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Detecting and estimating size of apples during the early stages of growth is crucial for predicting

yield, pest management, and making informed decisions related to crop-load management, harvest

and post-harvest logistics, and marketing. Traditional fruit size measurement methods are laborious

and time-consuming. This study employs the state-of-the-art YOLOv8 object detection and instance

segmentation algorithm in conjunction with geometric shape �tting techniques on 3D point cloud

data to accurately determine the size of immature green apples (or fruitlet) in a commercial orchard

environment. The methodology utilized two RGB-D sensors: Intel RealSense D435i and Microsoft

Azure Kinect DK. Notably, the YOLOv8 instance segmentation models exhibited pro�ciency in

immature green apple detection, with the YOLOv8m-seg model achieving the highest AP@0.5 and

AP@0.75 scores of 0.94 and 0.91, respectively. Using the ellipsoid �tting technique on images from the

Azure Kinect, we achieved an RMSE of 2.35 mm, MAE of 1.66 mm, MAPE of 6.15 mm, and an R-squared

value of 0.9 in estimating the size of apple fruitlets. Challenges such as partial occlusion caused some

error in accurately delineating and sizing green apples using the YOLOv8-based segmentation

technique, particularly in fruit clusters. In a comparison with 102 outdoor samples, the size estimation

technique performed better on the images acquired with Microsoft Azure Kinect than the same with

Intel Realsense D435i. This superiority is evident from the metrics: the RMSE values (2.35 mm for

Azure Kinect vs. 9.65 mm for Realsense D435i), MAE values (1.66 mm for Azure Kinect vs. 7.8 mm for

Realsense D435i), and the R-squared values (0.9 for Azure Kinect vs. 0.77 for Realsense D435i). This

study demonstrated the feasibility of accurately sizing immature green fruit in early growth stages

using the combined 3D sensing and shape-�tting technique, which shows promise for improved

precision agricultural operations such as optimal crop-load management in orchards.

Qeios

qeios.com doi.org/10.32388/ONBTUF 1

https://www.qeios.com/
https://doi.org/10.32388/ONBTUF


Corresponding authors: Ranjan Sapkota, ranjan.sapkota@wsu.edu; Manoj Karkee,

manoj.karkee@wsu.edu

Introduction

Detecting and estimating size of apples during the early growth stages is crucial for yield prediction, pest

management, harvest and post-harvest logistics, and making informed decisions related to crop-load

management [1]. Accurate information on number and size of fruit during this stage enables farmers to

strategize and prepare for harvest and post-harvest logistics including the workforce, equipment, and

storage requirements [2]. Additionally, green fruit size serves as an indicator of tree health and vigor [3]. If

the fruit does not attain its expected size during the growth stage, it could signify insuf�cient nutrients

or pest infestation [4], [5]. By monitoring apple size and growth pattern, farmers can address these issues

and improve crop production and quality to the desired level. Furthermore, accurate green fruit size

estimates can help farmers predict future market reception of their crop. For instance, optimal size apples

may go for higher prices than small or large apples. By knowing the size of green fruits, farmers can

assess the tree's capacity to support the number of fruits and identify any potential problems that may be

affecting the tree's ability to produce the desired yield of high-quality fruit [6] .

In the commercial production of tree fruit crops such as apples, farmers generally use hand tools such as

measuring tape and speci�cally designed fruit sizer to measure the fruit size  [7]. However, these

techniques are labor-intensive and time-consuming, necessitating a considerable workforce in the

orchard. Concurrently, commercial tree fruit growers have been grappling with labor shortages for the

past two decades  [8]. The COVID-19 pandemic has further exacerbated the labor shortage situation,

posing a signi�cant threat to global food security [9], [10]. Furthermore, hiring and training a seasonal or

temporary workforce can be costly.

Consequently, the tree fruit industry urgently requires alternatives to human labor. The advancement in

precision agriculture technologies, such as remote sensing, machine vision, and machine learning, opens

the potential for the development of non-destructive, rapid methods to detect immature fruits, estimate

their size and predict crop yields. Adoption of such a system can facilitate informed decisions on nutrient

and water management, disease and pest control, and harvesting schedules, thereby reducing production

costs and enhancing crop productivity and quality.
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To realize the potential of precision agriculture in saving input while improving crop-yield and quality,

the accuracy and ef�cacy of sensor and data processing systems is of paramount importance. Over the

last decade, utilizing technological advancements, multiple state-of-the-art RGB-D sensors emerged,

each with some unique capabilities. However, without a comprehensive comparison of these sensors, it

remains challenging for researchers, agriculturalists, and technologists to utilize their true potential in

real-world applications. Such comparisons also provide valuable information into their adaptability, and

performance under varied environmental conditions. 

It is also noted that despite signi�cant advancements in machine vision and automation technologies for

agricultural applications, a clear research gap exists in the automated detection and sizing of immature

green apples during early growth stages. Traditional methods of apple counting and sizing primarily

depend on manual measurements, which are not only time-consuming but also prone to human error.

The lack of automated and accurate fruit size estimation techniques during early growth stages presents

a challenge for ef�cient crop load management as it often leads to over- or under-thinning. Over- or

under-thinning can lead to either excessive crop load, resulting in smaller fruits, or reduced yield due to

excessive fruit removal. Accurate and early estimation of fruit size is also pivotal for optimizing

immature green fruit thinning practices, a crucial crop-load management operation to achieve desired

fruit yield and quality.

In this work, the following two objectives are pursued to support individual plant level management in

tree fruit crops:

�. Develop an automated detection and sizing method for immature green fruit (fruitlet) in orchard

environment using a YOLOv8-based object detection model, and sphere and ellipsoid �tting

techniques.

�. Compare the performance of two widely used RGB-D sensors, the Intel RealSense 435i and the

Microsoft Azure Kinect DK, in estimating immature green apple size under complex orchard

conditions.

II. Related Study

In the past, researchers explored traditional image processing methods for fruit detection and size

estimation. These conventional approaches typically involved image segmentation to separate fruits

from the tree canopy, followed by the application of morphological operations. For instance, Behera et
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al.  [11]  employed color thresholding and the Randomized Hough Transform (RHT) technique to detect

mangoes in canopy images. Following segmentation, an ellipsoid �tting technique was applied to

delineate fruit estimate mango size in images. Similarly, Wang et al.  [12]  estimated mango size in trees

using RGB-D images and a cascade detection method, combining ‘histogram of gradients’ features with

Otsu's thresholding. However, this study was conducted under arti�cial nighttime lighting, limiting its

practicality in variable natural lighting conditions.

Lin et al. [13] fused geometrical properties of a "kite" to estimate strawberry fruit size, as the kite shape

resembles that of a strawberry. By segmenting calyx from strawberry fruit portions in 2D RGB images,

the authors identi�ed the boundary pixels of the fruit. However, this approach is only applicable when all

fruits are equidistant from the camera. In addition, the study was conducted in a controlled environment

for post-harvest grading and sorting purposes, which does not address the needs of crop load

management during the growing season.

Gongal et al. [14] developed a 3D machine vision system for apple fruit size estimation in tree canopies by

integrating a 2D color camera with a 3D time-of-�ight (TOF) camera. They utilized histogram

equalization in HSI color space to enhance color differences, followed by Otsu’s thresholding and Circular

Hough Transform (CHT) for apple segmentation. While the study reported modest accuracy (69.1% using

3D coordinates and 84.8% using 2D-pixel size), it focused on mature apples during harvest season, which

cannot be used for automated crop-load management during the growing season.

Tsoulias et al.  [15]  recently estimated post-thinning green apple diameter using a LiDAR Laser scanner.

They extracted radiometric and geometric features and applied the density-based scan algorithm

(DBSCAN) to group segmented LiDAR points on the apple surface. The accuracy of this method was

marginal due to particularly because of challenges posed by occlusion due to branches and leaves.

Likewise, Apolo-Apolo et al.  [16]  developed an unmanned aerial vehicle (UAV) and deep learning-based

approach to identify, count, and estimate citrus fruit sizes on tree canopies. Using a Faster R-CNN-based

method, they detected citrus fruits in aerial images captured by a DJI Phantom 3 drone. Although the

study reported R2 value of 0.80, the study was performed only over the parts of tree fruits that were

visible in the top-view images. 

Recently advance machine learning techniques have been extensively applied for fruit size estimation in

agriculture [17]. For example, Omeed et al. [18] used a Convolutional Neural Network (CNN) model for on-

tree kiwifruit detection and size estimation. Li et al. [19] employed a Random Forest algorithm to estimate
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matured apple size using 3D images captured with a structured light-based imaging system. Fu et

al.  [20]  utilized a Faster R-CNN-based model to detect and segment matured apples in RGB images and

applied a regression model for size estimation. Tobias et al. [21] recently introduced a viewpoint planning

approach for identifying fruit position and size in synthetic apple images, overcoming challenges posed

by occlusions from leaves. By constructing an octree with labeled fruit regions of interest, the method

evaluated viewpoint candidates using a utility function that considered expected information gain,

resulting in improved fruit detection and size estimation in both simulated and real-world scenarios.

However, this study was limited to the glasshouse environment.

Only a few earlier studies were found for early-stage green fruit detection.   Recently Wei et.

al [1] developed a green fruit detection system in an orchard environment which was based on multi-scale

feature extraction of target fruit by using Feature Pyramid Networks (FPN) MobileNetV2 and generated

region proposal of the target fruit by using Region Proposal Network (RPN). Likewise, Gan et.

al  [2]  proposed a system to identify immature green citrus by combining the properties of color and

thermal image through a multimodal imaging platform. Additionally, for the detection of immature

citrus in a dynamic environment, Li et. al[3]   and Lu et. al[4] developed a fast normalized cross-correlation

(FNCC) based machine vision system and Mask-RCNN network-based machine vision methods.

III. Motivation

The current state of research on fruit size estimation primarily focused on matured fruits near harvest

that exhibit distinct colors compared to the background in tree canopy images. This color difference

simpli�ed the segmentation process, making it relatively easier to differentiate the fruit from the canopy.

However, studies on accurately estimating fruit size during the early growth stages when fruit are small

and have similar green color to other canopy parts is limited. Robotic crop load management applications

require information about the number, location and size of fruits during their immature, green stages, as

this data are crucial for making decisions and performing various management operations manually or

with robots. For example, during fruitlet thinning, growers remove the smallest apples and retain the

larger ones for future harvest. Addressing this research gap in accurately estimating fruit size during

early growth stages can signi�cantly improve the ef�ciency of crop load management practices, both

manually and using robotic machines.
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IV. Materials and Methods

Figure 1. Block diagram illustrating the work�ow for green apple

detection and size estimation.

This study consisted of four major steps, as depicted in Figure 1, beginning with the acquisition of RGB-D

data in an orchard environment, followed by early-stage green fruit detection, shape �tting, and �nally

fruit size estimation. The study was conducted in a commercial apple orchard with an unstructured,

natural environment by employing deep learning methodologies. Fruit size estimation was achieved

through the reconstruction of their corresponding geometrical shapes in 3D, utilizing sphere and

ellipsoid �tting techniques. The proposed approaches were then validated in variable lighting conditions

using two state-of-the-art RGB-D sensors, the Microsoft Azure Kinect (Microsoft Corporation, Redmond,

USA) and the Intel RealSense 435i (Intel Corporation, California, USA).
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A. Study Site and Data Acquisition

This study on early-stage fruit size estimation was conducted in a commercial orchard located in Prosser,

Washington State, USA. The apple variety used was Scifresh and the tree rows were planted 10 feet apart

with 3 feet spacing between trees. The tree height was maintained approximately at 10 feet.

In 2022, images of immature green fruits from the orchard were acquired separately from varying

distances ranging from 1 to 4 feet from the tree canopy. A total of 1079 canopy images were acquired: 534

images with the Intel RealSense and 545 images with the Microsoft Azure. These images were

subsequently utilized to train a deep-learning model tailored for immature green apple detection. 

In 2023 season, to develop a machine vision system for potential application in real-time robotic

operation in the �eld, the two sensors used were mounted on top of each other on a UR5e robotic arm

(Universal Robots, Boston, USA) as shown in Figure 2. The robotic arm was then integrated into an

unmanned ground vehicle (Warthog, Clearpath Robotics, Inc., Ontario, Canada) (Figure 2a and 2b). This

setup ensured a consistent environmental condition for data acquisition with two individual sensors as

the overlapping canopy images could be captured simultaneously. The cameras were aligned roughly

perpendicular to the canopy and were located ~1 meter away from the target tree trunks. Precision in

maintaining this speci�ed distance was ensured using a measuring tape.

B. Machine-Vision Sensors Used

1) Intel realsense d435i

The Intel RealSense D435i is a depth-sensing camera featuring active infrared (IR) stereo vision system

and an inertial measurement unit (IMU). The camera includes a 2-megapixel RGB sensor and a depth

sensor with a resolution of 1280 x 720 pixels, and depth range up to 10 meters. The depth sensor operates

using structured light technology, utilizing a pattern projector to create disparities between the stereo

images, which are captured by two IR cameras. With a speed up to 90 frames per second (fps), and a 69.4°

horizontal �eld-of-view (HFOV) and 42.5° vertical �eld-of-view (VFOV), the D435i offers �exibility for

various application scenarios. The camera also includes a 6-axis IMU that provides accurate orientation

data, enabling improved depth data alignment and scene understanding. The Intel RealSense D435i is

compact, lightweight, and offers robust performance for depth and RGB data acquisition in a wide range

of environments.
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Figure 2. Image acquisition of apple canopies with fruitlets in a commercial jazz orchard in Washington State, USA;

(a) Two machine vision sensors in-action, (b) Robot and sensors facing canopy (fruitlets), and (c) Integrated system

for image acquisition.

2) Microsoft AZURE

The Azure Kinect DK sensor is equipped with a 12-megapixel color camera and a 1-megapixel depth

sensor. The depth sensor operates on the Time of Flight of Light (ToF) principle and features a global

shutter with analog binning, resulting in pixel-synchronized capture and reduced noise  [22]. With a

modulation frequency ranging from 200 to 320 MHz, the sensor offers various modes for resolution,

range, and frame rate. The depth sensor has two operational depth modes: Narrow Field-of-View (NFOV)

and Wide Field-of-View (WFOV). The data presented in this paper were collected using the NFOV depth

mode.

C. Robot Manipulation for Image Acquisition

The UR5e robotic arm was programmed such that its movement was initiated vertically upwards from

the tree's base as depicted in Figure 2b while orienting the sensors to face the trees. This imaging

sequence captured images from the trunk base all the way to the �fth branch layer. Throughout this

maneuver, the arm consistently moved at a speed of 0.1 m/s ensuring that both sensors remained as close

to perpendicular to the canopy as possible.
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D. Training YOLOv8 Model for Immature Fruit Detection 

This research utilized the YOLOv8 object detection model recently provided by Ultralytics (Ultralytics,

Maryland, USA; January 2023). Building upon the legacy of YOLOv5, YOLOv8 introduces enhancements

that amplify its accuracy and ef�ciency in object detection tasks  [23]. The YOLOv8 model represents a

signi�cant advancement in object detection, being anchor-free in its approach. It integrates pioneering

techniques such as Pseudo Ensemble or Pseudo Supervision (PS), the adept Darknet-53 architecture, and

an enhanced Feature Pyramid Network, termed YOLOv8PAFPN  [24]. The principle behind PS is the

concurrent training of various models, each with unique con�gurations, on an identical dataset. The

Darknet-53 architecture, a deep 53-layer convolutional neural network, augments feature extraction,

thereby enhancing object detection capabilities  [25]. The anchor-free detection method emphasizes the

direct estimation of an object's center instead of its relative distance from a predetermined anchor

box  [22]. This method minimizes the number of predicted bounding boxes, simplifying the Non-

Maximum Suppression (NMS) process. NMS, a demanding post-processing step, is used to �lter and

retain the most probable object detections after initial inference [26], [27]. 

The YOLOv8 model offers a suite of �ve distinct con�gurations for tasks such as identi�cation,

segmentation, and classi�cation: YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and YOLOv8x. All these

con�gurations were tested in this study for the segmentation of immature green apples from the

collected images. The choice of these con�gurations of YOLOv8 model was based on the fundamental

objective of achieving an ef�cient and accurate detection of immature green apples in diverse orchard

environments. The images were annotated using Labelbox (Labelbox, California, USA) for training and

testing the model generating 5,921 labels of immature green apples. 

This labelling platform was chosen for its user-friendly interface and widespread use in the scienti�c

community. The annotation process involved uploading images of the orchard to Labelbox, where each

immature green apple was manually delineated. This delineation was achieved by drawing precise

polygonal lines around the circumference of the apples, ensuring each apple was accurately segmented

from the surrounding environment.

1. Hardware and Software

The YOLOv8 model was trained on a workstation with an Intel Xeon® W-2155 CPU @ 3.30 GHz x20

processor, NVDIA TITAN Xp Collector's edition/PCIe/SSE2 graphics card, 31.1 gigabyte memory, and
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Ubuntu 16.04 LTS 64-bit operating system. The training process involved setting several parameters

including the learning rate, batch size, and the number of iterations to optimize the performance of the

model. In this study, the learning rate was set to 0.001, while the batch size was set to 32. To prevent

over�tting, a dropout rate of 0.5 was used. The model was trained for 1000 iterations while monitoring

the loss function to assess the progress on model training. The images were resized to 640x640 pixels to

make them compatible for YOLOv8 format. 

2. Model Training and Testing

As mentioned above, the YOLOv8 model was trained for 1000 iterations with an early stoppage if the

validation loss did not improve for 200 iterations, which provided ample opportunity for the YOLOv8

model to learn and adapt to the complexities of immature green apple segmentation in orchard

environments. If the validation loss did not improve within 200 iterations, it indicated that further

training would likely not yield any substantial improvements and therefore stopping the training process

at that instance would improve computational ef�ciency and ensure the model generalizability. A batch

size of 16 and an image size of 640 x 640 pixels were utilized for training. To expedite data loading and

preprocessing, eight worker threads were employed in a Graphical Processing Unit (GPU). These worker

threads parallelized tasks such as reading and transforming data, ensuring a consistent and ef�cient

supply of data to the training process, and preventing unnecessary idle times in the GPU. Using multiple

worker threads is bene�cial in reducing data loading times, especially when dealing with large datasets. 

The integration of Pseudo Supervision technique in YOLOv8 facilitates model training on a diverse range

of data con�gurations, which allowed the model to adaptively learn intricate details of green fruits in our

application. This capability not only increased the model's precision in fruit detection but also enhanced

its generalization ability across different environmental conditions encountered in orchard

environments.  

The Stochastic Gradient Descent (SGD) optimization algorithm was employed with a learning rate of 0.01.

The momentum and weight decay parameters were set to 0.937 and 0.0005, respectively, based on

empirical evidence and prior research that suggested these settings offer a balance between fast

convergence and model stability, reducing the chances of over�tting [28], [29]. Likewise, a warm-up phase

was implemented during the �rst three epochs, with a warm-up momentum of 0.8 and a warm-up bias

learning rate of 0.1.   The incorporation of a warm-up phase during the initial training epochs served to

gradually adapt the learning rate, thereby preventing the model from converging too rapidly to a
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suboptimal solution. More data augmentation and regularization parameters used during the training

process are presented in Table 1. 

Methods Applied   Value

Hue augmentation (fraction) 0.015

Saturation augmentation (fraction) 0.7

Value augmentation (fraction) 0.4

Rotation 0.0

Translation 0.1

Scale 0.5

Flip left-right (probability) 0.5

Mosaic (probability) 1.0

Weight decay 0.0005

Table 1. Data augmentation and regularization parameters used in YOLOV8 training.

E. Performance Evaluation of YOLOv8 for Immature Fruit Segmentation

The detection and segmentation performance of the YOLOv8 algorithm for immature green apples was

evaluated using Mean Intersection over Union (MIoU), average precision (AP), mean average precision

(mAP), mean average recall (mAR), and F1-score. MIoU, also known as the Jaccard index, assesses the

accuracy of the segmented mask with respect to the target object, calculated as follows:

Where, 

TP is true True Positives, which counts correctly identi�ed apples.

FP is False Positives, indicating non-apples mistakenly identi�ed as apples.

FN is False Negatives, denoting apples that were missed. 

Precision evaluates the accuracy of the predicted positive detections, calculated as

MIoU = =
 Area Overlap 

 Area Union 

T P

FP + T P + FN
(Equation 1)
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Recall, on the other hand, indicates how many of the actual positives our model can identify, and it is

computed as:

The F1-score, which considers both precision and recall, is calculated as:

AP provides a measure of the model's performance across different threshold levels, quantifying the area

enclosed by the recall rate, the precision rate, and the horizontal axis. Meanwhile, mAP is a single

consolidated metric to represent the model's overall detection performance. It averages the AP for all

classes, providing a holistic view of the model's capability in both target detection and instance

segmentation tasks.

F. Size Estimation Using Shape Fitting in 3D Point Clouds for Segmented Immature Fruits

Upon successful segmentation of immature green apples with the YOLOv8 model, the next vital step was

the size estimation, which would be essential for various applications including growth monitoring, yield

predictions, and robotic crop management operations. This process utilized point clouds, which are sets

of data points in space, representing the segmented green apples. Apples in their early growth stages may

have varying shapes that may start with more of a vase-shaped fruit to later resembling more like an

ellipsoid and then to a sphere. To estimate accurate physical dimensions (e.g., diameter, major axis, minor

axis) of fruit with these kinds of shapes, 2D color information would not be suf�cient, and therefore 3D

point clouds were extracted and utilized to �t two kinds of 3D shapes to represent their geometry.

Open3D library (Open3D Engine, California, USA) was used to process 3D point clouds including

extracting them from the raw datasets as depicted in Figure 3. This approach aimed to generate an

accurate three-dimensional representation of the apples. As mentioned before, after �tting geometrical

shapes to the apples delineated in the point clouds, critical physical dimensions such as diameter, major,

and minor axes of the apples were accurately determined.

 Precision  =
T P

T P + FP
(Equation 2)

 Recall  =
T P

T P + FN
(Equation 3)

 F1  −  Score  =
2( Precision  ∗  Recall )

 Precision  +  Recall 
(Equation 4)
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Figure 3. Work�ow diagram for YOLOv8-based green fruit segmentation and sizing. The model was trained to

segment the immature green apples and their segmented mask was used to extract corresponding 3d point clouds for

�tting two kinds of 3D shapes: sphere and ellipsoid.

Several studies in the past explored sphere �tting approach in 3D environment to estimate fruit size of

peaches [30], guava[31], apples [32], pomegranate [33], tomato [34] and citrus [35]. Likewise, ellipsoid �tting

technique have been explored to estimate the size of non-spherical fruits such as banana  [36],

watermelon [37] and mushroom [38].   Based on these past studies, the proposed study also explored the

utilization of sphere and ellipsoid to reconstruct the immature green apples in 3D space using the image

collected by Intel RealSense and Microsoft Azure cameras.

The ground truth measurement of immature green apples was collected using a digital caliper as shown

in Figure 5b. The following shape �tting approaches were explored and compared against the ground

truth:

a. Sphere Fitting Using Least Squares Method: This approach was particularly useful for immature

apples that maintained a somewhat spherical shape.

b. Sphere Fitting Using Random Sample Consensus (RANSAC): While similar in aim to the previous

method, this approach is robust against outliers, ensuring more accurate �ttings even with

occasional erroneous data points.

c. Ellipsoid Fitting: Given that not all immature green apples are perfectly spherical, the ellipsoid

�tting method is catered to those apples with more elongated shapes, allowing for a better �t and

thus more accurate size estimations.
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1) SPHERE FITTING USING LEAST SQUARES

The Least Squares Fitting method focuses on the sum of squared distances from the data points to the

sphere to determine the most �tting sphere that could represent the point clouds. From a set of 3D

coordinates, represented as {p1, p2, ....,pN} where each point pi = (xi, yi, zi), the center of the sphere,

denoted as C = (a, b, c), and its radius, R, were identi�ed to best encapsulate the immature apple. This

relationship is provided by the following equation:

In this equation, X = (x, y, z, R) represents the parameters of the �tted sphere: its center and radius. To

ensure this sphere closely represented the immature green apple data as shown in Figure 4a, the sum of

squared differences between each data point and the sphere's surface was minimized, as shown in

equation 6:

In this context, f(x) denotes the distance between a speci�c data point and the modeled sphere. Through

the optimization of this function, the representation of the sphere ensured to align closely with the real

distribution of 3D point clouds extracted from segmented immature apples. 

2) SPHERE FITTING USING RANSAC

The RANSAC Sphere Fitting algorithm, inherently adept at handling outliers, was implemented with a

process that begins with the RANSAC algorithm choosing three random points from the dataset to

hypothesize a potential sphere. These points serve to delineate the sphere's center and radius.

Subsequently, all data points are cross-referenced with this hypothetical sphere. Points lying within a

prede�ned proximity to the sphere's surface are termed 'inliers', re�ecting their appropriateness to the

shape, while the rest are labeled 'outliers', indicating potential errors or deviations. This process iterates,

with each cycle generating a new hypothetical sphere based on a fresh trio of random points. The

iteration yielding the highest inlier count identi�es the most �tting sphere, whose dimensions, in turn,

indicate the apple's size. As mentioned before, this method offered a rigorous approach to estimate size,

especially in datasets susceptible to errors or noise. Given that the immature apples can vary in shape,

exploring different shape �tting options ensured comprehensive and accurate size estimations for all

samples. The mathematical representation for the RANSAC sphere �tting remains the same as the

(x − a + (y − b + (z − c =)2 )2 )2 R2 (Equation 5)

S = ∑(f(x ))2 (Equation 6)
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distance equation employed in the least squares method, as denoted in equations 5 and 6. Figure 4b

represents the RANSAC sphere �tting over the segmented 3D point clouds of immature apples.

3) ELLIPSOID FITTING

For the optimal size estimation of immature green apples, especially those possessing an elongated

shape, an ellipsoid �tting approach was employed to the point cloud data representation of each

immature apple, aiming to estimate both the major and minor axis lengths for a detailed size pro�le. The

ellipsoid �tting, as depicted in Figure 4c, tries to determine the most �tting ellipsoid's center, orientation,

and semi-axes lengths for a collection of data points in a three-dimensional space. Mathematically, an

ellipsoid is characterized by a set of points such that the sum of the squares of the distances from these

points to two distinct foci remains constant. This relationship is given by equation 3.

Here, (a,b) represents the ellipsoid's center, while 'a' and 'b' indicate the semi-major and semi-minor axes,

respectively.

In our study, the Löwner-John ellipsoid �tting algorithm was employed. Initially, a foundational ellipsoid

is derived using the least-squares method, serving as a foundation for the subsequent steps governed by

the Löwner differential equation. This equation re�nes the ellipsoid iteratively, adapting it until the best-

�tting ellipsoid for the data points is achieved, which is then used to estimate apple size. As the algorithm

progresses, it �ne-tunes the weights of the points and the encompassing ellipsoid's parameters. The �nal

phase of the algorithm persists until the differences in successive weight sets become negligible,

reaching a pre-set limit.   Finally, this process yields a matrix 'A' and vector 'c', which encapsulate the

ellipsoid's de�ning equation. This matrix 'A' dictates the ellipsoid's shape, while the vector 'c' pinpoints

its spatial positioning. 

To extract the ellipsoid's semi-axes lengths, Singular Value Decomposition (SVD) is performed on matrix

'A'. This breakdown reveals the longest (major) and shortest (minor) semi-axis lengths, crucial for the

apple's size estimation. This approach provided a robust, mathematical model-based technique for

estimating fruit size. This task also highlighted the importance of investigating different shape �tting

techniques to cater to the diverse apple shapes encountered.

(x − a / + (x − b / = 1)2 a2 )2 b2 (Equation 7)

= ( )(1 − − )E
∂E

∂t

1

2

(x − a)2

a2

(y − b)2

b2
(Equation 8)
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G. Evaluation of estimated fruit size

To evaluate the performance of the shape �tting techniques for size estimation using the two cameras,

two distinct experimental setups across different years were employed. In 2022, a sample of 31 green

apples with varying diameters (24, 27, 30, and 70 mm) was utilized in controlled indoor conditions, as

illustrated in Figure 5a. The diverse range of synthetic green apple sizes was speci�cally selected to

account for the variability in the �eld including different growth stages of green apples. Building on this,

in 2023, the shape �tting techniques were further evaluated in the real-world scenarios. A comprehensive

set of 102 samples was collected from a commercial jazz apple orchard environment, as had been

previously detailed, with the assistance of the imaging setup controlled by a Warthog and UR5e arm.

To assess the performance in fruit sizing, Root Mean Square Error (RMSE), Mean Absolute Error (MAE),

Mean Absolute Percentage Error (MAPE), and R-squared (R2) were calculated.  

Root Mean Squared Error (RMSE): RMSE is given by Equation 9, where n denotes the total number of

observations, predicted_i corresponds to the predicted value for the ith observation, and actual_i

represents the actual value for the ith observation. 

Mean Absolute Error (MAE): MAE calculates the average absolute difference between the estimated fruit

sizes and the actual fruit sizes as given by Equation 10. It is less sensitive to outliers than RMSE, as it does

not square the differences.

where:

n is the number of samples

yi is the actual size of immature fruit

ŷi is the estimated size of immature fruit

RMSE = ( ∑ )
1

n
( − ) predicted i  actual i

2

− −−−−−−−−−−−−−−−−−−−−−−−−−−

√ (Equation 9)

MAE = ( ) ∗ Σ | − |
1

n
yi ŷi (Equation 10)
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Figure 4. 3D geometry �tting in the point clouds extracted using the segmented green apples using. YOLOv8 model;

(a) Sphere Fitting using Least Squares (b); Sphere Fitting using RANSAC; (c) Ellipsoid �tting. In each image in this

�gure, the geometry �tting illustration shown in left side is for Realsense 435i camera and on the right is Microsoft

Azure camera.

In our case, MAE can be used to quantify the average difference in size estimation for green apples. A

lower MAE indicates a better model performance.

Mean Absolute Percentage Error (MAPE): MAPE presents the average relative error between the

estimated and the actual fruit sizes, expressed as a percentage. This allows for easier comparison across

different datasets with varying scales.

where:

n is the number of samples

yi is the actual size of immature fruit

ŷi is the estimated size of immature fruit

MAP E = ( ) ∗ Σ
100

n

∣

∣
∣

( − )yi ŷi

yi

∣

∣
∣ (Equation 11)
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In your case, MAPE can be used to assess the relative performance of the size estimation work�ow for

green fruit.  A lower MAPE indicates a better model performance.

R-squared (R2): R-squared is a statistical measure that represents the proportion of the variance in the

dependent variable (fruit size) that can be explained by the independent variables (features used in the

estimation model), which is given by.

where:

yi is the actual immature fruit size

ŷi is the estimated immature fruit size

ymean is the mean of the actual immature fruit sizes

Figure 5. (a) Indoor environment to estimate the size of immature green apples of different sizes, (b) Commercial

orchard environment, measuring the size of immature green apples using a digital caliper.

R −  Squared  = 1 −
⎛

⎝
⎜

(Σ )( − )yi ŷi
2

(Σ )( − )yi ymean 
2

⎞

⎠
⎟ (12)
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Results and Discussion

A. Immature Fruit Segmentation Using YOLOv8

A total of 108 images containing immature apples in the natural environment of the commercial orchard

were utilized to evaluate the performance of the YOLOv8 model in segmenting the immature apples.

These images, captured in a commercial orchard, featured immature apples of varying sizes and

orientations, providing a diverse dataset for the assessment. Figure 6 provides an example of detection

results using the YOLOv8 model. Among the various con�gurations of the YOLOv8 algorithm tested in

this study, the YOLOv8m-seg model achieved the highest precision at 0.9. The YOLOv8x-seg model

marked the highest recall of 0.9. In terms of the F1 score, the YOLOv8m-seg con�guration achieved the

highest score of 0.89. Moreover, the YOLOv8m-seg model achieved the highest AP@0.5 of 0.94. A

comprehensive breakdown of the performance metrics for all tested YOLOv8 model con�gurations is

presented in Table 2. 

YOLOv8n, being the smallest and fastest, was ideal for applications where rapid processing is essential,

though with a trade-off in precision. Conversely, YOLOv8s offered a middle ground with improved

accuracy while still maintaining a relatively fast processing speed. The YOLOv8m con�guration offered a

better balance between computational demands and segmentation accuracy. The YOLOv8m

con�guration made it particularly effective for complex segmentation tasks in agricultural

environments. For applications where accuracy is the most critical performance measure, despite higher

computational costs, larger YOLOv8 con�gurations such as YOLOv8l and YOLOv8x could be employed.

This study focused on utilizing all these options to compare their performances for green fruit detection

and to identify the most optimal model for this application.

The Precision-Recall curve, Recall-Threshold curve, F1-Score Con�dence curve, and the area under the

Precision-Recall curve (PR-AUC) for the YOLOv8 model are presented in Figure 7 parts a, b, c, and d,

respectively. From the Precision-Recall curve, a peak precision of 0.91 was observed for green fruit

detection across all classes. As can be seen in the Recall-Threshold curve, maximum recall achieved was

0.98. Similarly, PR-AUC shows a maximum value of 0.94, suggesting that a robust precision-recall

performance across varied thresholds was exhibited. The model achieved the mean Average Precision

(mAP) of 0.94 at an Intersection over Union (IoU) threshold of 0.5.  
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Although the YOLOv8 object detection and segmentation algorithm demonstrated promising capabilities

with high accuracy in detecting and segmenting immature green apples in complex orchard

environments with similar green color of background objects such as leaves, certain challenging

situations still resulted in detection failures. 

Model Precision  Recall  F1 Score  AP@0.5  AP@0.75 

YOLOv8n-seg 0.88 0.88 0.88 0.93 0.89

YOLOv8s-seg 0.89 0.85 0.87 0.93 0.89

YOLOv8m-seg 0.9 0.88 0.89 0.94 0.91

YOLOv8l-seg 0.87 0.87 0.87 0.93 0.89

YOLOv8x-seg 0.86 0.9 0.88 0.93 0.90

Table 2. Precision, Recall, F1-score, AP@0.5 and AP@0.75 achieved with �ve YOLOv8 model con�gurations.

Figure 6. YOLOv8 detection and segmentation results illustration; (a, b and c) segmentation examples of

occluded immature apples in the images captured by IntelRealsense D435i in variable lighting condition; and

(d, e and f) segmentation results illustration in complex orchard environment in the images captured using

Microsoft Azure Camera.
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These challenges included occlusions caused by leaves and low light or shadow conditions. Figure 6a and

6b presented examples of failed detections (or false negatives) due to leaf occlusions on green apples,

while Figure 6c illustrated the failure in detecting and segmenting green apples under low light or

shadowed conditions in images. Future improvements could be made by training the algorithm on a

larger dataset encompassing more diverse lighting conditions and varied fruit orientation to enhance its

performance and robustness in addressing these challenges.

In recent years, there has been a surge in research exploring the use of YOLO-based algorithms for

agricultural applications. Noteworthy among them is the study by [Sun et al.], which focused on the

recognition of green apples in an orchard environment by combining the GrabCut model and Ncut

algorithm [39].  Another similar study focused on green fruit segmentation and orientation estimation for

robotic green fruit thinning of apples  [40]. There has also been an increasing trend towards channel-

pruned and optimized versions of YOLO for fruit detection, as highlighted in studies such as [41] and [42].

Figure 7. Immature apples segmentation results achieved with YOLOv8m-seg; (a) Precision-con�dence curve; (b)

Recall-con�dence curve; (c) Precision-Recall Curve; and (d) F1-Con�dence curve 

Furthermore, the potential of the YOLOv5-based models has been assessed in detecting litchi fruits for

yield estimation [43],spikelet detection in grapes [44] and green pepper detection [45].
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While these studies made signi�cant strides in their respective domains, they predominantly utilized

standard RGB images or those captured using non-specialized machine vision sensors. Furthermore,

most of the existing studies were performed under indoor/greenhouse agriculture. In contrast, the

research presented here was based on data collected from a commercial orchard using two of the most

widely used sensors in agricultural automation studies. In addition, the immature green fruit detection

results obtained in this study with the YOLOv8 model surpassed those reported in the aforementioned

studies, particularly in terms of processing speed and accuracy. As illustrated in Figure 8a, an immature

apple partially obscured by overlapping leaves and branches was not detected by the model. Similarly,

Figure 8b and 8c depicts an interference from neighboring fruits and foliage, which also results in a false

negative. Such occlusions can not only introduce inaccuracies in the segmentation mask but also

subsequently affect the precise estimation of the green apple sizes.  

Training with a higher number of data samples with more occlusion examples could possibly increase

the detection and segmentation of immature apples in such conditions.

B. Immature Apple (Fruitlet) Size Estimation 

The ellipsoid �tting technique yielded optimal results in estimating immature apple size in terms of

RMSE, MAE, MAPE, and R-squared values. This technique achieved an RMSE of 2.35 mm, MAE of 1.66

mm, MAPE of 6.15 mm, and an R-squared value of 0.9 for images taken with the Microsoft Azure Kinect

camera. Similarly, the same technique achieved an RMSE of 9.65 mm, MAE of 7.8 mm, MAPE of 29.48 mm,

and an R squared value of 0.77 for IntelRealsense images. Figure 9a and 9b visualized the diameter

estimates for 102 immature green apple samples achieved with the three employed shape �tting

techniques on images from Microsoft and IntelRealsense cameras, respectively. The performance metrics

—RMSE, MAE, MAPE, and R-squared—obtained from the three techniques on both sets of camera

images are also presented in Figure 10. The indoor sizing test (Figure 5a) conducted using synthetic green

apples with varying sizes, including diameters of 24mm, 27mm, 30mm, and 70mm also showed that the

combination of Microsoft Azure with ellipsoid �tting approach achieved maximum accuracy. The RMSE

values for the size estimation using Least Square-based sphere �t, RANSAC-based sphere �t, and

Ellipsoid �t for the images captured with the Intel RealSense camera were
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Figure 8. Occlusion examples. Yellow region indicates the affected region; (a) showing occlusion due to leaves; (b)

Occlusion due to leaves and stem; and (c) Foliage and shadow effect resulting in failure in detection.
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32.11 mm, 50.22 mm, and 15.36 mm, respectively. In contrast, when utilizing the Microsoft Azure Kinect

camera, the corresponding RMSE values were found to be 6.21 mm, 8.74 mm, and 5.74 mm, respectively.

Overall, the model achieved better performance on images acquired with Microsoft Azure camera in

terms of predicting size using the all three methods tested in this study.  A high R-squared value signi�ed

that the ellipsoid model could account for 90% of the variance in the given actual apple sizes,

emphasizing its precision and reliability in capturing the true dimensions of immature green apples in

3D space. It is noted that the segmentation model was trained using equal proportion of images from

both sensors and it was assumed that the sizing difference was primarily caused by the difference in

quality and density of 3D point clouds generated by the two sensors used. Future studies could be

conducted to further quantify the sources of errors causing the performance differences between these

two sensors.

Our analysis also showed a good correlation between immature apple size and model con�dence in

estimating it. Larger immature apples, typically exceeding 30 mm in diameter, yielded higher con�dence

scores, averaging around 0.92, due to their clear visibility and distinct contours. In contrast, the size of

smaller or less mature apples under 24 mm were estimated with a much lower average con�dence score

of ~ 0.75. This reduction in the con�dence was caused also by their appearance, which tended to blend

with the surrounding foliage when the fruit were in their early stage of development. This variation in

con�dence scores with apple size and maturity highlights the model's variable sensitivity across different

stages of fruit development.

Figure 9. Results of immature green apple size estimation using Least Square sphere Fitting, RANSAC sphere �tting

and Ellipsoid �tting on the images collected using; (a) Microsoft Azure Kinect DK camera; and (b) IntelRealsense d435i

camera.
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Figure 10 depicts a scenario where the YOLOv8 algorithm resulted in over-masking and under-masking

in the segmentation of immature apples. Figure 10 a illustrates a condition where two immature apples

are segmented as a single immature apple. This resulted in a bigger mask than the actual mask in 3D

image processing, thus affecting the size estimation of the immature apple. Likewise, Figure 10b

demonstrates a condition where the immature apple is occluded by the leaves and foliage, which is a

major challenge in agricultural computer vision. Since only half (approximate) part of the immature apple

has been segmented by the YOLOv8 deep learning model, the extracted point clouds could not be enough

to �t the shape to estimate the size of the apple. Figure 11 shows the RMSE, MAE, MAPE, and R-squared

distribution achieved using the three shape �tting techniques on the images collected using the

Microsoft Azure camera and IntelRealsense D435i camera.

Figure 10. Over-masking and under-masking during the YOLOv8 segmentation of immature green apples causing

errors in estimating their size; (a) showing two immature apples segmented as one immature apple, and (b) only the

top part of the immature apple is segmented.
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Building on the foundational insights offered by prior studies, our investigation ventured further into the

realm of 3D imaging and object sizing. For instance, studies like  [46], deployed calibration spheres on

trees, using them as reference scales to gauge segmented apple sizes. Likewise, 3D solutions have been

investigated to reconstruct objects using multi-sensor inputs  [47]. Despite their innovative approaches,

these methods face challenges with computational demands and occlusions, leading to incomplete

reconstructions. Subsequent solutions by  [48]and  [49]  investigated automated shape completion, �tting

ellipsoids to gathered point clouds. Yet, they faced challenges due to the plant's dynamic structure or the

computational load. Furthermore, [50] explored 3D sizing by aligning an apple's major axis with 3D points

from a solitary camera shot combined with a time-of-�ight sensor.

They reported an accuracy of 69.1%, which has a big room for improvement. Similarly,  [51]  sized apples

from singular images by �tting 3D spheres, however, this technique is not suited for immature apples

given their small and irregular shape. However, these novel strategies encountered hurdles,

predominantly due to computational demands and occlusions, culminating in partial reconstructions.
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Figure 11. RMSE, MAE, MAPE, and R-squared distribution achieved using the 3 shape �tting

techniques on the images collected using Microsoft Azure camera and IntelRealsense D435i camera.
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V. Conclusion and Future Suggestions

Detecting and estimating the size of immature apples during their early growth stages is critically

important for numerous agricultural processes, from predicting yield and market reception to making

informed decisions about crop-load and performing robotic green fruit thinning. Traditional methods,

while effective, are labor-intensive and the recent labor shortages, exacerbated by the COVID-19

pandemic, underscore the pressing need for automated solutions. To address this challenge, the present

study focused on detecting and sizing apples in early growth stages using YOLOv8 models and 3D shape

�tting techniques. 

The key �ndings of this study are: 

The YOLOv8 object detection model demonstrated superior performance in detection and

segmentation of immature green apples, achieving an accuracy of 94%.

The Ellipsoid �tting method consistently achieved higher accuracy and ef�ciency in estimating fruit

sizes over other techniques tested, with an R-squared value of 0.9 on images acquired with Microsoft

camera. The same with Sphere �tting was 0.77.

The immature apple sizing technique achieved better results for the images acquired with Microsoft

Azure Kinect DK sensor compared to the same acquired with Intel RealSense 435i. It was found that

RMSE of 2.35 was achieved for images acquired with Azure Kinect whereas the same was 9.65 for

images acquired with Realsense.

The automation of green fruit detection and sizing not only addresses current labor challenges but also

holds the potential for substantial cost savings and improved crop quality. For future research endeavors,

it would be bene�cial to expand the dataset and explore other advanced machine-learning algorithms to

minimize the impact of variable orchard conditions and occlusion caused by leaves, branches, and other

fruit. A multi-sensor fusion approach and imaging with multiple viewing angles might also help improve

the robustness of the system and make it applicable to other crops as well. 

It is noted that to address the labor-intensive and laborious nature of traditional fruit sizing methods,

this study leveraged the YOLOv8 model and 3D shape �tting to offer an automated, accurate, and rapid

alternative, thus signi�cantly reducing manual labor while enhancing the ef�ciency of sizing immature

green apples in orchard environments. Automating this process using consumer-grade cameras

increased the commercial viability of this technique, which in the future is expected to reduce the

dependence on manual labor in sizing immature green fruits in fruit crop production.
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