Once the zone �lls up, a new zone is fetched from a list of free zones. reshim-engine

uses allocate-on-�ush, deferring block reservation until a close or sync command to optimize grouping

further.

reshim-engine does not allow �les to share chunks and only needs to maintain the zone and o�set to locate a

particular extent. reshim-engine maintains two data structures: the pathMap to map paths to uuid, and a

�leMap which maintains a �le’s extents as a list of (zone, o�set) tuples as seen in Figure 5. Reshim

maintains an additional structure, the zoneMap, to maintain per-zone metadata to simplify garbage

collection. reshim-engine minimizes per-zone metadata by relying on the hardware write pointer to keep

track of o�set, only maintaining a bitmap of the deletion status of all extents on a zone. E�ectively, the

zoneMap requires 12–32 bits of memory per zone depending on the extent size. Both zoneMap and �leMap

are synced to persistent storage on common operations like sync and close.

4 k

qeios.com doi.org/10.32388/OJQTZ1 16

https://www.qeios.com/
https://doi.org/10.32388/OJQTZ1

Figure 5.reshim-engine maintains two persistent data structures, a �leMap to maintain a mapping of

�le to extents, and a zoneMap to simplify garbage collection.

On zns devices, since the allocation of device bu�ers is not host-managed, reshim-engine needs to track

active resources and keep them below the device limits by periodically �nishing or closing zones. reshim-

engine maintains a count of open zones and closes them as they �ll up. Since there can be a dozen or more

open zones at a time, this limit is rarely reached and typically happens when running multiple applications

simultaneously.

3.3.2. Bu�ering

As zonefs does not support write bu�ering, we implement write bu�ering in reshim-engine. Due to the log-

structured nature of applications handled by reshim-engine, we use a simpli�ed write-through design.

reshim-engine allocates a number of extent-sized bu�ers on boot, maintaining them in a free list and

assigning a new bu�er to each writable �le. Once the bu�er �lls up, reshim-engine allocates blocks based on

the corresponding stream and �ushes the bu�er to storage. While this approach adds a startup cost, we

avoid allocating large amounts of memory during the rest of the execution improving overall performance.

3.3.3. Garbage Collection

reshim-engine implements lazy garbage collection, deferring data movement as long as possible. On each

delete, reshim-engine updates the extent bitmap in the corresponding zone in the zoneMap, and if all extents

are marked as deleted, it resets the zone, freeing up space without moving any data. Note that in most log-

structured systems frequently updated streams like write-ahead logs see frequent deletes. Hence, reshim-

engine practically doesn’t need to move valid data as long as the device is not full. If available zones go below

a user-con�gured threshold, Reshim iterates through zoneMap�guring out the zone with the fewest valid

extents and frees them up by moving the remaining extents to new zones in the same stream. Contiguous

extents typically get invalidated together in compaction operations.

qeios.com doi.org/10.32388/OJQTZ1 17

https://www.qeios.com/
https://doi.org/10.32388/OJQTZ1

3.4. Limitations

Reshim inherits the limitations of LD_PRELOAD that we discussed in Section 3.1. So while Reshim cannot

intercept statically-linked applications, in practice we observe that applications like RocksDB, Cachelib, and

MongoDB still dynamically link with libc, and can be preloaded with Reshim. The bigger limitation comes

with languages that do not use libc like Golang and Java, and hence systems written in these languages

cannot be supported by LD_PRELOAD, and would need one of the other shim approaches. Further, it is not

always easy to preload the library for complex client-server applications, as fork-execs and di�erent

coordinating processes may spawn processes that lose the intercepted functions. A �lesystem approach or a

custom C library can address this.

In this work we limited the scope of reshim-engine to log-structured append-only applications. Since all

major data-intensive systems almost exclusively follow this pattern [23][24][25][26], we can adapt several

applications to this interface, but applications with data structures that use in-place updates or mmap

writes cannot utilize reshim-engine and will be passed through to the �lesystem on conventional zones.

Reshim can still issue hints for these writes if the underlying �lesystem supports them.

Further, �les stored by reshim-engine will not be visible to third party utilities like backup and copy unless

they are preloaded with Reshim as well. reshim-engine focuses on data placement and is not a �lesystem

replacement as it does not implement �lesystem operations like access control or locking. We support these

to a limited extent on the random-write area on zns drives by using a conventional �lesystem alongside

reshim-engine. We could address these limitations by implementing Reshim using other shim techniques,

however, as we discussed in Section 3.1, each comes with its own set of trade-o�s. As we will see in Section

4, we prioritized simplicity and performance.

4. Evaluation

To demonstrate the bene�ts of Reshim, we present three di�erent types of evaluation; we present three case

studies with popular data management systems RocksDB [27], MongoDB [28], and CacheLib [10]. The �rst two

are widely used log-structured storage backends, while CacheLib is a high-performance caching engine.

These case studies demonstrate the ease of using Reshim and the performance bene�ts we get with each of

the systems. Here we compare Reshim with �lesystem approaches f2fs, and special-purpose systems

(zenfs). Due to limited support for zns SSDs, we could not include other �lesystems in our comparison.

To evaluate Reshim, we set up a test server with 64 core AMD EPYC 7452 system with of DRAM. We

use Ubuntu 22.04 with Linux kernel 6.5, and 2 Western Digital Ultrastar DC ZN540 SSDs [5] each in size.

We used the latest stable release of each system (with exceptions as seen in the box below) and used

128 G

4 T

qeios.com doi.org/10.32388/OJQTZ1 18

https://www.qeios.com/
https://doi.org/10.32388/OJQTZ1

unmodi�ed bundled benchmarking tools. Between runs of each benchmark, we issued zone reset and NVMe

format commands, and rebuilt the �lesystems to ensure that each experiment had a fresh start. Since f2fs

required an in-place updatable region for metadata, and Reshim uses it for LOCK �les, we set up the region

in the random write space on the same drive.

zenfs was tested on RocksDB 8.9.1, while other systems were tested on RocksDB 9.6.1 as zenfs has been e�ectively

abandoned and does not work on modern versions of RocksDB [29]. This may lead to small performance di�erences

between versions. Incidentally, Reshim works with both versions of RocksDB, demonstrating further bene�ts of our

approach.

A note about zenfs (*)

4.1. Case Study: RocksDB

Evaluating RocksDB provides several bene�ts: it is widely used, it supports a zns-speci�c backend and can

provide write stream hints. As zenfs is speci�cally tuned for RocksDB on zns drives, it presents the gold

standard for what performance highly tuned applications can have.

For our evaluation we ran 10 million operations, each with keys and values for �ll workloads

(sequential and random), reads (sequential and random), readwhilewriting, and overwrites. We used FIFO

compaction as it provides natural temporal separation to each of the systems. For f2fs we forwarded the

write hints provided by RocksDB.

We tested Reshim with two types of placement generation logic, the heuristic approach and automated

approach. For the heuristic approach, we assigned separate streams to each of the logs—the Write-Ahead

Log (wal) and the Sorted String Tables (sst). The placement groups were then based on the timestamps that

the extents �lled up in. For Automation (Reshim-Learn) we used batch-based mini KMeans clustering [22], a

tuned online approach that predicts a�liation between a speci�ed number of centroids. We then mapped

the prediction of a�nity to a particular centroid to a stream.

4 G

20 400

qeios.com doi.org/10.32388/OJQTZ1 19

https://www.qeios.com/
https://doi.org/10.32388/OJQTZ1

Figure 6. Throughput for �llrandom, overwrite, readwhilewriting and readrandom workloads of RocksDB’s

db_bench.

As seen in Figure 6, for inserts and updates, Reshim o�ers almost 2 improvement over f2fs and can match

tailored approaches like zenfs. While zenfs o�ers slightly better performance in each case, it no longer

works on modern RocksDB [29], and cannot be used with any other application. One of the main bene�ts of

write isolation is the improvement in tail latency. Reshim’s user-space nature ensures that compared to the

high cost of kernel-crossings and persistence, the latency impact of the additional uReshim sees a small

overhead on reads, and particularly readwhilewriting, due to the additional overhead of extent and address

resolution in userspace.ser-space operations remains minimal.

Figure 7. Reshim o�ers comparable latency to speci�cally tuned zenfs and improved

latency over f2fs.

As seen in Figure 7, Reshim o�ers better tail latency over both f2fs and zenfs for random inserts and random

reads. This is particularly evident at p99.99 (Reshim: , zenfs:), where Reshim can bene�t

from the �lesystem optimizations in RocksDB, intercepting readahead() and pre-bu�ering data, a

×

∼20 µs ∼100 µs

qeios.com doi.org/10.32388/OJQTZ1 20

https://www.qeios.com/
https://doi.org/10.32388/OJQTZ1

�lesystem optimization unavailable to zenfs. With automation, in Reshim-Learn we observe that it can

match the performance of hand-tuned approaches, however it can su�er tail latency spikes due to the

prediction engine. A faster approach like decision trees [30] can address this.

4.1.1. Why is Reshim faster?

Reshim provides intelligent hints discriminating between the frequent small writes of the wal and the large

writes of Sorted String Tables (sst), utilizing separate device bu�ers to provide isolation. Digging deeper into

the performance metrics as seen in Figure 8 for f2fs, the benchmark spends dozens of milliseconds to persist

the wal. wal triggers locking in f2fs, packing incoming streams across its six logs, performing metadata

updates, and allocating and freeing memory in the cache to support these operations. On the other hand, in

Reshim the wal and the insert make up a relatively small chunk of CPU time, simply copying the bu�er and

periodically persisting it. The userspace overhead is also limited, with these functions accounting for less

than 27% of total program time, similar to zenfs as opposed to the 44% of f2fs. Random reads (get operation)

in Reshim are more e�cient than zenfs, but add slight overhead over f2fs due to the extra steps in logical

block resolution, accounting for 17.5% of the time as opposed to 23% on zenfs, which explains the latency

spikes seen in Figure 7.

Figure 8. Breakdown of performance shows Reshim and zenfs with comparable write

performance while f2fsstruggles to keep up with the frequent syncs of wal interfering with

sst writes.

While RocksDB’s composable nature makes it a great target for testing new interfaces, one of the main

bene�ts of Reshim’s approach is generality, where it works with more than just RocksDB, so we

implemented placement for MongoDB.

qeios.com doi.org/10.32388/OJQTZ1 21

https://www.qeios.com/
https://doi.org/10.32388/OJQTZ1

4.2. Case Study: MongoDB

MongoDB’s backend, WiredTiger gives the users a choice for its data structures: BTrees or Log-Structured

Merge (LSM) trees. As BTrees require in-place updates, we focus on the LSM mode for Reshim. We tested

WiredTiger’s performance with a multithreaded insert and read test in wt_perf, to insert 10 Million entries

in an LSM tree and then perform reads and updates in separate threads.

WiredTiger performs two streams of writes: logs and ssts. We reuse the logic from RocksDB for testing

MongoDB, however a major limitation we ran into was supporting logs. WiredTiger uses mmap() writes for

logging, which necessitate in-place and out-of-order updates that are not supported in reshim-engine.

While mmap() databases are not recommended[31], this limitation handled by Reshim in its random-write

region (with the lock �les). For comparison, we look at f2fs, providing it �lesystem hints through Reshim

while reshim-engine uses Reshim’s hints.

For WiredTiger, we observe a signi�cant improvement in updates and reads in the LSM mode. As we see in

Figure 9 Reshim with multi-threaded readers is more than 6 faster, with write-heavy workloads up to 3

 faster. These are enabled by the ability to separate logs that go to the random write area and streams of

LSM �les that stay on zones. Physical separation of mmap-writes in the dedicated random write area with

its own bu�ers, while log-structured writes routed dedicated zone help improve the performance. We see

similar dramatic improvements in latency in Figure 10, for read and update, Reshim’s p50 is and

 respectively, compared to f2fs’ and .

Figure 9. Due to physical separation of log and .lsm �les to dedicated zones, Reshim can allow dramatically faster

writes and updates in WiredTiger. The isolation across logs eliminates contention and improves both read and

update latency.

×

×

31 μs

36 μs 195 μs 200 μs

qeios.com doi.org/10.32388/OJQTZ1 22

https://www.qeios.com/
https://doi.org/10.32388/OJQTZ1

Figure 10. The isolation across logs eliminates contention and improves both read and update latency.

4.3. Case Study: CacheLib

Finally, to demonstrate caching workloads we adopted Meta’s caching library CacheLib[32] to reshim-engine,

which required no change in Reshim’s logic, the only change required was con�guration of CacheLib �le

format, which needs to be done at setup. As we see in Figure 11, Reshim o�ers lower latency for reads and

writes (except maximum latency, a single spike required for our setup tasks), and improved throughput

especially with increase in �les. To perform this test we set up CacheLib with of cache in memory. We

kept this cache minimal to accelerate spillover to �ash, stress testing our systems. We then performed 10

million get and set operations on the cache. CacheLib supports two kinds of caches: one optimized for small

objects and one for large. Again, we use a similar heuristic approach to map these to separate streams,

relying on the log-structured nature to provide us temporal placement groups.

128 M

qeios.com doi.org/10.32388/OJQTZ1 23

https://www.qeios.com/
https://doi.org/10.32388/OJQTZ1

Figure 11. With CacheLib’s cachebench tool, Reshim outperforms f2fs on throughput and read-write latency

except the maximum write latency induced by initial setup

On CacheLib Reshim sees a small (8%) improvement in throughput Ops/s as compared to f2fs’

Ops/s but a large reduction in read latency, particularly at p90 and above as seen in Figure 11. This is

partially due to the highly optimized Navy engine, which uses optimizations io_uring[33], skipping a lot of

�lesystem overhead, and hence Reshim only sees a modest improvement. Reads are still improved, as

incoming writes do not block read operations. Write latency on the other hand is on-par or higher (at

extreme due to the setup cost).

4.4. Overhead

Finally, to show that Reshim maintains these performance properties while minimizing overhead, we

measure the overhead in terms of data written and memory usage.

4.4.1. Write Ampli�cation

Reduced garbage collection and improved grouping help reduce write ampli�cation as data can be deleted

together, avoiding the ampli�cation caused by moving data. As there is no on-device garbage collection,

reshim-engine sees a device write ampli�cation factor of 1, similar to f2fs and zenfs. In the benchmarks we

discussed, freeing up space in reshim-engine did not result in moving any data, as either a log or a sst zone

was completely invalidated at the time of reclaim. As we see in Section 4.4.1, in our write-intensive

experiments, Reshim frees up more space without moving any data as walblocks are freed up quickly,

56.8 K

52.3 K

qeios.com doi.org/10.32388/OJQTZ1 24

https://www.qeios.com/
https://doi.org/10.32388/OJQTZ1

allowing Reshim to erase without the need for relocating data. zenfs does not implement garbage collection,

so it is not included in this table.

 Reshim f2fs

Garbage Collection Calls 8 4

Data Moved 0 1059 MiB

Free Space at the End 48.2 GiB 33.2 GiB

Table 3. We ran an insert-heavy benchmark with updates, inserts, sequential, and random writes to compare f2fs

and Reshim’s garbage collection performance.

4.4.2. Memory Usage

Reshim in hint-only mode does not maintain any �le data and uses no extra memory. However, reshim-

engine needs to perform write bu�ering, which requires allocating memory depending on the number of

open �les. To speed up access, Reshim maintains all its maps in memory, however except �leMap, the rest

are either �xed size or frequently cleaned up. In our experiments we used bu�ers with 2 write streams,

totaling write bu�ers which made up most of the actively used memory. This size is smaller than the

bu�ers maintained by �lesystems in the kernel (f2fsmemory usage went up to in the same

experiments). Pro�ling the memory using KDE heaptrack [34], reshim-engine used at its peak in the

evaluation experiments.

The bu�er cache (Extent Size Writeable Files) +

ZoneMap (32 bits Addressable Zones) +

Stream Hints (64 bits Hint Streams) +

File Data (64 bits Extents per File Open Files)

Memory in Reshim

32 M

64 M

200 M

73 M

×

×

×

× ×

qeios.com doi.org/10.32388/OJQTZ1 25

https://www.qeios.com/
https://doi.org/10.32388/OJQTZ1

5. Related Work

Prior work in using these interfaces involved modifying existing applications [35][36] or using custom �le

systems like zenfs and FStream [37][38]. Applications such as RocksDB, Percona server, and MyRocks have

been adopted to the zns interface through the zenfs [39] plugin, the approach we evaluate against.

WALTZ [40] optimizes further over zenfs, reducing the tail latency with the help of the zone append

command.

Interposition approaches outside the �le system have used either eBPF [41] or SPDK [42] as kernel-bypass

mechanisms. Other approaches have used syscall_intercept [14] to overload system calls for persistent-

memory programming by disassembling and patching binaries. The Reshim approach is similar to

syscall_intercept but does not have the overhead of disassembling and patching binaries.

A few LD_PRELOAD-based �lesystem prototypes exist, like PlasticFS [43] and AVFS [44], which allows

peeking into compressed �les. Goanna [45] implemented a �lesystem through ptrace extensions, similar to

the LD_PRELOAD technique in spirit. More recently, zIO [46] used user-space libraries using LD_PRELOAD

to eliminate unnecessary copies of data, Reshim uses a similar interposition to redirect data. Several

FUSE [19] �lesystems have been implemented for optimized data placement. For instance,

PLFS [47] optimizes for parallel checkpoints to map it optimally to underlying �lesystems, similar to

Reshim’s mapping.

ZenFS vs Reshim

ZenFS presents an application-speci�c backend for zns SSDs, which is available as a RocksDB plugin. zenfs

showcases how applications speci�cally tuned for new interfaces can perform. reshim-engine uses an

extent-based design, much like zenfs but is more generalized as it can work with applications beyond

RocksDB. Reshim utilizes a novel hint system that can be tuned per application, while zenfs depends on

RocksDB for hints. Unfortunately zenfsseems largely abandoned with no updates since October 2023, and

broken builds since February 2024[29], reemphasizing the need to separate data placement from application

logic.

Reshim vs Filesystems

Filesystems like f2fs[8], and btrfs[48] o�er zns-speci�c improvements and are similar to Reshim and an

even broader application compatibility: the ability to perform in-place updates. f2fs is perhaps the best

example of a zns-supporting �lesystem, and we compare our approach to theirs throughout this work.

qeios.com doi.org/10.32388/OJQTZ1 26

https://www.qeios.com/
https://doi.org/10.32388/OJQTZ1

Persimmon[49] is an append-only fork of f2fs that requires no random-write area. Persimmon’s

performance is similar to f2fs, and it is tied to an older kernel version (5.18), and hence, we were unable to

evaluate it. Performance in both Persimmon and f2fsis limited by their in-kernel nature, lack of application

hints, and inability to use more than 3 data logs. Support for btrfson zns is limited, and we ran into several

issues trying to run tests. reshim-engine, despite lacking �lesystem features, can be used with applications

that rely on a �lesystem interface while o�ering a much better write performance and a comparable read

performance.

Reshim uses interposition to inject hints and remap data if needed, no other system interposes between the

application and the �lesystem in such a way. Similar techniques have been implemented in di�erent layers

of the stack. Cloud Storage Acceleration Layer[50] enables the adoption of zns with clusters of varied storage

and a host-based �ash translation layer. However, such an approach is intended to be a solution with no

application input and uses various types of storage to balance out random vs. sequential accesses. Reshim

presents a �lesystem-like solution that can scale from smartphones to large servers and be tuned per

application.

6. Conclusion

The various e�orts to introduce host-guided data placement present a sorry picture, we see a cycle of new

interfaces being introduced, demonstrated, and deprecated within a couple of years. To change this

paradigm, we need to decouple the complexity of data placement from the applications and �lesystems, and

make it easy to use these interfaces. Reshim represents an approach in this space, allowing �lesystem and

application development be unimpeded by changing interfaces, taking up the mantle to decide data

placement and device management. It does this with rich hint interfaces and a composable structure that

allows �exibility across applications, operating systems, and hardware protocols.

Hardware is in a turmoil. Compute, memory, and storage are moving over the stack making it challenging to

adapt to these changes while maintaining compatibility. Ultimately, as is the case with Reshim, we believe

that the way address the complexity is to isolate it in a dedicated layer that can be modi�ed independent of

other parts. This approach can speed up adoption of modern interfaces, simplify programming, o�er

improved performance, and allow broad application compatibility.

References

1. ^Grupp LM, Davis JD, Swanson S. "The Bleak Future of NAND Flash Memory." In: Proceedings of the 10th USE

NIX Conference on File and Storage Technologies, FAST'12. San Jose, CA, USA: USENIX Association; 2012. p. 2.

qeios.com doi.org/10.32388/OJQTZ1 27

https://www.qeios.com/
https://doi.org/10.32388/OJQTZ1

2. ^Yang J, Plasson N, Gillis G, Talagala N, Sundararaman S. "Don’t Stack Your Log On My Log." In: 2nd Worksho

p on Interactions of NVM/Flash with Operating Systems and Workloads (INFLOW 14); 2014 Oct; Broom�eld, C

O. USENIX Association. Available from: https://www.usenix.org/conference/in�ow14/workshop-program/pres

entation/yang.

3. ^Bjørling M. From Open-Channel SSDs to Zoned Namespaces. In: Vault '19, Boston, MA, February 2019. USENI

X Association.

4. ^Sabol C, Stenfort R (2022). "Hyperscale Innovation: Flexible Data Placement Mode (FDP)". NVMe Flexible Da

ta Placement. Available from: https://nvmexpress.org/wp-content/uploads/Hyperscale-Innovation-Flexible-

Data-Placement-Mode-FDP.pdf.

5. a, bWestern Digital Corporation. Ultrastar DC ZN540 NVMe SSD [Internet]. 2024. Available from: https://www.

westerndigital.com/en-ae/products/internal-drives/ultrastar-dc-zn540-nvme-ssd?sku=0TS2096. Accessed:

2024-10-22.

6. ^Axboe J. �o - �exible I/O tester rev. 3.30. Available from: https://�o.readthedocs.io/en/latest/�o_doc.html.

7. a, bLe Moal D, Yao T. "Zonefs: Mapping POSIX File System Interface to Raw Zoned Block Device Accesses." In: V

ault '20; 2020 Feb; Santa Clara, CA. USENIX Association.

8. a, bLee C, Sim D, Hwang J, Cho S (2015). "F2FS: A New File System for Flash Storage". In: 13th USENIX Confere

nce on File and Storage Technologies (FAST 15), pages 273–286.

9. ^De Melo AC. "The new Linux perf tools". In: Slides from Linux Kongress. 2010;18:1–42. Available from: http://

oldvger.kernel.org/~acme/perf/lk2010-perf-acme.pdf.

10. a, bMeta Platforms, Inc. Cachelib. 2020. Available from: https://github.com/facebook/CacheLib. Available on G

itHub.

11. ^Bijlani A, Ramachandran U. "Extension Framework for File Systems in User space". In: 2019 USENIX Annual

Technical Conference (USENIX ATC 19). Renton, WA: USENIX Association; 2019. p. 121-134. Available from: htt

ps://www.usenix.org/conference/atc19/presentation/bijlani.

12. ^Mizusawa N, Nakazima K, Yamaguchi S. "Performance evaluation of �le operations on OverlayFS". In: 2017

Fifth International Symposium on Computing and Networking (CANDAR). IEEE; 2017. p. 597–599.

13. ^Bytecode Alliance (2022). "WASI: WebAssembly System Interface". Online Documentation. Available from: ht

tps://github.com/bytecodealliance/wasmtime/blob/main/docs/WASI-overview.md.

14. a, bIntel Corp. syscall_intercept. 2023. Available from: https://github.com/pmem/syscall_intercept. Retrieved:

2017-03-20.

15. ^Evans J. jemalloc [Internet]. 2005. Available from: https://github.com/jemalloc/jemalloc.

qeios.com doi.org/10.32388/OJQTZ1 28

https://www.usenix.org/conference/inflow14/workshop-program/presentation/yang
https://www.usenix.org/conference/inflow14/workshop-program/presentation/yang
https://nvmexpress.org/wp-content/uploads/Hyperscale-Innovation-Flexible-Data-Placement-Mode-FDP.pdf
https://nvmexpress.org/wp-content/uploads/Hyperscale-Innovation-Flexible-Data-Placement-Mode-FDP.pdf
https://www.westerndigital.com/en-ae/products/internal-drives/ultrastar-dc-zn540-nvme-ssd?sku=0TS2096
https://www.westerndigital.com/en-ae/products/internal-drives/ultrastar-dc-zn540-nvme-ssd?sku=0TS2096
https://fio.readthedocs.io/en/latest/fio/_doc.html
https://github.com/facebook/CacheLib
https://github.com/pmem/syscall_intercept
https://www.qeios.com/
https://doi.org/10.32388/OJQTZ1

16. ^Seward J, Nethercote N, et al. Valgrind: A Framework for Heavyweight Dynamic Binary Instrumentation. 200

7. Available from: https://valgrind.org/.

17. ^Zheng Y, Yu T, Yang Y, Hu Y, Lai X, Quinn A. bpftime: userspace eBPF Runtime for Uprobe, Syscall and Kernel

-User Interactions. December 2023. arXiv:2311.07923 [cs]. doi:10.48550/arXiv.2311.07923. Available from: htt

p://arxiv.org/abs/2311.07923.

18. ^Jangda A, Powers B, Berger ED, Guha A. "Not So Fast: Analyzing the Performance of WebAssembly vs. Native

Code." In: 2019 USENIX Annual Technical Conference (USENIX ATC 19), Renton, WA: USENIX Association; 201

9. p. 107-120. Available from: https://www.usenix.org/conference/atc19/presentation/jangda.

19. a, bVangoor BKR, Tarasov V, Zadok E (2017). "To FUSE or not to FUSE: Performance of User-Space �le system

s". In: 15th USENIX Conference on File and Storage Technologies (FAST 17), pages 59–72.

20. ^Spillane RP, Wright CP, Sivathanu G, Zadok E. Rapid �le system development using ptrace. In: Proceedings of

the 2007 workshop on Experimental computer science. San Diego California: ACM; 2007. p. 22. doi:10.1145/128

1700.1281722.

21. ^Wejdenstal J. dashmap: A High-Performance Concurrent Hash Map for Rust [Internet]. 2023. Available from:

https://github.com/xacrimon/dashmap. Accessed: September 21, 2023.

22. a, bSculley D. Web-scale k-means clustering. In: Proceedings of the 19th International Conference on World Wi

de Web, WWW '10. New York, NY, USA: Association for Computing Machinery; 2010. p. 1177–1178. doi:10.1145/1

772690.1772862.

23. ^Calder B, Wang J, Ogus A, Nilakantan N, Skjolsvold A, McKelvie S, Xu Y, Srivastav S, Wu J, Simitci H, Haridas J,

Uddaraju C, Khatri H, Edwards A, Bedekar V, Mainali S, Abbasi R, Agarwal A, Haq MF, Haq MI, Bhardwaj D, D

ayanand S, Adusumilli A, McNett M, Sankaran S, Manivannan K, Rigas L. "Windows Azure Storage: a highly a

vailable cloud storage service with strong consistency." In: Proceedings of the Twenty-Third ACM Symposium

on Operating Systems Principles, SOSP '11, New York, NY, USA: Association for Computing Machinery; 2011. p. 1

43–157. doi:10.1145/2043556.2043571.

24. ^Bornholt J, Joshi R, Astrauskas V, Cully B, Kragl B, Markle S, Sauri K, Schleit D, Slatton G, Tasiran S, Van Ge�e

n J, War�eld A. Using lightweight formal methods to validate a key-value storage node in Amazon S3. In: SOS

P 2021; 2021. Available from: https://www.amazon.science/publications/using-lightweight-formal-methods

-to-validate-a-key-value-storage-node-in-amazon-s3.

25. ^Edara P, Forbes J, Li B. "Vortex: A Stream-oriented Storage Engine For Big Data Analytics". In: SIGMOD; 202

4.

26. ^Matsunobu Y, Dong S, Lee H (2020). "MyRocks: LSM-tree database storage engine serving Facebook's social

graph". Proc. VLDB Endow.. 13 (12): 3217–3230. doi:10.14778/3415478.3415546.

27. ^Facebook (2013). "RocksDB". Available on GitHub. https://github.com/facebook/rocksdb.

qeios.com doi.org/10.32388/OJQTZ1 29

https://doi.org/10.48550/arXiv.2311.07923
http://arxiv.org/abs/2311.07923
http://arxiv.org/abs/2311.07923
https://www.usenix.org/conference/atc19/presentation/jangda
https://doi.org/10.1145/1281700.1281722
https://doi.org/10.1145/1281700.1281722
https://doi.org/10.1145/1772690.1772862
https://doi.org/10.1145/1772690.1772862
https://doi.org/10.1145/2043556.2043571
https://www.amazon.science/publications/using-lightweight-formal-methods-to-validate-a-key-value-storage-node-in-amazon-s3
https://www.amazon.science/publications/using-lightweight-formal-methods-to-validate-a-key-value-storage-node-in-amazon-s3
https://doi.org/10.14778/3415478.3415546
https://github.com/facebook/rocksdb
https://www.qeios.com/
https://doi.org/10.32388/OJQTZ1

28. ^MongoDB, Inc. MongoDB [Internet]. 2009 [cited 2023]. Available from: https://www.mongodb.com/.

29. a, b, cbpan2020 (2024). "There is an error when i am compilling rocksDB version above 8.10.0 with zenFS 2.1.

4". ZenFS GitHub Issue \#288. Available from: https://github.com/westerndigitalcorporation/zenfs/issues/28

8.

30. ^Cook B. "An unexpected discovery: Automated reasoning often makes systems more e�cient and easier to ma

intain". AWS Security Blog. Available from: https://aws.amazon.com/blogs/security/an-unexpected-discovery

-automated-reasoning-often-makes-systems-more-e�cient-and-easier-to-maintain/. Accessed: 2024-1

0-22.

31. ^Crotty A, Leis V, Pavlo A (2022). "Are You Sure You Want to Use MMAP in Your Database Management Syste

m?" In: {CIDR} 2022, Conference on Innovative Data Systems Research.

32. ^Berg B, Berger DS, McAllister S, Grosof I, Gunasekar S, Lu J, Uhlar M, Carrig J, Beckmann N, Harchol-Balter

M, Ganger GR. "The CacheLib Caching Engine: Design and Experiences at Scale." In: 14th USENIX Symposium

on Operating Systems Design and Implementation (OSDI 20). USENIX Association; 2020 Nov. p. 753-768. Avai

lable from: https://www.usenix.org/conference/osdi20/presentation/berg.

33. ^Axboe J. "E�cient IO with io_uring". Available from: https://kernel.dk/io_uring.pdf.

34. ^KDE. KDE heaptrack [Internet]. 2024. Available from: https://github.com/KDE/heaptrack. Last Accessed: Janu

ary 15 2024.

35. ^Wang P, Sun G, Jiang S, Ouyang J, Lin S, Zhang C, Cong J (2014). "An e�cient design and implementation of

LSM-tree based key-value store on open-channel SSD". Proceedings of the Ninth European Conference on Co

mputer Systems. 2014: 1–14.

36. ^Zhang J, Lu Y, Shu J, Qin X (2017). "FlashKV: Accelerating KV performance with open-channel SSDs". ACM Tr

ansactions on Embedded Computing Systems (TECS). 16 (5s): 1–19.

37. ^Oh M, Yoo S, Choi J, Park J, Choi C-E (2023). "ZenFS+: Nurturing Performance and Isolation to ZenFS". IEEE

Access. 11: 26344–26357. doi:10.1109/ACCESS.2023.3257354. Link.

38. ^Rho E, Joshi K, Shin SU, Shetty NJ, Hwang J, Cho S, Lee DD, Jeong J. "FStream: Managing Flash Streams in the

File System." In: 16th USENIX Conference on File and Storage Technologies (FAST 18), Oakland, CA: USENIX As

sociation; 2018. p. 257-264. Available from: https://www.usenix.org/conference/fast18/presentation/rho.

39. ^Bjørling M, Aghayev A, Holmberg H, Ramesh A, Le Moal D, Ganger GR, Amvrosiadis G. "ZNS: Avoiding the Bl

ock Interface Tax for Flash-based SSDs." In: 2021 USENIX Annual Technical Conference (USENIX ATC 21); 202

1. p. 689-703.

40. ^Lee J, Kim D, Lee JW. "WALTZ: Leveraging Zone Append to Tighten the Tail Latency of LSM Tree on ZNS SSD".

Proc. VLDB Endow.. 16 (11): 2884–2896, 2023. doi:10.14778/3611479.3611495.

qeios.com doi.org/10.32388/OJQTZ1 30

https://www.mongodb.com/
https://github.com/westerndigitalcorporation/zenfs/issues/288
https://github.com/westerndigitalcorporation/zenfs/issues/288
https://aws.amazon.com/blogs/security/an-unexpected-discovery-automated-reasoning-often-makes-systems-more-efficient-and-easier-to-maintain/
https://aws.amazon.com/blogs/security/an-unexpected-discovery-automated-reasoning-often-makes-systems-more-efficient-and-easier-to-maintain/
https://github.com/KDE/heaptrack
https://doi.org/10.1109/ACCESS.2023.3257354
https://ieeexplore.ieee.org/document/10070767/
https://www.usenix.org/conference/fast18/presentation/rho
https://doi.org/10.14778/3611479.3611495
https://www.qeios.com/
https://doi.org/10.32388/OJQTZ1

41. ^Zhong Y, Li H, Wu YJ, Zarkadas I, Tao J, Mesterhazy E, Makris M, Yang J, Tai A, Stutsman R, Cidon A. "XRP: In

-Kernel Storage Functions with eBPF." In: 16th USENIX Symposium on Operating Systems Design and Implem

entation (OSDI 22), Carlsbad, CA: USENIX Association; 2022. p. 375-393. Available from: https://www.usenix.o

rg/conference/osdi22/presentation/zhong.

42. ^Yang Z, Harris JR, Walker B, Verkamp D, Liu C, Chang C, Cao G, Stern J, Verma V, Paul LE. "SPDK: A developm

ent kit to build high performance storage applications." In: 2017 IEEE International Conference on Cloud Com

puting Technology and Science (CloudCom). IEEE; 2017. p. 154-161.

43. ^Miller P. PlasticFS: A GNU Project [Internet]. 2012 [cited 2023]. Available from: https://plasticfs.sourceforge.n

et/. Last updated: 2012.

44. ^Ho�mann R, Szeredi M. AVFS: A Virtual Filesystem [Internet]. 2001. Available from: https://avf.sourceforge.n

et/. Last accessed: August 29, 2023.

45. ^Spillane RP, Gaikwad S, Zadok E, Wright CP, Chinni M. Enabling transactional �le access via lightweight kern

el extensions. In: Proceedings of the Seventh USENIX Conference on File and Storage Technologies (FAST '09).

San Francisco, CA: USENIX Association; 2009. p. 29-42.

46. ^Stamler T, Hwang D, Raybuck A, Zhang W, Peter S. "zIO: Accelerating IO-Intensive Applications with Transpa

rent Zero-Copy IO." In: 16th USENIX Symposium on Operating Systems Design and Implementation (OSDI 22),

Carlsbad, CA: USENIX Association; 2022. p. 431-445. Available from: https://www.usenix.org/conference/osdi

22/presentation/stamler.

47. ^Bent J, Gibson G, Grider G, McClelland B, Nowoczynski P, Nunez J, Polte M, Wingate M. "PLFS: a checkpoint �l

esystem for parallel applications." Proceedings of the Conference on High Performance Computing Networkin

g, Storage and Analysis. 2009: 1-12. doi:10.1145/1654059.1654081.

48. ^Rodeh O, Bacik J, Mason C (2013). "BTRFS: The Linux B-tree �lesystem". ACM Transactions on Storage (TO

S). 9 (3): 1–32.

49. ^Purandare DR, Schmidt S, Miller EL. "Persimmon: an append-only ZNS-�rst �lesystem." In: 2023 IEEE 41st I

nternational Conference on Computer Design (ICCD); 2023. p. 308-315. doi:10.1109/ICCD58817.2023.00054.

50. ^Ye Q, Karkra K. Cloud Storage Acceleration Layer (CSAL): An Open-Source, Host-Based Flash Translation Lay

er (FTL) [Internet]. 2023. Available from: https://www.snia.org/educational-library/cloud-storage-accelerati

on-layer-csal-enabling-unprecedented-performance-and. Last accessed: August 29, 2023.

Declarations

Funding: No speci�c funding was received for this work.

Potential competing interests: No potential competing interests to declare.

qeios.com doi.org/10.32388/OJQTZ1 31

https://www.usenix.org/conference/osdi22/presentation/zhong
https://www.usenix.org/conference/osdi22/presentation/zhong
https://plasticfs.sourceforge.net/
https://plasticfs.sourceforge.net/
https://avf.sourceforge.net/
https://avf.sourceforge.net/
https://www.usenix.org/conference/osdi22/presentation/stamler
https://www.usenix.org/conference/osdi22/presentation/stamler
https://doi.org/10.1145/1654059.1654081
https://doi.org/10.1109/ICCD58817.2023.00054
https://www.snia.org/educational-library/cloud-storage-acceleration-layer-csal-enabling-unprecedented-performance-and
https://www.snia.org/educational-library/cloud-storage-acceleration-layer-csal-enabling-unprecedented-performance-and
https://www.qeios.com/
https://doi.org/10.32388/OJQTZ1

