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Abstract

One of the bases of relativistic electromagnetism is that the elec-
tromagnetic fields E and B are components of an electromagnetic field
tensor F*”. There is a simple proof of this in the absence of a po-
larizable medium. It has sometimes been assumed that the fields, E
and B, and their associated fields, D and H, are also components of
tensors in a linearly polarizable medium. In this paper, we question
that assumption, and show that a proof that they are components
of a tensor fails. Consequently, the fields E, B, D and H are not
components of a relativistic tensor in a polarizable medium.

1 Introduction

It is a standard basis of relativistic electromagnetism that the electromagnetic
fields E and B combine as elements in the electromagnetic field tensor!
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Then, a Lorentz transformation to a system moving with velocity v with
respect to the original system results in a transformed tensor
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where the primed elements are components of the electromagnetic fields in
the moving system.

It has sometimes been assumed (without proof) that the associated fields,
D = ¢E and H = B/, (for a linearly polarizable medium) are also compo-
nents of a relativistic tensor [1-4],

0 -D, —D, —D.
| b, 0 -H. H,
S=\p wm o -m | )

D. —H, H, 0

However, while there is a simple proof in textbooks that the E and B
matrix in Eq. (1) represents a relativistic tensor if the constants € and pu =1,
I have seen no such proof for the corresponding D and H matrix, or even for
the E and B matrix in a polarizable medium. The purpose of this paper is
to see if such a proof can be made.

2 Electromagnetic Fields in
a Linearly Polarizable Medium

First, we give a brief summary of the proof that F*” is a second-rank tensor if
e and p =1. Starting from Maxwell’s two homogenous equations, the electric
and magnetic fields can be given in terms of scalar and vector potentials as

E = —V¢— A, (4)
B = VxA. (5)

Putting these fields into Maxwell’s inhomogeneous equations, in the Lorenz
gauge,

V-A+0,0=0, (6)
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leads to wave equations for ¢ and A:

(07 = V)¢ = 4mp (7)
(02 = VA = d4rj. (8)

The wave equations can be put into four-component form as

0,0"AF = dmj*, (9)
with 9, = (9,V), (10)
A" = (6,A), (11)

and = (p.). (12)

At this point only 9, is known to be a covariant four-vector because the

calculus rule, da" = (g";’:) dz*, for the transformation of the coordinate

differentials dz*, shows that 0,dz* is a scalar.
The charge and current densities must satisfy the continuity equation,

V-j+0p=0,4" =0, (13)

to conserve charge in any Lorentz frame. This means that J,j* must be
a Lorentz scalar. Then, j# must be a four-vector because its contraction
with the four-vector d, is a scalar. Then, we see from Eq. (9) that the
four-potential A* must be a four-vector since 9,0 is a scalar and j* is a
four-vector.

This means that forming

Fr = 9P AY — 9 A" (14)

as the difference of the direct products of two four-vectors shows that F*
is a second rank tensor. Putting Eq. (14) into matrix form shows that the
second-rank tensor F* in Eq. (14) is the one given by Eq. (1).

Can we complete a similar proof for a linearly polarizable medium where
D = ¢E and H = B/p in the rest frame of the medium. Then, Maxwell’s
equations are:

V-(E) = 4mp (15)
VXE = —-0,B (16)
VB = 0 (17)
VX(B/u) = 4rj+ 0;(eE). (18)



We can still use the fact that B has zero divergence to introduce a vector
potential A, in terms of which B is given by

B =VXxA, (19)
and the curl E equation still leads to

E=-V¢—-0A. (20)
Putting Egs. (19) and (20) into the two Maxwell’s equations with sources,

now leads to new equations for the potentials,

V-(eE)=4rp = —eV-(Vo+9A),
drp = —€[V?¢+ V-(9,A)]. (21)
Vx(B/j) — 4rj+ O(cE),

imj = iVX(VXA) + D[V + DAl

4rj = ;[V(V-A) — V2A] + €0,V + 07 Al (22)
We can apply a modified gauge condition,
V-A+eudp =0, (23)
to reduce Eqgs. (21) and (22) to
(V2 — cpdlp) = —dmp (24)
;(WA _uPA) = —dmj. (25)

These two equations are wave equations for the scalar and vector potentials,
modified to include the permittivity and permeability constants. However,
while the combination (p,j) on the right-hand side of Eqgs. (24) and (25)
forms a four-vector, the operators acting on ¢ and A on the left-hand sides
do not constitute a four-scalar. Consequently, Eqgs. (24) and (25) show that
the combination (¢, A) cannot be a four-vector.

If A” is not a relativistic four-vector, the product, 0* A", of A” with the
relativistic four-vector, 0, cannot be part of a second rank tensor. Conse-
quently, F'*" = gt A¥ — 0" A" is not a tensor for a linearly polarizable material.
This means that even E and B cannot now be Lorentz transformed to a mov-
ing frame. The matrix formed by D and H also cannot be a tensor, because
they, too, are based on the product, 0* A", just with each term modified by
either € or 1/pu.



3 Conclusion

Our conclusion is that the electromagnetic fields E,B,D,H cannot be com-
bined in relativistic tensors if, in the rest frame of a polarizable medium, D
and H are related to E and B by the linear constitutive relations D = ¢E and
H = B/pu. This follows because the potential (¢, A) is then not a relativistic
four-vector. Although the electromagnetic field matrix [F] can appear to be
Lorentz transformed to a matrix [F'], the vectors E' and B’ in Eq. (2) would
not be the electric and magnetic fields in the moving frame.

This means there is no way in special relativity to calculate the elec-
tromagnetic fields in any case where there is a moving linearly polarizable
medium. Even calculating the E and B fields in the rest system of the
polarizable medium, and then trying to Lorentz transforming the fields to a
moving system would not work because the E and B fields themselves cannot
be combined in a relativistic tensor in the presence of a polarizable medium.
Some method other than the Lorentz transformation would have to be used
to treat the electromagnetism of a moving polarizable medium. For instance,
non-relativistic treatment to first order in the velocity could be used.

Mechanical results found in the rest frame of the medium could be Lorentz
transformed to a moving frame. For instance, the wave velocity, u = 1/,/ex,
shown in equations (24) and (25), could be Lorentz transformed to a moving
frame, providing an explanation of the Fizeau experiment to measure the
relative speed of light in a moving medium.
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