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Controllability, one of the fundamental concepts in control theory, consists in guiding a system from

an initial state to a desired one within a limited (and possibly minimum) time interval. When the

objective is limited to a specific sub-region of the system’s domain, the concept is referred to as

regional controllability.

We examine this notion in the context of Boolean one-dimensional cellular automata of finite length.

Depending on the local evolution rule, we investigate whether it is possible to control the evolution of

the system by imposing particular values on the boundary conditions. This approach is related to key

dynamical properties of CA, specifically chain transitivity and chain mixing. We show that the control

problem can be formulated as a Boolean satisfiability (SAT) problem and can thus be addressed using

SAT solvers. We also show how finding shortest paths in the configuration graph allows to determine

controllability properties. From our observations we can state that only peripherally-linear rules are

fully controllable, while for other rules, the reachability ratio, that is, the fraction of controllable pairs

of initial and final configurations, is vanishing when the system size grows.
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1. Introduction

Control theory is a branch of mathematics and engineering that deals with the behaviour of dynamical

systems and how this behaviour can be modified with some influence that takes the form of a feedback.

In other words, to control a system means to influence its behaviour so as to steer it to a desired state.
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Control theory is widely used in large number of fields ranging from aerospace, robotics, electrical

engineering to social science.

Many studies have explored the control of dynamical systems with continuous variables and continuous-

time evolution addressing both finite- and infinite-dimensional cases. These systems are typically

modelled and analysed using differential equations and partial differential equations[1][2].

Controllability, introduced by Kalman in 1960, is one of the fundamental concepts in control theory. It

explores whether a system can be guided from any initial state to a desired state within a predefined time

interval  . Since the, this concept has been extensively studied for finite-dimensional systems[3] and

infinite-dimensional systems described by partial differential equations (PDE)[4][5].

More recently, controllability has been studied in the context of cellular automata (CA – acronym also

used to define single cellular automaton), which are considered as potential alternatives to classical

models based on partial differential equations, as they can effectively capture non-linear phenomena

through simple local rules.

Cellular automata are discrete dynamical systems regarded as the simplest models of spatially extended

systems which can offer an effective framework for describing complex phenomena. They consist of

three components: a grid of cells, each taking a state from a finite set, a neighbourhood (for each cell) and

a local transition function. The CA paradigm has been successfully applied to a wide range of fields,

including biology, chemistry, physics, and ecology, as evidenced by an extensive literature on the

subject[6][7][8]. For a general overview, see the proceedings of the ACRI conference[9].

The focus of this paper is on a specific aspect of controllability, known as regional controllability, where

the goal is to achieve a desired objective only on a part of the whole domain by applying actions on its

boundaries. Regional controllability of cellular automata focuses on the ability to guide the state of a

system toward desired configurations within a specific subregion of the entire domain. This concept was

introduced by El Jai and Zerrik in (1993-1995) and well studied in a wide range of works in the context of

distributed parameter systems described by partial differential equations. It is particularly relevant for

this type of systems to address situations where full domain control is either unachievable or

unnecessary, while control within a specific region remains achievable.

When switching from a continuous description (PDE) to a discrete one (coupled maps or CA), we have also

to introduce the system size   as a relevant parameter.
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In the context of CA, different characterization results have been proposed to extend or substitute the

widely used Kalman criterion and the regional controllability problem was analysed with various

methods to establish new criteria for the case of cellular automata and discrete complex systems[10].

Our research primarily focused on the regional controllability of Boolean CA, demonstrating its validity

through the use of Markov chains and graph theory tools[11][12][13]; see Ref.[14] for a general overview.

The problem of regional controllability has been addressed with an approach based on the Kalman

condition[15][16]. For one-dimensional deterministic cellular automata, the problem has been explored

using the concept of Boolean derivatives[17]  and the probabilistic case has been investigated with a

Markov-chain approach[18][19]. In a recent work, a novel characterization of controllability and regional

controllability based on symbolic dynamics was introduced[20]. This study establishes that the regional

controllability for every    (where    is the size of the controlled region) and controllability of cellular

automata are equivalent to the topological properties, namely those of chain transitivity and chain

mixing.

In another recent work, a preimage algorithm was used to determine whether a desired configuration can

be reached from an initial configuration, using a characterization tool known as the controllability tree[21].

This paper builds upon these findings.

In this work, we deepen our exploration of the regional controllability of elementary cellular automata by

formulating this problem as a satisfiability problem (SAT). We also provide new techniques such as

finding the minimum path in the directed configuration graph.

The structure of the paper is as follows. Section 2 provides an overview of the definitions of elementary

cellular automata, introduces the regional controllability problem and the connection between chain

transitivity, chain mixing and regional controllability. Section  3 formulates the problem of regional

controllability for one-dimensional cellular automata as a SAT problem. Furthermore, this method can

also be used to explore key dynamical properties of cellular automata, particularly chain transitivity and

chain mixing. Section  4 is devoted to the generation of preimages of a given configuration, given the

controls, and in Section  5, we present another technique for CA control, focusing on the process of

finding the shortest path in the directed configuration graph, achieved by constructing trees of images

and preimages corresponding to the starting and target configurations for all possible control inputs.

Finally, conclusions are drawn in Section 6.
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2. Definitions of the problem and mathematical properties

2.1. Elementary Cellular Automata

Elementary cellular automata (ECA – acronym also used to define a single automaton) are discrete

dynamical systems for which the state of each cell only takes two values and is determined at each time

step by its own state and the state of left and right neighbours. The evolution of the states of all cells

occurs in parallel.

We first consider a one-dimensional infinite set of cells. The state of each cell   at time   is given by a

variable  . Mathematically, the evolution of the cells is defined in terms of a local function 

For a given time  , we denote by   the sequence of all cell states, i.e., a configuration. In the

rest of the paper we consider only finite configurations since we will focus on a particular set of cells, or a

region, not taking into consideration what happens outside it.

i ∈ Z t

∈ {0, 1}xti

f : {0, 1 → {0, 1} :}3

∀i ∈ Z, = f( , , ).xt+1
i xti−1 xti xti+1

t = (xt xti)i∈Z
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Table 1. The look-up table of Rules 150 and 22.   is the neighbourhood in the base-two representation, 

 is the same in then base-ten representation. The column   is the output of Rule 150 and   the

derivative of the Rule 150 in zero with respect to the ones in the neighbourhood in the base-two

representation, same for   and   for Rule 22.

Since there are   different neighbourhood states, there are   different ECA rules. It is usual

to associate to each ECA   its decimal code  , defined by  [22][23].

This amounts to writing the digits of the transition table   …  and converting the binary

number to a decimal number. As an example, Rule 150 corresponds to the array  , which

is equal to 150 in base ten (see Table 1).

One can apply two symmetries on the rule, the left-right inversion and the one-zero exchange, which

gives 88 classes. The rules with smallest decimal code in a class are called minimal CA and it is usual to

consider only these rules for studying ECA (see the left column of Table 4).

2.2. Definition of the regional controllability problem

In our problem, the definition of a regionally-controllable CA will be set for an arbitrary number of cells,

with the goal of determining the asymptotic behaviour. For a given number cells  , we will focus on the

N = ( , , )x−1 x0 x1
= 4 + 2N

(10)
x−1 x0

+ x1

(N )f (150) D
(150)

N
(N )f (22) D

(22)

N

0, 0, 0 0 0 0 0 0

0, 0, 1 1 1 1 1 1

0, 1, 0 2 1 1 1 1

0, 1, 1 3 0 0 0 0

1, 0, 0 4 1 1 1 1

1, 0, 1 5 0 0 0 0

1, 1, 0 6 0 0 0 0

1, 1, 1 7 1 0 0 1

N

N
(10)

f (150) D
(150)

N

f (22) D(22)

= 823 = 25628

f W W(f) = f(0, 0, 0) + ⋯ + f(1, 1, 1)20 27

f(0, 0, 0) f(1, 1, 1)

1, 0, 0, 1, 0, 1, 1, 0

n
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region represented by the set of   cells indexed from 1 to   and try to control the evolution of this region,

without setting in advance the number of steps  . We are also interested in looking for the minimal value

of   for a given pair of configurations   and the minimal value for a region size 

where   denotes the set of finite words (configurations) of length   over  ,

Given a number of cells    and two finite sub-configurations    and 

, our objective is to determine if there exists an appropriate control sequence

on the boundary cells, namely cell   and cell  , such that the system will evolve from   to   in a finite

number of time steps (see Figure 1 for an illustration).

Figure 1. General view of the regional controllability problem of one-dimensional CA via boundary actions

for   controlled cells. The initial and final configurations are respectively in yellow and cyan. Time goes

from bottom to top. Colour Online

n n

T

T (x, y) (x, y) n

T (n) = min{T (x, y) : x, y ∈ {0, 1 },}n

{0, 1}n n {0, 1}

n x = ( , … , )x1 xn

y = ( , … , ) ∈ {0, 1y1 yn }n

0 n + 1 x y

n = 6
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Mathematically, this amounts to saying that:

A CA is regionally controllable, if there exists   such that for every   and for every

pair of configurations  , there exists    and a control vector 

 where   such that

that is,   is reachable from   in   steps, with

In the case where a rule is not regionally controllable, we are interested in determining the reachability

ratio , that is, the ratio of controllable pairs of initial and final configurations of size  :

2.3. Peripheral linearity: a sufficient condition to be controllable

Let us now examine under which conditions elementary cellular automata can be controlled.

To this end, we introduce the notion of a derivative of a Boolean function  [24] as:

where    stands for the sum modulo two (equivalent to an exclusive OR). This definition obeys many

standard properties of derivatives, like the chain rule[25]. It is possible also to define higher-order

derivatives.

By means of Boolean derivatives in zero one can obtain the Ring Sum Expansion of a function[26]:

where   is the derivative of   with respect to the bits that have value 1 in the binary representation of  .

For instance

Rules that have all derivatives of order greater than one equal to zero (i.e.,  ) are

called affine, and linear if  . For instance, Rule 150 is a linear rule since it can be written as

N ∈ N
+ n ≥ N

x = , y ∈ {0, 1x0 }n T > 0

u = ( , … , )u0 uT−1 = ( , )ut xt0 xtn+1

= y,xT

y x T

∀t ∈ {1, … ,T}, ∀i ∈ {1, … ,n}, = f( , , ).xt+1
i xti−1 xti xti+1

ρ(n) n

ρ(n) = card{(x, y) ∈ {0, 1 × {0, 1 : y is reachable from x}.
1

22n
}n }n

f(x,y)

= f(x ⊕ 1,y) ⊕ f(x,y),
∂f

∂x

⊕

f( , , ) =x0 x1 x2 ⊕ ⊕ ⊕ ⊕ ⊕D0 D1x0 D2x1 D4x2 D3x0x1

⊕ ⊕ ,D5x0x2 D6x1x2 D7x0x1x2

(1)

Di f i

= = (0) = f(1, 0, 1) ⊕ f(1, 0, 0) ⊕ f(0, 0, 1) ⊕ f(0, 0, 0).D5 D1,0,1
f∂ 2

∂ ∂x0 x2

= = = = 0D3 D5 D6 D7

f(0, 0, 0) = 0
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while Rule 22, although quite similar to Rule 150 (see Table. 1), is not affine:

The Boolean derivatives in zero and the affinity of all minimal ECA are reported in Table 2 of Ref. [21].

We can now define the property of linearity with respect to the periphery of the neighbourhood, which, for

ECA, amounts to saying that there exists a function   such that:

In term of Boolean derivatives, a rule is peripherally-linear if    and    or 

 and  . In the ECA space, the peripherally-linear rules are Rules 15, 30, 45, 60,

90, 105, 106, 150, 154, and 170.

As shown in Refs. [17][15], peripherally-linear rules are fully controllable.

2.4. Chain transitivity, chain mixing and regional controllability

Let us recall the definitions of  -chains, chain transitivity and chain mixing.

Let   and let   where   is the alphabet. An  -chain ( -pseudo-orbit) from   to   is a finite

sequence of configurations    with    and  , such that for    and 

, for  , where the distance   is defined as:

and   is the global transition function.

A cellular automaton is chain-transitive if for all   and   there exists an  -chain from   to 

[27]. Similarly, a cellular automaton is considered to be chain-mixing if, for any two configurations 

 and   there exists   such that for all  , there exists an  -chain of length   from 

 to  [27].

Recall that regional controllability refers to the ability to steer a dynamical system in a specific region

from any initial configuration to any desired configuration in that region within a finite time    using

appropriate inputs (control). Meanwhile, chain transitivity means that for any two points in the state

space, one can find a sequence of pseudo-orbits (arbitrary small jumps) connecting them. The connection

( , , ) = ⊕ ⊕ ,f (150) x0 x1 x2 x0 x1 x2

( , , ) = ⊕ ⊕ ⊕ .f (22) x0 x1 x2 x0 x1 x2 x0x1x2

g

f( , , ) = ⊕ g( , ) or f( , , ) = g( , ) ⊕ .x0 x1 x2 x0 x1 x2 x0 x1 x2 x0 x1 x2

= 1D1 = = = 0D3 D5 D7

= 1D4 = = = 0D5 D6 D7

ε

ε > 0 x, y ∈ AZ A ε ε x y

{ , , … , }x0 x1 xt = xx0 = yxT T > 0

d(F( ), ) < εxt xt+1 t ∈ {0, … ,T − 1} d

d(x, y) = 2− min{|k|: ≠ }xk yk

F : →AZ AZ

x, y ∈ AZ ε > 0 ε x

y

x, y ∈ AZ ε > 0 T > 0 t ≥ T ε t

x y

T
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between chain transitivity, chain mixing and regional controllability of cellular automata was

investigated and a proof has been recently proposed to establish an equivalence between regional

controllability for every   (where   is the size of the controlled region), the chain-transitivity and chain-

mixing properties of one-dimensional cellular automata[20]. It has been shown that a CA is regionally

controllable for every   if and only if it is chain-transitive and chain-mixing.

The link between these concepts can be understood through graph theory, by modelling controlled

cellular automata as directed graph, where nodes denotes the finite configurations in    and the arcs

represent transitions between them, governed by system dynamics or external inputs. In graph terms,

the regional controllability concept corresponds to strong connectivity of the state transition graph

meaning that any state can be reached from any other state via a directed path between nodes[11][10]. It

has been shown that when this connectivity property is verified for every  , it is equivalent to chain

transitivity and chain mixing[20]. For a finite cellular automaton the relationship also remains valid.

This means that the value of    controls the number of cells    that we have in our system and that

applying the control sufficiently far from the centre cell (say at distance  ) guarantees that we obtain a

valid  -chain. Mathematically, let us consider a configuration   and its image  . Applying a

control on   on cells   and   transforms this configuration into a configuration  . It is easy to

see that we have  , which exactly corresponds to the notion of  -chain for  . In

other words, we need to apply the control at a larger distance as the value of   gets smaller in the  -chain.

According to the equivalence presented in Ref.  [20], the methods used to investigate the regional

controllability problem can thus also be used to verify the chain transitivity and chain mixing properties.

n n

n

An

n

ϵ n

n/2

ε xt = F( )xt+1 xt

xt+1 −n/2 n/2 y

d(F( ), y) ≤xt 1

2n/2
ϵ ϵ = 1

2n/2

ϵ ϵ
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Figure 2. One step of the generation of the preimages (control tree) of configuration   for Rule 150. Since

Rule 150 is (doubly) peripherally linear, there is no failures nor additional forking.

3. Modelling the control problem as a SAT problem

We can now investigate whether the control problem is solvable for non-peripherally linear rules. In this

section, we reformulate the regional controllability of cellular automata problem as a SAT problem.

3.1. Modelling the problem

Recall that we have   cells in the target region with indices ranging from 1 to  , and two external cells

with index    and    as the border controls. In the CA world,    describe the state of cell 

 at time   and   and   respectively describe the state of left and right controls at time  . To

go to the SAT universe, we map each binary value    to a Boolean value  , with    and 

  such that  , where    is the function from    to    such that 

 and  .

Recall that we fix the values   and that we want to reach   in   time steps.

This is equivalent to saying that there exists two sequences    and    such

that:

01

n n

0 n + 1 ∈ {0, 1}xti

i ∈ {1,n} t xt0 xtn+1 t

xti bti t ∈ N

i ∈ {0, . . . ,n} = B( )bti xti B {0, 1} {False, True}

B(0) = False B(1) = True

x = ( , . . . , )x1 xn y = ( , . . . , )y1 yn T

(xt
0)t∈{0,...,T−1} (xt

n+1 )t∈{0,...,T−1}
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and   for all  , that is,   is reachable from   in   steps.

We now need to transform this mathematical relationship into a Boolean formula. Such a formula is

usually expressed as a combination of variables, or atoms, and operators. A clause is a special case of

formula where atoms and their negations are combined using only OR operators, for instance 

. A formula is in conjunctive normal form (CNF) if it is expressed as a conjunction of

clauses, for instance:  . SAT solvers take a CNF as an input and try

to compute an assignment of the variables that makes the formula true, or, when this is not possible, try

to find a proof that there this no such assignment.

Figure 3. (left) Modelling of the controllability problem with Rule 30, initial condition 010001, final condition

101010 and   time steps. Time goes from bottom to top. The control variables are shown in green and the

controlled variables in pink. The values of two control variables   and   are irrelevant and are left in grey.

(right) A solution that was found by the SAT solver. White and blue respectively correspond to 0 and 1, which

are respectively associated to False (F) and True (T). Color online

To encode the CNF that verifies the regional controllability problem, we proceed in two steps (see

Figure 3).

a) For each   and  , we encode the condition   as a CNF composed of eight clauses

which use the four variables  ,  ,  , and  .

Indeed, each neighbourhood state will generate a clause:

∀t ∈ {0, . . . ,T − 1}, ∀i ∈ {1, . . . ,n}, = f( , , ).xt+1
i xti−1 xti xti+1

(2)

=xTi yi i ∈ {1, . . . ,n} y x T

f(a, b, c) = a ∨ ¬b ∨ c

f(a, b, c,d) = (a ∨ ¬b) ∧ (b ∨ ¬c ∨ ¬d)

T = 7

x7
0 x7

7

i t = f( , , )xt+1
i xti−1 xti xti+1

bt+1
i bti−1 bti bti+1
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As   is equivalent to  , the conditions becomes

that is,

which translates into

where   and  .

We thus translate the   transitions described in Eq. (2) into   clauses.

b)  In a second step, we encode the initial and final conditions   and   for   and let the

control variables free of any constraint.

By combining the conditions obtained in step a) and step b), we obtain a CNF formula    with 

 clauses and such that   is satisfiable if and only if   is reachable from   in   time steps.

3.2. Experimental results

We tested the solving abilities of the SAT solvers with the minisat solver[28]. We used a simple script to

generate the formula seen above in the form of a CNF expressed in the popular DIMACS format. For a

fixed value of   and  , we randomly generated a pair of initial and final configurations   and

asked the solver whether   was reachable from   with a control sequence of length  .

( , , )xt
i−1

xti xt
i+1

( , , )xt
i−1

xti xt
i+1

( , , )xt
i−1

xti xt
i+1

= (0, 0, 0)⟹ = f(0, 0, 0),xt+1
i

= (0, 0, 1)⟹ = f(0, 0, 1), … ,xt+1
i

= (1, 1, 1)⟹ = f(1, 1, 1).xt+1
i

A⟹ B ¬A ∨ B

≠ 0 ∨ ≠ 0 ∨ ≠ 0 ∨ = f(0, 0, 0), … ,xti−1 xti xti+1 xt+1
i

= 1 ∨ = 1 ∨ = 1 ∨ = f(0, 0, 0), …xti−1 xti xti+1 xt+1
i

∨ ∨ ∨ C[ ,f(0, 0, 0)], … ,bti−1 bti bti+1 bt+1
i

C[b, 1] = b C[b, 0] = ¬b

n ⋅ T 8 ⋅ n ⋅ T

( )b0
i ( )bTi i ∈ {1, . . . ,n}

Φ

8nT + 2n Φ y x T

n T x, y ∈ {0, 1}n

y x T
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ECA time R C D ECA time R C D

0 0.00 1.874 0 0 0 1 0.00 1.870 0 0 0

2 0.00 1.866 0 0 0 3 0.01 1.838 1 0 1

4 0.00 1.834 0 0 0 5 0.00 1.864 0 0 0

6 0.00 1.922 0 0 0 7 0.00 1.765 3 39 143

8 0.00 1.808 0 0 0 9 0.00 1.942 0 0 0

10 0.00 1.985 0 0 0 11 0.00 1.870 0 0 0

12 0.00 1.757 0 0 0 13 0.00 2.073 0 0 0

14 0.01 1.825 1 14 451 15 1.00 2.190 100 0 100

18 0.00 1.949 0 0 0 19 0.00 1.867 0 0 0

22 0.07 6.727 929 281123 780831 23 0.00 1.852 0 0 0

24 0.00 2.018 0 0 0 25 0.00 2.182 11 151 838

26 0.05 2.085 42 4554 28485 27 0.00 1.916 0 0 0

28 0.00 1.930 0 0 0 29 0.00 2.140 0 0 0

30 1.00 3.158 100 0 100 32 0.00 2.095 0 0 0

33 0.00 2.202 0 0 0 34 0.00 2.008 0 0 0

35 0.00 1.987 0 0 0 36 0.00 2.161 0 0 0

37 0.00 2.142 23 163 495 38 0.00 2.092 0 0 0

40 0.00 2.072 0 0 0 41 0.01 3.488 221 72085 177628

42 0.04 1.937 4 0 4 43 0.01 1.849 1 41 2190

44 0.00 1.795 0 0 0 45 1.00 2.506 100 0 100

46 0.00 1.867 0 0 0 50 0.00 1.923 0 0 0

51 0.00 1.760 0 0 0 54 0.00 1.947 3 148 1023

56 0.00 1.813 0 0 0 57 0.00 1.870 0 0 0

58 0.00 1.898 0 0 0 60 1.00 2.093 100 0 100

62 0.00 2.061 10 555 1883 72 0.00 1.722 0 0 0

ρ~ ρ~
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ECA time R C D ECA time R C D

73 0.00 1.809 0 0 0 74 0.00 1.866 3 18 37

76 0.00 1.763 0 0 0 77 0.00 1.790 0 0 0

78 0.00 1.759 0 0 0 90 1.00 2.117 100 0 100

94 0.00 1.777 0 0 0 104 0.00 1.811 0 0 0

105 1.00 2.485 100 0 100 106 1.00 2.553 100 0 100

108 0.00 1.914 0 0 0 110 0.04 7.009 667 222617 499441

122 0.00 1.874 0 0 0 126 0.03 3.445 249 62888 183969

128 0.00 1.795 0 0 0 130 0.00 1.864 0 0 0

132 0.00 1.800 0 0 0 134 0.00 1.804 5 93 394

136 0.00 1.852 0 0 0 138 0.00 1.783 0 0 0

140 0.00 1.729 0 0 0 142 0.00 1.776 0 0 0

146 0.01 2.093 39 5636 25835 150 1.00 2.498 100 0 100

152 0.00 1.842 0 0 0 154 1.00 2.608 100 0 100

156 0.00 1.899 0 0 0 160 0.00 1.805 0 0 0

162 0.00 1.907 0 0 0 164 0.00 1.810 0 0 0

168 0.00 1.864 0 0 0 170 1.00 2.095 100 0 100

172 0.00 1.787 0 0 0 178 0.00 1.773 0 0 0

184 0.00 1.765 0 0 0 200 0.00 1.780 0 0 0

204 0.00 1.814 0 0 0 232 0.00 1.832 0 0 0

Table 2. Table showing the controllability statistics for the 88 ECA for n = 40, T = 100 and 100 random pairs of

initial and final configurations. columns:   is the average reachability; time is the cumulative CPU time; R, C,

D respectively represent the cumulative number of restarts, conflicts and decisions of the SAT solver.

Table 2 presents the results for the 88 minimal ECA for the setting  ,   and a sample of 100

ρ~ ρ~

ρ ̃ 

n = 40 T = 100
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random pairs of initial and final configurations. The second column ( ) presents the ratio of cases where

a solution was found, that is, a rough estimate of the reachability ratio  . We observe that   is either

equal to 1 or is rather small (less than 10%). The case where   equals one corresponds exactly to the ten

peripherally-linear rules 15, 30, 45, 60, 90, 105, 106, 150, 154, and 170. For the other rules, we issue the

following conjecture :

The reachability ratio   tends to zero when the number of cells   tends to infinity for all the ECA rules which

are not peripherally-linear.

This conjecture is supported by the data shown on Table 3, where one can clearly see that the estimated

reachability ratio   rapidly decreases with  , and becomes of the order of a percent when   is equal to

50. It is an open question to obtain more precise scaling laws with  , and a good estimate of the time

needed to reach a configuration from another.

ECA T 10 20 30 40 50

22 100 0.83 0.38 0.15 0.03 0.01

22 200 0.84 0.46 0.11 0.04 0.01

22 400 0.89 0.43 0.17 0.03 0.01

110 100 0.72 0.38 0.17 0.03 0.01

110 200 0.75 0.36 0.15 0.07 0.00

110 400 0.75 0.31 0.13 0.06 0.01

Table 3. Estimation of the reachability ratio   for values of   ranging from 10 to 50, for Rule 22 and Rule

110 and different values of  . Statistics on 100 random pairs of initial and final random configurations.

Table 2 also presents the CPU time that is used to compute the presence or the absence of a solution, and

the number of restarts, conflicts and decisions that were taken by the SAT solver. These figures are only

presented to furnish a rough estimate of the difficulty of analysis that was met for each rule. It should be

ρ~

ρ(n) ρ~

ρ~

ρ(n) n

(n)ρ~ n n

n

n

ρ(n) n

T
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noted that we did not encounter any case where the solver was unable to provide an answer, either

positive or negative and that the answer was given quite rapidly (  20 ms per solution on average).

It is also remarkable that the among the rules for which the number of restarts is important, one finds

the famous Rule 110, which is known to be Turing-universal. Of course, there is no direct correlation

between the computational complexity of a rule and the difficulty to decide its controllability, but we can

safely state that the rules which exhibit the richest panel of behaviours (gliders, collisions generating

other gliders, etc.) are among the most difficult ones to analyse by the SAT solvers.

In order to gain insights on the relationships between regional controllability and the difficulty to find a

solution or to prove that there is none, we now explore a technique of tree-building in order to find the

shortest paths between two configurations.

≈
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N N N N

0 0.002 0.9956 0.0011 0.9985 0 0.9997 0 0.9999

1 0.0112 9.8817 0.0021 10.2039 0.0005 10.2994 0.0003 9.1978

2 0.0801 37.6393 0.0426 84.2125 0.0208 185.0444 0.0137 400.4257

3 0.3936 121.053 0.2907 436.7135 0.2303 1459.9432 0.1783 4800.218

4 0.0026 2.5131 0.0007 2.7917 0.0002 2.7316 0.0001 3.3823

5 0.0132 12.9694 0.0031 14.1058 0.0006 13.7366 0 14.5212

6 0.3918 124.9131 0.2638 401.5478 0.1666 1172.6215 0.107 3171.2119

7 0.2093 90.0002 0.1223 226.8278 0.0655 552.3652 0.0417 1302.8289

8 0.0035 3.6936 0.0013 4.0129 0.0003 4.1582 0 4.4093

9 0.3893 122.727 0.2378 376.5136 0.141 978.621 0.0774 2346.7942

10 0.195 83.5645 0.1316 236.9626 0.0902 649.5169 0.0507 1775.1363

11 0.327 112.401 0.2183 349.5516 0.1468 1011.7967 0.0917 2837.0574

12 0.003 2.6059 0.0007 2.7152 0.0004 2.8586 0 3.0346

13 0.0156 14.6131 0.0038 17.273 0.0014 19.732 0.0004 20.4391

14 0.4133 123.18 0.2794 423.1061 0.1938 1293.3974 0.1304 3763.2499

15 1 0 1 0 1 0 1 0

18 0.4262 125.7239 0.3267 443.4179 0.234 1497.6062 0.1713 4780.7041

19 0.0083 7.4527 0.0018 7.93 0.0004 7.9429 0.0002 8.3817

22 0.8586 62.3896 0.7928 333.8604 0.7057 1692.3004 0.6131 7699.2784

23 0.0126 12.1348 0.0031 13.4406 0.0008 14.4739 0.0005 14.9865

24 0.0911 43.8604 0.0515 97.4022 0.0257 213.4277 0.0142 461.6439

25 0.7168 103.373 0.5606 502.6101 0.4128 1971.0832 0.2882 6698.8188

26 0.7686 90.9939 0.6906 438.8354 0.6189 1900.8206 0.5183 8258.4423

27 0.5841 126.0192 0.4693 501.9368 0.3645 1862.9912 0.2838 6487.5229

R

n = 9 n = 11 n = 13 n = 15

ρ~ ρ~ ρ~ ρ~

qeios.com doi.org/10.32388/OLI2QT 17

https://www.qeios.com/
https://doi.org/10.32388/OLI2QT


N N N N

28 0.0235 20.7356 0.0058 26.5314 0.0024 29.8961 0.0003 34.9573

29 0.0156 13.5261 0.0039 14.127 0.0013 14.6097 0.0002 14.692

30 1 0 1 0 1 0 1 0

32 0.0062 5.1255 0.0029 5.1161 0.0003 5.5633 0 5.319

33 0.0447 40.8937 0.0128 47.7303 0.0028 50.5435 0.001 50.9947

34 0.1698 73.7404 0.1125 206.6842 0.0776 562.5955 0.0541 1510.5548

35 0.5773 124.4786 0.4492 509.7556 0.3446 1888.0347 0.2731 6487.2539

36 0.0064 6.3585 0.0022 7.1627 0.0005 7.0318 0.0003 7.1574

37 0.9829 8.5978 0.8781 220.7768 0.7562 1512.4127 0.5589 8097.3136

38 0.3943 121.9057 0.2901 410.0903 0.2061 1316.2389 0.1464 4065.0292

40 0.0201 17.7929 0.0063 20.9039 0.0011 21.9891 0.0003 28.0374

41 0.8068 79.0688 0.6983 437.369 0.6055 1966.9365 0.5038 8234.82

42 0.5302 128.4775 0.4543 505.6233 0.3875 1920.5669 0.323 7182.0698

43 0.6385 118.688 0.506 503.6215 0.37 1943.5089 0.2789 6608.7907

44 0.0145 13.4614 0.0037 15.1588 0.0014 15.5487 0.0002 16.7039

45 1 0 1 0 1 0 1 0

46 0.1373 60.7865 0.0762 138.4218 0.0383 307.8265 0.0203 671.4806

50 0.0126 12.9995 0.0046 14.382 0.0009 15.2791 0.0003 16.3391

51 0.004 1.992 0.0009 1.9982 0.0003 1.9994 0 2

54 0.5991 123.0332 0.4806 512.1205 0.3817 1928.2614 0.2934 6796.8576

56 0.3266 110.1283 0.2159 345.4543 0.1452 1004.3413 0.1011 2798.7363

57 0.1427 66.3875 0.0595 138.6571 0.0368 269.1887 0.0166 522.0983

58 0.2261 91.8859 0.1241 227.1284 0.0685 522.7471 0.0352 1159.563

60 1 0 1 0 1 0 1 0

R

n = 9 n = 11 n = 13 n = 15

ρ~ ρ~ ρ~ ρ~
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N N N N

62 0.6806 115.2031 0.3775 511.3079 0.2104 1427.2255 0.1077 3330.3698

72 0.0059 6.6752 0.0014 7.1114 0.0004 7.5419 0.0001 8.7902

73 0.4241 153.995 0.2697 539.3759 0.1559 1611.5 0.0902 4281.3997

74 0.6732 112.9072 0.5043 513.9198 0.3615 1857.4982 0.2324 6055.0327

76 0.0027 1.9973 0.0008 2.1884 0.0003 2.3443 0 2.4521

77 0.0076 7.4463 0.0024 8.0492 0.0006 8.4614 0.0002 9.1361

78 0.0212 17.3528 0.0051 20.4336 0.002 23.2771 0.0005 24.8262

90 1 0 1 0 1 0 1 0

94 0.2209 119.264 0.1172 304.6733 0.0527 682.9739 0.0266 1295.4297

104 0.0594 47.047 0.016 62.2863 0.0051 73.0639 0.0012 74.4246

105 1 0 1 0 1 0 1 0

106 1 0 1 0 1 0 1 0

108 0.0133 11.6458 0.0033 12.9831 0.0014 14.3384 0.0001 15.3613

110 0.7892 85.207 0.7088 422.3375 0.6229 1918.6175 0.5404 8131.7471

122 0.7727 90.6083 0.6454 467.5212 0.515 2016.0089 0.3819 7780.4991

126 0.3602 115.4745 0.2572 389.2605 0.1823 1232.7578 0.1309 3752.0127

128 0.0042 4.767 0.0014 5.1223 0.0004 5.3654 0.0001 5.8271

130 0.0865 41.9356 0.0468 89.3382 0.0231 190.9837 0.0128 407.73

132 0.0086 7.517 0.0021 8.0448 0.0008 8.9295 0.0002 9.4588

134 0.4792 127.2468 0.3204 448.0948 0.2053 1372.3773 0.1371 3794.8008

136 0.0081 6.9283 0.0023 7.6935 0.001 9.3916 0.0001 8.8709

138 0.3932 121.1175 0.3025 429.4487 0.232 1456.7279 0.1803 4788.5434

140 0.0065 5.4538 0.0014 6.5541 0.0004 7.4921 0.0002 8.3589

142 0.6478 115.6484 0.4983 511.3795 0.376 1925.1316 0.2793 6605.3952

R

n = 9 n = 11 n = 13 n = 15

ρ~ ρ~ ρ~ ρ~
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N N N N

146 0.4318 126.3201 0.3181 451.5111 0.2391 1490.3106 0.1689 4798.1028

150 1 0 1 0 1 0 1 0

152 0.1055 57.6982 0.0559 126.3235 0.0308 271.1771 0.0155 580.6825

154 1 0 1 0 1 0 1 0

156 0.02 18.6955 0.0066 23.3457 0.0024 27.5274 0.0004 31.1357

160 0.019 14.9671 0.005 16.1459 0.0014 17.7011 0.0003 20.3167

162 0.1731 76.9699 0.1151 210.7525 0.0764 568.7733 0.0534 1517.3141

164 0.1176 64.8285 0.0527 130.9186 0.0232 228.8644 0.0075 371.3313

168 0.0949 67.665 0.0405 135.6538 0.0168 258.6673 0.0085 440.1266

170 1 0 1 0 1 0 1 0

172 0.0485 37.6656 0.0175 63.234 0.0068 99.9733 0.0026 151.9821

178 0.0135 11.9561 0.0034 13.2167 0.0016 14.1006 0.0001 13.7332

184 0.5655 126.3228 0.4373 500.8263 0.334 1775.3973 0.2422 5955.3257

200 0.0031 2.3074 0.0003 2.4128 0.0001 2.5936 0.0001 2.9415

204 0.002 0 0.0005 0 0.0004 0 0 0

232 0.0079 7.309 0.0024 8.2605 0.0007 8.5996 0.0001 8.5114

Table 4. Numerical estimation   of the reachability ratio and number   of nodes to be visited to check for the

absence of control for all minimal ECA   and various configuration sizes  . The data are obtained sampling

over   random pairs of configurations.

4. Generating preimages

Let us sketch the idea of generating the preimage    of a given configuration 

, for all possible controls   and  . This method will be exploited in the next section to

examine the control tree.

R

n = 9 n = 11 n = 13 n = 15

ρ~ ρ~ ρ~ ρ~

ρ~ N

R n

104

( , , , … , , )z0 z1 z2 zn zn+1

( , , … )x1 x2 xn z0 zn+1
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The construction of the preimage is performed one site after the other. We start by inserting the two

sites    ad  . Since there are    items in the preimage  , and only    in 

, we have to iterate over all the four values of   and  .

We can then select the value(s) of   such that

It may happen that there are no values allowed, just one or two.

In the first case, we abort the reconstruction and pass to the next pair of   and   values, if available, or

declare that there is no preimage. In the second case, we can proceed with the neighbouring site ( ). In

the third case, we have to fork the procedure for the two values of   and continue to the next site ( ).

This procedure continues until we generate  .

Instead of scanning the whole look-up table (which can be costly for large neighbourhoods), one can take

profit of the ring sum expansion, Eq. (1)

to calculate directly   knowing   and  , using the formula:

as illustrated in Figure 4 for Rule 22.

If    then  , otherwise, if 

, one has to fork for  , else the recursion fails.

An example of this procedure is reported in Figure 2 for a peripherally-linear rule (Rule 150) and in Figure

4 for a nonlinear rule (Rule 22).

z0 z1 n + 2 ( , , , … , , )z0 z1 z2 zn zn+1 n

( , , … , )x1 x2 xn z0 z1

z2

= f( , , ).x1 z0 z1 z2

z0 z1

z3

z2 z3

zn+1

=xi ⊕ ⊕ ⊕ ⊕ ⊕D0 D1zi−1 D2zi D4zi+1 D3zi−1zi
⊕ ⊕ ,D5zi−1zi+1 D6zizi+1 D7zi−1zizi+1

zi+1 zi−1 zi

(zi+1 D4 ⊕ ⊕ ⊕ ) =D5zi−1 D6zi D7zi−1zi
⊕ ⊕ ⊕ ⊕ ,xi D0 D1zi−1 D2zi D3zi−1zi

⊕ ⊕ ⊕ = 1D4 D5zi−1 D6zi D7zi−1zi = ⊕ ⊕ ⊕ ⊕zi+1 xi D0 D1zi−1 D2zi D3zi−1zi

= ⊕ ⊕ ⊕xi D0 D1zi−1 D2zi D3zi−1zi = 0, 1zi−1
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Figure 4. One step of the generation of the preimages (control tree) of configuration   for Rule 22. Since Rule

22 is not peripherally-linear, some configurations do not have preimages and others have more than one

preimage.

Let us illustrate in detail the operation: the evolution of a rule which is right-peripheral, i.e.,

can be inverted, giving

and in this case it is evident that the preimage is always unique.

For instance, for Rule 150

On the other side, for nonlinear rules like Rule 22

we have three possibilities: if  ; one can obtain   uniquely, otherwise, either we have zero or

two possibilities. In the example of Rule 22,   implies   and looking in the Look-up

01

= g( ,x) ⊕x′ x− x+

= ⊕ g( ,x),x+ x′ x−

= ⊕ x ⊕ ⇒ = ⊕ x ⊕ .x′ x− x+ x+ x′ x−

= ⊕ x ⊕ ⊕ x ⇒ (1 ⊕ x) = ⊕ ⊕ ,x′ x− x+ x− x+ x+ x− x′ x− x+

1 ⊕ x = 1x− x+

1 ⊕ x = 0x− = x = 1x−
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table (Table 1) we can only have  , so, if this is the case, we have either both values    and 

 (if  ), or none.

5. An alternative approach: Finding the shortest path in the control

tree

We present here an alternative method to test the reachability of    from  : we simultaneously explore

both the tree of images starting from  , with all the possible controls, and the tree of preimages starting

from  , until these two trees meet in at least one configuration, thus indicating the shortest control that

transforms   into  .

Finding a control    and    driving the system from

configuration    at time    to configuration    at

time   can be done by looking for the shortest path in the tree generated by all possible pairs of values

for the control at each time step, forward in time starting from  , or in the tree of all possible preimages

backward in time starting from configuration  .

Going forward in time, each node can in principle generate four branches, for the four possible values of

the left-right pair, but it may happen that more than one control pair gives the same configuration. Going

backward in time, it may also happen that a given control pair gives no configuration, or, as we have seen,

more branches have to be followed while generating preimages.

Depending on the branching of the trees, it may be more efficient to generate more forward or backward

levels. However, an acceptable strategy consists in generating one level at a time for the forward and the

backward tree, until the same configuration appears at the end of both, marking a shortest path from 

 to  . This procedure is indicated schematically in Figure 5.

= 0x′ = 0x+

= 1x+ = 0x′

y x

x

y

x y

l = ( , , … )x0
0 x1

0 xT−1
0 r = ( , , … , )x0

n+1 x1
n+1 xT−1

n+1

x = = ( , … , )x0 x0
1 x0

2 x0
n t = 0 y = = ( , … , )xT xT1 xT2 xTn

T

x

y

x y
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Figure 5. The two minimal control paths from configuration 10 to configuration 4 for Rule 30 and  . The

forward edges are in green and the backward ones in red. The connecting configurations 6 and 7 are marked

in blue. To the left the full control graph (controls values are not shown, for each link there could be more than

one control possible).

An estimation of the reachability ratio    for different lengths and all minimal elementary cellular

automaton is reported in Table LABEL:tab:fraction. One can see that peripherally-linear ECA are always

fully controllable, while the fraction of controllable pairs for the other ECA diminishes with the length of

the configuration, therefore indicating that the boundary control is almost impossible for large lengths

for non-peripherally-linear rules. This confirms the observations made in Section  3.2 that for the ECA

that are not peripherally-linear, the controllability of randomly chosen pairs tends to zero as the size of

the system grows.

This technique can help us compute an estimation of the reachability ratio  . We can also estimate the

average complexity of finding all controls by counting the average number of nodes explored in the

control tree before declaring that there is no possible control. This complexity is zero for peripherally-

linear rules (since they are always controllable), but also for CA like Rule 0, which have only one possible

configuration in their image (all-zero). This also holds for all the rules that have a reachability ratio very

near to zero, see Table LABEL:tab:fraction.

In Figure 6 we show that there is a nice relationship between the reachability ratio    and the average

complexity, scaled by the total number of configurations ( ). This behaviour is reminiscent of the

complexity phase transitions of SAT problems[29][30][31][32].

n = 3

ρ

ρ(n)

ρ

2n
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Figure 6. Average number of nodes   visited to determine the absence of a control for the 88 minimal rules,

scaled by the the total number of configurations ( ) vs. the reachability ratio  . Peripherally-linear rules

have   and  . Data from Table LABEL:tab:fraction.

6. Conclusions

In control theory, systems are classically defined by a set of differential equations and the control is

applied with a feedback system. In this work, we extended this framework by tackling the question of

how to control a spatially-extended discrete dynamical system, namely an elementary cellular

automaton, by changing the state of only two boundary cells at each time step to influence a region of the

entire domain.

We showed that the problem could adequately by translated into a Boolean CNF formula and fed to a SAT

solver to effectively obtain a solution when the control is indeed possible, or a proof that it is impossible

when this the case. From a concrete point of view, the control sequence is obtained rapidly, even for a

system of the order of a hundred cells and a few hundred time steps. Interestingly enough, we observed

that the difficulty to find a solution was somehow related to the computational complexity of the rules.

As an alternative, we showed that one could also search for the shortest path between an initial and a

N

2n ρ

ρ = 1 N = 0
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final configuration by progressively extending trees in the directed graph of the transitions between

configurations.

From a theoretical point view, we showed the equivalence of regional controllability for every    with

being chain-transitive and chain-mixing as presented in Ref. [20].

This means that our techniques may also apply to verify such properties in various other cases. More

generally, a logical next step would be to explore how our work extends to cellular automata with higher

dimensions, a greater number of states, or even to non-uniform rules (applying different local rules in a

SAT solver and in the search of the shortest path can be done directly without any additional effort).

We also observed that in the ECA that are not peripherally-linear, the probability to reach a final

configuration from an initial configuration vanishes when the system’s size grows and when the

configurations are chosen randomly. It would be interesting to prove this property formally. In fact, a

more precise description would quantify how the size of the communication classes of the transition

graph scale as a function of the system’s size. The techniques that were applied for fully asynchronous

ECA[33] may also apply here and the use of SAT solvers may be of great help to derive such formal proofs

of reachability.
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