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Large Vision-Language Models (LVLMs) have demonstrated remarkable capabilities in processing

both visual and textual information. However, the critical challenge of alignment between visual and

linguistic representations is not fully understood. This survey presents a comprehensive

examination of alignment and misalignment in LVLMs through an explainability lens. We first

examine the fundamentals of alignment, exploring its representational and behavioral aspects,

training methodologies, and theoretical foundations. We then analyze misalignment phenomena

across three semantic levels: object, attribute, and relational misalignment. Our investigation

reveals that misalignment emerges from challenges at multiple levels: the data level, the model

level, and the inference level. We provide a comprehensive review of existing mitigation strategies,

categorizing them into parameter-frozen and parameter-tuning approaches. Finally, we outline

promising future research directions, emphasizing the need for standardized evaluation protocols

and in-depth explainability studies.

1. Introduction

Recent Large Vision-Language Models (LVLMs) have achieved significant progress in multimodal

understanding. Models such as GPT-4V[1], Gemini[2], LLaVA[3], MiniGPT-4[4], and LLaMa

3.2[5]  demonstrate unprecedented capabilities in tasks like image captioning and visual question

answering, not only processing visual and textual information independently but also reasoning

across these modalities. These advances are built upon two fundamental pillars: large language

models (LLMs) and vision encoders. LLMs such as GPT-3.5[6], LLaMA[7], LLaMA 2[8], Vicuna[9], and
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Qwen[10]  revolutionized natural language processing, while vision encoders like CLIP[11]  have

transformed the ability to create aligned visual and textual representations, enabling effective vision-

language understanding.

The key challenge in developing effective LVLMs lies in achieving proper alignment between visual

and linguistic representations[12]. The predominant approach involves using representation

alignment techniques, where visual features from an image encoder and textual representations from

an LLM are mapped into a shared embedding space, typically matching the LLM’s embedding

dimensions[13][14][15]. Once both modalities are mapped into this shared space, alignment can be

achieved through various training objectives and architectural designs that encourage the model to

understand and reason about cross-modal relationships. This method has gained popularity due to its

straightforward approach and generalizability across different model architectures.

However, the current understanding of alignment mechanisms remains limited. A critical challenge

lies in misalignment phenomena, which manifest in various forms. For instance, when shown an

image of a green apple, the model might fail to recognize the apple altogether (object misalignment),

incorrectly describe it as red (attribute misalignment), or generate incorrect relationships like “the

apple is floating in the air” when it’s sitting on a table (relational misalignment). These

misalignments lead to reliability issues[16][17][18], where models generate textual outputs that are

inconsistent with the visual input. Understanding and addressing these misalignment issues is crucial

for developing more reliable and trustworthy LVLMs, as they directly impact the models’ ability to

generate accurate and consistent multimodal outputs.

In this survey, we present a structured framework for understanding and addressing alignment

challenges in LVLMs from an explainability perspective. We first examine the fundamentals of

alignment, including its representational and behavioral aspects, training procedures, and theoretical

foundations. We then analyze misalignment phenomena across three semantic levels: object,

attribute, and relational misalignment. Our investigation reveals that misalignment stems from

challenges at the data level (e.g., quality and balance issues), model level (e.g., architectural

limitations and ability gaps), and inference level (e.g., task discrepancies). We review existing

mitigation strategies and outline future research directions, emphasizing the need for standardized

evaluation protocols and in-depth explainability studies.

qeios.com doi.org/10.32388/OOAM1Q 2

https://www.qeios.com/
https://doi.org/10.32388/OOAM1Q


Figure 1. Overview of the three-stage LVLM training process, showing the progression from contrastive

learning of visual-text encoders, through adapter fine-tuning with frozen components, to end-to-end

model training.

2. Alignment of LVLMs

In this section, we examine alignment in LVLMs across four essential dimensions. First, we define the

concept of alignment in LVLMs. Second, we detail the procedural stages through which alignment is

achieved in practice. Third, we explore the theoretical foundations that make alignment possible

between visual and linguistic modalities. Finally, we discuss methods for measuring and evaluating

alignment in LVLMs.

2.1. What is Alignment?

In the context of LVLMs, let   be the image space and   be the text space. We define the alignment in

two fundamental aspects: representational alignment and behavioral alignment.

Representational alignment refers to the degree of correspondence between visual representations 

  and textual representations    within the model’s internal embedding space  . When

well-aligned, the visual features extracted from an image and the textual embeddings of its

corresponding description occupy nearby regions in the shared latent space, exhibiting high

semantic similarity   where   is a similarity metric. This internal alignment enables the model

to establish meaningful connections between visual and linguistic information at a fundamental

level.
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Behavioral alignment refers to the model’s ability to generate accurate, factual, and consistent

textual responses    when processing image inputs  . A behaviorally aligned LVLM can

reliably answer questions about visual content, provide precise descriptions, and perform

reasoning tasks without introducing errors or hallucinations. This external manifestation ensures

that the model’s outputs faithfully reflect the actual content and relationships present in the

images.

These two aspects of alignment are inherently connected. Strong representational alignment typically

supports better behavioral alignment, as the model can more effectively leverage both visual and

textual information to generate reliable outputs. Conversely, poor alignment in either aspect can lead

to issues such as mismatched representations, inaccurate responses, or hallucinated content.

2.2. How is Alignment Achieved?

The development of alignment in LVLMs progresses through three major stages (see Figure 1), each is

built upon its predecessor to achieve increasingly sophisticated cross-modal integration.

Stage 1: Training Visual Encoders. The foundation of LVLM alignment begins with training visual

encoders through contrastive learning, exemplified by models like CLIP[11]. In this stage, the model

learns to align visual and textual representations in a shared embedding space through a contrastive

loss function. The process involves training on large-scale image-text pairs where matching pairs are

pulled together in the embedding space while non-matching pairs are pushed apart. This leads to the

development of robust visual representations that can meaningfully correspond to textual

descriptions. Through this process, a visual encoder is created that can extract semantically

meaningful features from images in a way that naturally aligns with language. This initial stage is

crucial as it establishes the basic capability for cross-modal understanding, though the alignment is

still relatively coarse-grained.

Stage 2: Adapter Fine-tuning. The second stage involves fine-tuning an adapter module that bridges

the pre-trained visual encoder with the language model. This stage introduces lightweight adapter

architectures, which typically consist of simple components such as linear layers, MLPs, or cross-

attention layers that learn to translate between visual and language model embedding spaces. For

example, cross-attention layers can feed image encoder representations into the language model,

enabling the model to attend to relevant visual features when generating text[19]. A key characteristic

of this approach is the preservation of the original capabilities of both the visual encoder and language

y ∈ Y x ∈ X
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model while learning to interface between them. During adapter training, while the visual encoder

parameters may be updated, the language model parameters often remain frozen to maintain their

original text capabilities. This intermediate stage is essential for establishing effective connections

between modalities while preserving the specialized capabilities of each component.

Stage 3: End-to-End Fine-tuning. The final stage involves comprehensive fine-tuning of the entire

system, including the visual encoder, adapter, and LLM components together. This comprehensive

approach allows for deeper integration and more sophisticated alignment between all components. It

enables the model to learn task-specific optimizations that require coordinated adjustments across all

modules. Through this process, the model develops more advanced cross-modal understanding

capabilities and facilitates the emergence of emergent behaviors that arise from the deep integration

of visual and linguistic processing. This stage often results in the highest performance but requires

careful balancing to avoid catastrophic forgetting or degradation of pre-existing capabilities.

2.3. Why is Alignment Possible?

Having established what alignment means and how it is implemented in LVLMs, a fundamental

question arises: why is such alignment between vision and language modalities possible in the first

place? The possibility of alignment between these modalities can be understood from both theoretical

and algorithmic perspectives.

Theoretical Perspective. From a theoretical standpoint, visual and textual data are different

projections of the same underlying reality. As Huh et al. argue in their Platonic Representation

Hypothesis[20], all modalities are measurements of a real world that generates our observations.

When humans create images or write text, they are encoding information about this same reality,

albeit through different measurement processes. Although these modalities appear distinct on the

surface, they fundamentally capture overlapping semantic information about the same world state.

This shared origin in physical reality, combined with the fact that humans generate both types of data

to describe their observations of the world, provides the theoretical foundation for why these

modalities can be meaningfully aligned in a common representation space.

Algorithmic Perspective. From an algorithmic perspective, although visual encoders and language

models are initially trained separately on different modality-specific data, their learned

representations inherently capture some similar semantic structures due to their training on human-

generated data. Recent research has shown that these inherent similarities exist even before explicit
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alignment training[21][22][23]. This natural compatibility serves as a starting point for more

sophisticated alignment. The staged training process described in Section 2.2 then is built upon this

inherent compatibility through systematic refinement: first using contrastive learning to organize

embeddings in the shared latent space, then employing adapter fine-tuning to bridge between

modalities while preserving their specialized capabilities, and finally conducting end-to-end training

to enable deep integration across all components. Through this systematic combination of training

stages and optimization objectives, the model gradually develops a robust alignment between the two

modalities.

2.4. How to Measure Alignment?

This section examines approaches for quantifying the effectiveness of alignment in LVLMs. These

measurement approaches naturally align with our earlier definition in Section 2.1 of representation

alignment and behavioral alignment, and can be organized along these two fundamental levels.

Representation Level. At the representation level, alignment can be directly measured between visual

and textual representations within the LVLM’s embedding space by assessing how similarly the visual

and textual modalities encode and relate to the same concepts or data points. The simplest approach is

to compute the cosine similarity between the embeddings of visual and textual data. High alignment

corresponds to scores close to 1, while low alignment corresponds to scores closer to 0[15]. More

sophisticated metrics have been developed to assess alignment between the two representation

spaces. For instance, the mutual nearest-neighbor metric quantifies alignment by evaluating the

consistency of nearest neighbors across modalities[20]. Another approach is kernel alignment, which

evaluates the similarity of pairwise relationships within each modality’s embedding space, providing

a holistic view of the alignment structure[21].

Behavioral Level. The behavioral level measures alignment through the model’s performance on

various downstream tasks and benchmarks, using both direct comparisons and automated evaluation

systems. The strength of alignment directly impacts the LVLM’s performance, as better alignment

typically leads to improved task outcomes. These measurements generally involve comparing the

model’s outputs against ground truth labels, either through direct comparison or using evaluation

models to simulate human judgment. Numerous benchmarks have been developed to assess LVLM

alignment across a range of tasks, from coarse-grained evaluations (e.g., object existence) to fine-

grained assessments (e.g., color, count, spatial relations). Examples of such benchmarks include
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POPE[24], CHAIR[25], MME[26], MMHal-Bench[27], and LLaVa-Bench[3]. In addition to traditional

benchmarks, advanced evaluation models like GAVIR[28], CCEval[29]  and HaELM[30]  provide

sophisticated assessments by considering context and evaluating responses comprehensively, similar

to human evaluators. The flexibility and diversity of evaluation models enable thorough measurement

capabilities needed for open-ended questions.

3. Misalignment of LVLMs

After introducing the alignment of LVLMs, we now examine a critical challenge facing these models:

their tendency to generate outputs that diverge from the visual input. Despite significant advances in

alignment techniques, LVLMs still frequently exhibit misalignment between their visual and textual

inputs. In this section, we provide a comprehensive analysis of misalignment phenomena in LVLMs,

beginning with a definition and taxonomy of different types of misalignment (see Figure 2), followed

by an examination of their underlying causes.

Figure 2. Illustration of representation-level and behavior-level alignment and misalignment in LVLMs.

The left side shows representation-level phenomena in embedding space, where aligned visual-text pairs

cluster together (positive pairs) while misaligned pairs are separated (negative pairs). The right side

demonstrates behavior-level alignment and misalignment through a room description example, showing

the spectrum from correct alignment (green) to various types of semantic misalignment: object

misalignment (red), attribute misalignment (yellow), and relational misalignment (blue). These two levels

are inherently connected, as the quality of representation alignment in the embedding space influences

the model’s ability to generate semantically aligned outputs.
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3.1. Definition of Misalignment

Misalignment in LVLMs occurs when the model’s output semantically diverges from the visual

content it is meant to describe. These discrepancies show in several key phenomena, impacting the

overall performance of these models. In this paper, we categorize behavior-level misalignment

phenomena in LVLM into three semantic levels  : object misalignment ( ), attribute

misalignment ( ), and relation misalignment ( ). Rather than using the term ‘hallucination’

commonly found in the literature[12], we adopt the term ‘misalignment’ to better characterize how

these discrepancies emerge between visual and language representations.

Object Misalignment ( ): This is one of the most widely recognized forms of misalignment[12][24]

[30]. It occurs when the model generates descriptions containing objects    that differ from the

actual objects    in the image, where  . This represents the most coarse-grained level of

misalignment, as it simply refers whether an object exists in the image or not. Due to its coarse-

grained nature, object misalignment is relatively straightforward to detect and mitigate.

Attribute Misalignment ( ): At a finer level, we identify attribute misalignment[31]. This occurs

when for an object  , the model correctly identifies the object but generates incorrect

attributes  , where    represents the true attributes of  . Attribute misalignment typically

involves adjectives or adverbs that describe properties of objects inaccurately. For example, when

input an image of a green apple, the model might incorrectly describe the color of an apple as ‘red’

instead of ‘green’.

Relation Misalignment ( ): This category involves the generation of incorrect or non-existent

relationships   between objects in an image[32], where   differs from the true relationships  .

This misalignment manifests in two primary ways: spatial relationship errors and action

relationship errors. In spatial relationships, the model might incorrectly describe the relative

positions of objects, such as saying ‘next to’ when the correct relation is ‘on top of’, or ‘inside’

when objects are merely ‘near’ each other. In action relationships, the model might generate

semantically impossible interactions between objects, such as ‘he is walking a car’ instead of ‘he is

driving a car’, or ‘the cat is reading a book’ instead of ‘the cat is sitting on a book’.
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3.2. Reasons of Misalignment

Having identified the three semantic levels of misalignment phenomena, we now analyze their root

causes across three fundamental levels: Dataset, Model, and Inference. The Dataset level examines

how training data characteristics influence misalignment during learning. The Model level

investigates how architectural decisions and training procedures affect alignment between modalities.

The Inference level explores how the generation process can introduce misalignment even with well-

aligned underlying representations.

3.2.1. Dataset Level

Data quality and distribution patterns play crucial roles in contributing to misalignment between

visual and language representations in LVLMs. Several key dataset factors can impede the model’s

ability to form accurate associations between visual inputs and textual descriptions, affecting both

training effectiveness and inference performance.

Data imperfections: This includes blurry images, vague or inaccurate captions, and mismatched

image-caption pairs, which introduce significant challenges during training[33][34]. These quality

issues manifest in various forms: images may suffer from poor resolution, inappropriate cropping,

or visual artifacts; captions might contain grammatical errors, ambiguous descriptions, or

factually incorrect information; and in some cases, the captions may describe content entirely

unrelated to their paired images. These low-quality data points can distort the model’s ability to

form precise mappings between modalities, leading to outputs that fail to accurately reflect the

input image and potentially establishing incorrect associations that persist through the training

process.

Data Imbalance: When certain classes or types of data are disproportionately represented, it skews

the model’s training process[28][35]. For example, visual question-answering datasets often

overrepresent positive answers, subtly training the model to favor these outcomes while

underperforming on underrepresented negative answers.

Data Inconsistency: Inconsistencies exacerbate misalignment by introducing contradictory outputs

across different tasks for the same image. For instance, an image captioning task might describe an

image as depicting ‘a tiger eating a chicken,’ yet in a visual question-answering task for the same

qeios.com doi.org/10.32388/OOAM1Q 9

https://www.qeios.com/
https://doi.org/10.32388/OOAM1Q


image, the answer to ‘what is the tiger eating?’ might label the prey as ‘a duck’[36]. Such

contradictions disrupt the model’s ability to generate coherent and consistent outputs across tasks.

Data False Negative: False negatives in the dataset further complicate alignment, as negative

image-text pairs, though not perfectly matching, share overlapping components[37][38]. During

training, embeddings of positive pairs are drawn closer together, while those of negative pairs are

pushed apart. This binary method can suppress latent similarities within false negatives, reducing

the model’s capacity to generalize and effectively align diverse modalities.

Data Polysemy: The inherent polysemy within datasets introduces additional complexity. Polysemy

enriches data diversity by allowing a single word or image to convey multiple meanings depending

on context, but this ambiguity also amplifies the risk of misalignment[39][40]. For example, an

image caption of ‘the bat hit the ball’ could refer to the animal or the baseball bat. This variability

challenges the model to establish consistent mappings between modalities.

3.2.2. Model Level

Beyond data-level issues, the architectural design and training methodology of LVLMs significantly

influence model alignment.

Separate Training: Prior to being integrated as a single LVLM, the visual encoder and the LLM are

typically pre-trained separately on distinct single-modality datasets. While this approach offers

advantages such as efficiency and modularity, it leads to each model developing its own biased

representations and understanding of the world, shaped by its respective single-modality data[41].

Ability Gap: This independent pretraining process also creates an ability gap between the visual

encoder and the LLM[42], where the LLM often demonstrates significantly greater capability than

the visual encoder. Consequently, the LVLM tends to rely excessively on the LLM for predictions,

resulting in imbalanced attention between visual and textual information[43][44][45].

Pretrain-finetuning Knowledge Gap: After integrating the visual encoder and LLM into a unified

LVLM, fine-tuning is typically performed to further enhance alignment and adapt the model to

specific downstream tasks. However, this fine-tuning phase can introduce a pretraining-

finetuning knowledge gap or conflict, where the general knowledge acquired during pretraining

may clash with the specific requirements of the fine-tuning task[17]. Such conflicts can lead to

knowledge forgetting, where the LVLM loses previously learned information while adapting to the

new task[46][47]. Although knowledge forgetting might appear insignificant, it can have cascading
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effects. Each unit of knowledge in the model’s embedding space is interconnected with lots of

semantic relationships. Forgetting even a single piece of knowledge can disrupt these relational

connections, undermining the integrity of the embedding space. This disruption causes a broader

misalignment within the LVLM.

Knowledge Conflict: A significant challenge arises from knowledge conflicts between the visual

encoder and language model components of LVLMs. These conflicts emerge when the visual

encoder’s direct perception of image content contradicts the prior knowledge embedded in the

LLM’s parameters during pre-training[48][49]. For example, when an image contains a green

tomato, the visual encoder accurately detects its color, but the LLM may resist this information

since it has been predominantly trained on texts describing ripe, red tomatoes. This misalignment

between observed visual evidence and learned textual priors can manifest in various ways: the

model might incorrectly describe the tomato as red despite clear visual evidence, generate hesitant

or self-contradicting descriptions, or attempt to rationalize the discrepancy by making

unwarranted assumptions about the tomato’s ripeness stage.

3.2.3. Inference Level

Misalignment can also occur during the inference stage due to task discrepancy. This discrepancy

fundamentally represents an out-of-distribution (OOD) generalization problem, as users often pose

questions or request tasks that deviate from the distribution of examples seen during training. Even

when a LVLM has been trained on a large and diverse dataset, it may encounter novel combinations of

visual and textual elements or be asked to perform tasks in ways that differ subtly but significantly

from its training examples. This OOD challenge manifests in several ways. First, the training data used

for pre-training or fine-tuning the model may not fully align with the specific tasks it is later expected

to perform[16]. For example, a model trained primarily on image captioning data might struggle when

asked to answer specific questions about spatial relationships or perform detailed visual reasoning

tasks. Second, users may phrase requests in ways that differ from the instruction patterns seen during

training, leading to potential misinterpretation of the task requirements. Third, the visual inputs

during inference may contain novel object configurations or scene compositions not well-represented

in the training data. These distribution shifts can create misalignment in LVLMs as the model

struggles to adapt to new and distinct tasks that require different interpretations of visual and textual

information.
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Figure 3. Taxonomy of Misalignment Mitigation Methods for LVLMs, including Parameter-Tuning

Alignment and Parameter-Frozen Alignment. Refs: [27][28][29][31][33][35][44][45][49][50][51][52][53][54][55][56]

[57][58][59][60][61][62][63][64][65][66][67][68][69][70][71][72][73][74][75][76][77][78][79][80][81][82][83][84][85][86]

[87][88][89][90][91][92][93][94][95][96][97][98][99][100][101][102][103][104][105][106]

4. Mitigation Methods

Building upon our analysis of misalignment causes in LVLMs, we now examine strategies for

mitigating these challenges (see Figure 3). These mitigation approaches can be categorized into two

groups: parameter-tuning alignment methods and parameter-frozen alignment methods.

Parameter-tuning alignment involves modifying specific components within the LVLM architecture

to reduce misalignment through targeted parameter updates. In contrast, parameter-frozen

alignment methods address misalignment while maintaining the LVLM’s original parameters

unchanged, offering solutions that preserve the model’s structure while improving its cross-modal

alignment capabilities.
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4.1. Parameter Tuning Alignment

Parameter-tuning alignment focuses on mitigating misalignment by refining the training scheme or

enhancing the architecture itself.

Improving Training Scheme. Parameter-tuning methods that improve the training scheme often

address misalignment broadly as a data-level issue or as a general visual-textual misalignment[33]

[50]. This understanding leads to a straightforward objective, which is reducing the modality gap

between visual and textual representations. This can often achieved by improving the dataset quality

or optimizing training techniques. One common approach is contrastive learning, exemplified by

methods such as CIT[35]  and HACL[50]. These techniques involve using a third model to generate

positive and negative data pairs. The LVLM is then trained to bring the representations of positive

pairs closer together while pushing negative pairs apart in the embedding space. Another widely

adopted strategy is instruction tuning, as seen in LRV-Instruction[28] and TextSquare[53]. Similarly,

these approaches rely on a third model to generate instructional data, which is subsequently used to

train the LVLM effectively. However, these approaches often lack robust quality assurance

mechanisms to verify the accuracy or relevance of the generated data, introducing potential risks.

Alternatively, Reinforcement Learning from Human Feedback (RLHF) employs human feedback to

train a reward model, ensuring that the generated data aligns with human preferences[27][56]. While

RLHF guarantees high-quality training data, it comes at a significant cost. To address this, some

methods leverage preference optimization, wherein multiple responses are generated for the same

input image, ranked or scored by a third model, and categorized into positive and negative pairs[33][57]

[58]. The model is then fine-tuned on this curated dataset. Although these methods can significantly

improve the model, they are often constrained by either high resource requirements (as in RLHF) or

the uncertain quality of generated data (as in contrastive learning and instruction tuning) or rerank

model (as in preference optimization). This highlights the ongoing need for large, diverse, and high-

quality datasets to effectively address data-level misalignment.

Improving Model Architecture. Methods that improve the model architecture often involve a deep

understanding of the root causes of misalignment, allowing researchers to pinpoint deficiencies

within specific components of the LVLM. Typical LVLM architectures consist of three main

components: the visual encoder, the adapter module, and the LLM[12][107]. Most architecture-focused

approaches concentrate on enhancing the visual encoder or the adapter module, with relatively few
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addressing improvements to the LLM itself. This aligns with our earlier model-level claim of the

model ability gap, where the LLM often outperforms the visual encoder. Blindly enhancing the LLM

could exacerbate this gap, potentially worsening the misalignment issue. To reduce this ability gap,

some studies scale up the visual encoder by increasing its parameter size[67]. Others introduce

additional components to the visual encoder to improve its capabilities without necessarily scaling up

its size[68][69][70]. In addition to the visual encoder, many methods focus on improving the adapter

module, which serves as the critical bridge between the visual and textual modalities. Enhancements

to the adapter module often involve adding intermediary layers or mechanisms to better align the

visual encoder’s outputs with the LLM’s input requirements. For example, PATCH[31]  employs

trainable virtual tokens to enhance the projection layer, improving cross-modal alignment. Similarly,

HallE-Switch[29]  introduces a dynamic mechanism that adjusts the flow of information between the

visual encoder and the LLM based on input complexity. By addressing these architectural components,

parameter-tuning methods aim to reduce the modality gap and improve the alignment between visual

and textual representations, ultimately enhancing the LVLM’s performance across tasks.

4.2. Parameter Frozen Alignment

Parameter-frozen alignment methods have gained increasing popularity due to their significant

practical advantages. These training-free approaches are highly modular and easy to implement,

allowing them to be readily integrated into existing systems without requiring costly retraining or

fine-tuning processes. This makes them particularly attractive for real-world applications where

computational resources may be limited. We categorize these parameter-frozen methods into four

types based on where they intervene in the LVLM processing pipeline: Augment-based mitigation,

augmenting the LVLM by incorporating external knowledge; inference-based mitigation, operating in

the model’s latent space during intermediate processing; decoding-based mitigation, which guides

the text generation process; and post-decoding mitigation, which refines the final outputs.

Augment-based Methods. As analyzed in Section 3, insufficient input of image information is one of

the primary causes of misalignment, leading to poor visual understanding. To address this, retrieval-

augmented generation (RAG) methods have been adapted to dynamically integrate external

knowledge into LVLMs through retrieved results[80][72][73][74][75][76]. By reranking the similarity of

image-text pairs, RAG approaches provide more visual context and guidance to the model. Similarly,

other methods rely on generating approach to enrich the input with additional information. For
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instance,[77],[78], and[79]  propose integrating an auxiliary model to generate relevant information

based on the image. Alternatively, methods such as RITUAL[81] bypass the need for external models. It

enhances the model’s exposure to diverse visual contexts by applying random transformations to

input images. Additionally, approaches like[82][49]  employ self-generated textual descriptions

appended to the input prompt, ensuring the model has sufficient knowledge to answer questions

accurately without generating plausible but incorrect responses.

Inference-based Methods. Some methods operate in the model’s latent space during the inference

process, prior to decoding, by intervening in both visual and textual representations to improve

alignment. For instance, Visual and Textual Intervention (VTI)[83]  pre-computes intervention

directions using a small set of examples and applies them during inference to enhance feature stability

and vision-text alignment, without requiring additional training. Similarly, Image-Object Cross-

Level Trusted Intervention (ICT)[84]  introduces a lightweight mechanism that intervenes in the

model’s attention at both image and object levels, applying targeted activation shifts to selected

attention heads. Since they operate directly on the model’s internal representations, they can make

precise adjustments to improve alignment without disrupting the model’s broader language

understanding capabilities. This makes inference-based methods particularly effective at reducing

misalignment while preserving the model’s ability to generate fluent and contextually appropriate

responses.

Decoding-based Methods. Another widely used approach for mitigating misalignment involves

modifying decoding process. These methods often target issues of imbalanced attention. However, the

imbalance attention between what still remain debated. Some researchers argue that the model over-

focuses on irrelevant image tokens, such as background elements or unimportant details[45][86].

However, the prevailing view is that the model prioritizes textual tokens over visual ones, neglecting

critical visual information[87][88][89][90]. Despite these differences in interpretation, most decoding-

based methods employ similar contrastive decoding techniques to rebalance attention between

modalities, typically by reducing attention to textual tokens while enhancing focus on visual tokens.

This approach, however, contrasts with inference-based methods, which avoid reducing attention to

textual information and instead preserve the model’s overall language understanding. Another

interesting observation is that, while decoding-based methods typically lead to similar approaches, in

some cases, they can result in fundamentally divergent strategies. For instance,

OPERA[91]  hypothesizes that the model over-relies on summary tokens, instead of focusing visual
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tokens. However, text summarization is SGD’s solution[44]  to mitigate misalignment. It uses

summarization to shorten textual context and helps model shift focus toward visual information. This

divergence underscores how subtle differences in understanding the root causes of misalignment can

result in contradicted methodologies.

Post-decoding Methods. Lastly, post-decoding approaches present a broader range of hypotheses

about the causes of misalignment, tackling issues ranging from data-level biases to model-level

deficiencies. Methods such as LURE[102]  and Woodpecker[103]  exemplify this category. LURE focuses

on addressing object hallucinations by revising the generated text, identifying hallucinatory content,

and reconstructing less biased outputs. Woodpecker employs a five stages validation mechanism to

extract and correct inconsistencies in the generated response. Despite their specific details, these

methods converge on a shared strategy, which involves modifying the model’s outputs after decoding

without altering the its parameters or architecture, making them easily adaptable to various LVLMs.

This flexibility lies in their goal-oriented nature, as they directly target specific misalignment

phenomena. However, this goal-oriented focus introduces a significant limitation. While it can

enhance output quality, the underlying model deficiencies are left unchanged, restricting

generalization and limiting performance on tasks beyond post-decoding corrections.

5. Future Research Directions

In this section, we discuss several important directions for future research in understanding and

improving alignment in LVLMs.

5.1. Standardized Benchmarks

The current evaluation of misalignment in LVLMs suffers from a critical limitation, i.e., the lack of

standardized, comprehensive benchmarks that can systematically assess different types of

misalignment across models. While existing benchmarks have made important contributions, they

typically focus on specific aspects of misalignment in isolation. For instance, POPE[24]  primarily

evaluates object hallucination, while other benchmarks concentrate on particular relationship errors

or attribute inconsistencies. What is urgently needed is a unified evaluation framework that can

systematically assess misalignment across all semantic levels, from object-level (e.g., describing a

non-existent dog in an image) to attribute-level (e.g., color, size, texture errors) and relation-level

misalignment (e.g., spatial relationship errors). Such a comprehensive benchmark would enable direct
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comparisons between different LVLM architectures and alignment techniques using standardized

metrics, evaluate both representational alignment and behavioral alignment, and assess how

misalignment manifests across different types of tasks. The benchmark should also consider both the

frequency and severity of different types of misalignment, rather than treating all misalignments as

equally problematic. The development of such standardized benchmarks would represent a significant

step forward in our understanding of misalignment in LVLMs and accelerate progress toward more

reliable and trustworthy vision-language systems.

5.2. Explainability based Diagnose

To better understand and address alignment issues in LVLMs, future research should leverage

advanced explainability techniques that can reveal the internal mechanisms of these models. There

are two critical categories of explainability approaches that warrant investigation: (1) internal

knowledge decoding and (2) attribution methods.

The first category of explainability approaches centers on internal knowledge decoding and

understanding how information is processed within LVLMs[108][109]. Mechanistic interpretability

approaches could help identify specific components and circuits within LVLMs that are responsible for

cross-modal alignment, providing insights into how visual and language representations are

integrated and processed. Similarly, probing techniques can analyze the emergence and evolution of

aligned representations across different layers and attention heads, helping researchers understand

where and how misalignment occurs within the model architecture[110]. This detailed understanding

of the internal working mechanisms would not only advance theoretical knowledge but also guide the

development of more effective alignment techniques.

The second critical category focuses on attribution methods that can determine the relative influence

of different information sources on model outputs. LVLMs have three primary information sources for

generating outputs: user text prompts, input images, and knowledge stored within pre-trained LLMs.

Future research needs to develop sophisticated attribution algorithms that can determine whether a

model’s output primarily depends on the input text prompt, derives from the visual information in the

image, or relies on the LLM’s internal knowledge. This detailed attribution analysis would help

identify when and why misalignment occurs, such as cases where the model inappropriately relies on

LLM knowledge rather than visual evidence, or when it fails to properly integrate information from
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multiple sources. Such insights would be useful for designing targeted mitigation strategies that

address specific types of misalignment and improve the overall reliability of LVLMs.

5.3. Architectural Innovations

Current LVLM architectures face fundamental challenges, including significant ability gaps between

visual encoders and LLMs, persistent attention imbalances between modalities, and knowledge

conflicts between visual and linguistic representations. While most existing solutions focus on

improving training procedures or adding post-processing steps, future research should focus on

architectural innovations that address these structural limitations. This could include developing

novel integration mechanisms that better balance the capabilities of visual and language components,

and dynamic architectures that can adaptively adjust their attention mechanisms to maintain

equilibrium between modalities. The field would benefit from multi-stage processing architectures

that explicitly manage knowledge conflicts through specialized components for different levels of

semantic understanding. Additionally, new transformer architectures specifically designed for vision-

language tasks, rather than adapted from unimodal architectures, could help bridge the ability gap

between visual and linguistic processing.

6. Conclusions

In this paper, we present a systematic survey of alignment and misalignment in LVLMs through an

explainability lens. Our investigation demonstrates that achieving proper alignment involves complex

interactions between data quality, model architecture, and inference procedures. We have developed a

categorization of misalignment into object, attribute, and relational levels, offering a clear framework

for understanding these challenges and developing targeted solutions. The examination of current

mitigation strategies reveals a spectrum of approaches, from computationally intensive parameter-

tuning methods to more practical parameter-frozen solutions, each with distinct trade-offs between

effectiveness and implementation feasibility. Lastly, we have identified several key directions for

future research, which will be essential for creating more reliable and capable vision-language

systems that maintain robust alignment while serving diverse real-world applications.
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