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Abstract. This paper investigates the closed subsets of the vec-
tor space of multi-indexed sequences over a field with respect to the
pointwise convergence topology. These closed subsets are shown to
be the orthogonal complements of the subspaces of sequences with
finite support in the vector space. The notion of orthogonality is
established using a natural scalar product on these vector spaces.
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Introduction

In this paper, we investigate the closed subspaces of the vector space
FNr , where F is a commutative field and r ⩾ 1 is an integer, by ex-
ploring their closed subsets. These closed subspaces serve as valuable
tools for characterizing discrete linear dynamical systems [5, 7, 8]. The
fundamental concept we employ is duality [1, 4, 5], which we apply to
the vector spaces FNr and F(Nr), utilizing a scalar product [1, 3, 4, 5].

The structure of this paper is organized as follows:
In Section 1, we introduce the vector spaces Fω and F(ω), along with

the scalar product that induces duality. We then define the orthogo-
nals and conclude the section by presenting several properties of these
orthogonals.

Moving on to Section 2, we describe the topology on FNr , which is
the product of the discrete topology on F. The first result, Theorem
2.1, allows for the construction of 0-bases, derived from the definition
of 0-bases in a product topology.

In Section 3, we state and prove our main theorem, Theorem 3.1.
This theorem establishes that the closed subspaces of FNr are the or-
thogonals of subsets of F(Nr). More precisely, if V ⊂ FNr is closed, then
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V ⊥⊥ = V . A key component of the proof is Lemma 3.2, which provides
an approximation of an element q in V ⊥⊥ through a sequence (qn)n∈N
of elements from V , defined on finite subsets Gn of F(Nr).

1. Duality of Vector Spaces

Let F be a field. All vector spaces considered in this paper will be
over F. For two vector spaces E and F , we denote HomF(E,F ) as
the set of all linear mappings from E to F ; this set also forms an F-
vector space. For an integer r ⩾ 1, FNr denotes the vector space of all
mappings

y : Nr −→ F
α 7−→ y(α) = yα.

Let F(Nr) be the vector subspace of x ∈ FNr with finite support:

F(Nr) = {x ∈ FNr | {α ∈ Nr | xα ̸= 0} is finite}.
For α ∈ Nr, let δα be the element of F(Nr) defined by

δα(β) =

{
1 if α = β,
0 otherwise.

for β ∈ Nr. In other words, δα(β) = δαβ, where δαβ is the Kronecker
delta symbol. The set (δα)α∈Nr forms an F-basis of F(Nr), and for x ∈
F(Nr),

x =
∑
α∈Nr

xα · δα, (1)

with the sum being finite.
Now, an element y ∈ FNr is represented by (yα)α∈Nr . We express y

as a formal sum
y =

∑
α∈Nr

yαδα,

indicating that for all β ∈ Nr, the value of y(β) is given by

y(β) =
∑
α∈Nr

yαδα(β),

where the sum is finite.
For f ∈ HomF(F(Nr),F) and x ∈ F(Nr), using equation (1), we have

f(x) =
∑
α∈Nr

xα · f(δα).

Thus, f is defined by the vector (f(δα))α∈Nr ∈ FNr . Conversely, an ele-
ment f = (fα)α∈Nr ∈ FNr defines an element of HomF(F(Nr),F) through
the mapping δα 7→ fα for all α ∈ Nr. This can be expressed as follows:
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∀x ∈ F(Nr), f(x) =
∑
α∈Nr

xα · fα.

These observations lead to the following proposition, which we proved
in [1] using different notations:

1.1. Proposition. The mapping

⟨−,−⟩ : F(Nr) × FNr −→ F

(x, y) 7−→ ⟨x, y⟩ =
∑
α∈Nr

xα · yα, (2)

(where the sum is finite) satisfies the following properties:
(1) The mappings

F(Nr) −→ HomF(FNr

,F)

x 7−→
{
⟨x,−⟩ : FNr −→ F

y 7−→ ⟨x, y⟩
(3)

and

FNr −→ HomF(F(Nr),F)

y 7−→
{
⟨−, y⟩ : F(Nr) −→ F

x 7−→ ⟨x, y⟩
(4)

are injective.
(2) The mapping (4) is a monomorphism and also an isomorphism of
vector spaces.

We refer to ⟨−,−⟩ as a scalar product, and the vector spaces FNr and
F(Nr) as dual spaces.

1.2. Definition. For P ⊂ FNr and Q ⊂ F(Nr), we define the orthogonals
P⊥ and Q⊥ as follows:

P⊥ = {x ∈ F(Nr) | ⟨x, y⟩ = 0 ∀y ∈ P} ⊂ F(Nr), (5)

Q⊥ = {y ∈ FNr | ⟨x, y⟩ = 0 ∀x ∈ Q} ⊂ FNr

. (6)

The following proposition is straightforward:

1.3. Proposition. The set P⊥ (resp. Q⊥) is a vector subspace of F(Nr)

(resp. FNr).
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1.4. Proposition ([3, 5]). Let P, P ′ be subsets of FNr , and Q,Q′ be
subsets of F(Nr). Then:

P ⊂ P ′ =⇒ P⊥ ⊃ P ′⊥ and Q ⊂ Q′ ⇒ Q⊥ ⊃ Q′⊥, (7)

P ⊂ P⊥⊥ and Q ⊂ Q⊥⊥, (8)

P⊥⊥⊥ = P⊥ and Q⊥⊥⊥ = Q⊥. (9)

Proof. (7): Let x ∈ P ′⊥. If y ∈ P , then y ∈ P ′ by assumption.
Therefore, ⟨x, y⟩ = 0. Since this holds for all y ∈ P , it follows that
x ∈ P⊥. The proof for the second equation is similar.
(8): Let y ∈ P . If x ∈ P⊥, then ⟨x, y⟩ = 0. Since this is true for all
x ∈ P⊥, it follows that y ∈ P⊥⊥. The proof for the second equation is
analogous.
(9): Using (8) and applying (7) with P ′ replaced by P⊥⊥, we obtain
P⊥⊥⊥ ⊂ P⊥. Similarly, applying (8) and (7) with P replaced by P⊥,
we have P⊥ ⊂ P⊥⊥⊥. Thus, P⊥ = P⊥⊥⊥. The proof for the second
equation is analogous. □

The orthogonals defined in Proposition 1.4 represent Galois corre-
spondences ([3, 5]). This implies that they have reverse inclusions and
satisfy R ⊂ R⊥⊥ for the appropriate set R.

1.5. Corollary ([3, 5]). Consider the sets

L = {P⊥ | P ⊂ FNr} and CL = {Q⊥ | Q ⊂ F(Nr)}.

Then the map

L −→ CL
P⊥ 7−→ P⊥⊥ (10)

is a bijection, with its inverse given by

CL −→ L
Q⊥ 7−→ Q⊥⊥.

(11)

2. Topology on FNr

In this section and the following ones, ⩽ denotes the usual total
ordering on N, and r ⩾ 1 is an integer. The relation ⩽+ is the partial
ordering on Nr defined by

α = (α1, . . . , αr) ⩽+ β = (β1, . . . , βr)⇐⇒ αi ⩽ βi for i = 1, . . . , r.
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Let ψr be the mapping
ψr : N −→ Nr

n 7−→ ψr(n) = (n, n, . . . , n)︸ ︷︷ ︸
r times

. (12)

Considering F as a topological vector space equipped with the dis-
crete topology [2], a fundamental system of neighborhoods of 0 (the
0-basis) is the set {{0}}. A sequence (an)n∈Nr of elements of F con-
verges to an element a ∈ F if there exists an integer N ∈ N such that

n ⩾ N =⇒ an = a.

The vector space FNr is endowed with the product topology derived
from that of F, making it a topological vector space as well ([2, 5]). Ac-
cording to the definition of the product topology, we have the following
result, which modifies the statement found in [5]:

2.1. Theorem. An 0-basis for FNr is given by the family of sets (Vn)n∈N∗,
where

Vn = {y ∈ FNr | yα = 0 for α ⩽+ ψr(n)} for n ∈ N∗. (13)

This family has the property

V1 ⊃ V2 ⊃ V3 ⊃ · · · ⊃ Vn ⊃ Vn+1 ⊃ · · · .

Proof. We will use some notations. If I is a set of indices and (Ei)i∈I is a
family of sets indexed by I, then

∏
i∈I A denotes the Cartesian product∏

i∈I Ei when Ei = A for i ∈ I. It is also the set AI of mappings from
I to A:

AI =
∏
i∈I

A.

In particular, for A = F and I = Nr, we have

FNr

=
∏
α∈Nr

F.

The sets O defined by

O =
∏
α∈I

{0} ×
∏

α∈Nr\I

F, (14)

where I is a finite subset of Nr, are open sets in FNr containing 0. Other
open subsets of FNr are unions of such subsets ([5, 6]).

If n ∈ N∗ and y ∈ Vn, we have yα = 0 for α ⩽+ ψr(n). Let O be the
set defined by

O =
∏

α⩽+ψr(n)

{0} ×
∏

α⩽̸+ψr(n)

F.
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If z ∈ O, it follows that zα = 0 for α ⩽+ ψr(n), hence z ∈ Vn. It
follows that

Vn ⊃ O. (15)
Let ∆ be the set defined by

∆ = {α ∈ Nr | α ⩽+ ψr(n)} ⊂ Nr. (16)

We have
O =

∏
α∈∆

{0} ×
∏

α∈Nr\∆

F,

so that O takes the form described in (14). By (15), the set Vn is a
neighborhood of 0.

If U is another neighborhood of 0, there exists a finite subset I of Nr

such that
O =

∏
α∈I

{0} ×
∏

α∈Nr\I

F ⊂ U .

Let n be an integer strictly greater than the maximum of the coor-
dinates of the α’s in I:(

∀α ∈ I
) [

α <+ ψr(n)
]
.

Using the set ∆ defined in (16), we have

I ⊂ ∆ and Nr \∆ ⊂ Nr \ I,
which implies that

y ∈ Vn =⇒ yα = 0 for α ⩽+ ψr(n),

=⇒ y ∈
∏
α⩽+∆

{0} ×
∏

α∈Nr\∆

F ⊂
∏
α∈I

{0} ×
∏

α∈Nr\I

F = O.

It follows that Vn ⊂ O and therefore Vn ⊂ U . We have shown that
the family (Vn)n∈N∗ consists of neighborhoods of 0 such that any other
neighborhood of 0 contains at least one element from this family. It is
clear that the sequence (Vn)n∈N∗ is decreasing. □

2.2. Corollary. A sequence (fn)n∈N of elements of FNr converges to an
element f ∈ FNr if and only if, for every α ∈ Nr, the sequence (fnα)n∈N
converges to fα in F.

Proof. Suppose that the sequence (fn)n∈N of elements of FNr converges
to f ∈ FNr , and let α be an element of Nr. There exists m ∈ N such
that α ⩽+ ψr(m). Let n ∈ N∗ be such that n ⩾ m, and let Vn be the
corresponding neighborhood of 0 in FNr . There exists N ∈ N such that

k ⩾ N =⇒ (fk − f) ∈ Vn
=⇒ fkβ = fβ for β ⩽+ ψr(n).

(17)
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Applying the second equation in (17) for the case β = α, we find

k ⩾ N =⇒ fkα = fα,

i.e., the sequence (fnα)n∈N converges to fα in F.
Conversely, suppose that for every α ∈ Nr, the sequence (fnα)n∈N

converges to fα in F. Given α ∈ N, there exists N ∈ N such that

k ⩾ N =⇒ fkα − fα = 0. (18)

Let Vn be a neighborhood of 0 in FNr and let ∆ be the set defined by

∆ = {α ∈ Nr | α ⩽+ ψr(n)} ⊂ Nr. (19)

Let m be the cardinality of ∆, and let α1, . . . , αm be the elements of
∆. By applying (18) to each of the elements of ∆, we find that there
exist N1, . . . , Nm ∈ N such that

k ⩾ Ni =⇒ fkαi
− fαi

= 0,

for i = 1, . . . ,m. Taking N = max{N1, . . . , Nm}, we then have

k ⩾ N =⇒ fkαi
− fαi

= 0,

for i = 1, . . . ,m. In other words,

k ⩾ N =⇒ fkα = fα for α ⩽+ ψr(n).

This shows that

k ⩾ N =⇒ (fk − f) ∈ Vn.

Thus, (fn)n∈N converges to f in FNr . □

The topology of FNr is therefore the topology of pointwise conver-
gence.

3. Closed Subspaces of FNr

We will now investigate the closed subspaces of FNr .

3.1. Theorem. An F-vector subspace V of FNr is closed if and only if
there exists G ∈ F(Nr) such that

V = G⊥. (20)

Proof. Let G be a non-empty subset of F(Nr). We need to show that
G⊥ is closed in FNr . Let (fn)n∈N be a sequence in G⊥ that converges
to f ∈ FNr with respect to the topology of FNr .
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Given x ∈ G, the following property holds: for k ∈ N, there exists
N ∈ N such that for n ⩾ N , we have (fn − f) ∈ Vk, i.e., (fn − f)α = 0
whenever α ⩽+ ψr(k). Since

f(x) =
∑

α⩽+ψr(k)

xαfα +
∑

α⩽̸+ψr(k)

xαfα

=
∑

α⩽+ψr(k)

xα(fn)α +
∑

α⩽̸+ψr(k)

xαfα,
(21)

and since fn has finite support, we can choose k sufficiently large such
that

0 = fn(x) =
∑

α⩽+ψr(k)

xαfnα.

It follows that
f(x) =

∑
α⩽̸+ψr(k)

xαfα.

However, since x has finite support, we can increase k, if necessary, so
that xα = 0 for α satisfying α ⩽̸+ ψr(k), which implies that f(x) = 0.
Since this holds for any arbitrary x ∈ G, we conclude that f ∈ G⊥.

Conversely, suppose that V is closed in FNr . We will show that

V ⊥⊥ = V = V . (22)

It suffices to demonstrate the non-trivial inclusion V ⊥⊥ ⊂ V (see (8)).
Let {fλ | λ ∈ Λ} be a generating set of V :

fλ : Nr −→ F
α 7−→ fλα.

Let q = (qα)α∈Nr ∈ V ⊥⊥, and let n ∈ N. Define Gn as the finite-
dimensional vector subspace of F(Nr) given by

Gn =
⊕
α∈∆

Fδα, (23)

where ∆ = {α ∈ Nr | α ⩽+ ψr(n)} (i.e., Gn is the subspace of F(Nr)

generated by {δα | α ⩽+ ψr(n)}). From classical linear algebra, we
have the isomorphism

F∆ ←→ HomF(Gn,F)

x = (xα)α∈∆ ←→
{
φ : Gn → F

δα 7→ xα.
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For β ∈ ∆, we define the element γβ ∈ HomF(Gn,F) by

γβ : Gn −→ F
δα 7−→ γβ(δα) = δβα,

where δβα is the Kronecker symbol. The family {γβ | β ∈ ∆} forms
an F-basis for HomF(Gn,F). Therefore, if φ ∈ HomF(Gn,F), we can
express φ as

φ =
∑
β∈∆

φβγβ (24)

with φβ ∈ F.

Additionally, we have the isomorphism:

Φ : F∆ ←→ HomF(HomF(Gn,F),F)

y = (yα)α∈∆ 7−→
{

Φ(y) : HomF(Gn, F)→ F
γα 7→ Φ(y)(γα) = yα.

(25)

Consider the restrictions:

fλ|Gn = f
(n)
λ with f (n)

λ (δα) = fλα,

q|Gn = qn with q(δα) = qα
(26)

for α ∈ ∆. We will need the following lemma:

3.2. Lemma. The property qn ∈ ⟨(f (n)
λ )λ∈Λ⟩ holds.

Proof: We have qn ∈ HomF(Gn,F). Suppose that qn /∈ ⟨(f (n)
λ )λ∈Λ⟩.

In this case, there exists Θ ∈ HomF(HomF(Gn,F),F) such that Θ(f
(n)
λ ) =

0 for λ ∈ Λ and Θ(qn) = 1. By the isomorphism in (25), there exists
y = (yα)α∈∆ ∈ F∆ such that Φ(y) = Θ, i.e., Θ(γα) = yα for α ∈ ∆.

Define

g =
∑
α∈∆

yαδα ∈ Gn.
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Then,

fnλ (g) = fλ|Gn
(g) = fλ

(∑
α∈∆

yαδα

)
=
∑
α∈∆

fλ(yαδα)

=
∑
α∈∆

yαfλ(δα)

=
∑
α∈∆

yαfλα

=
∑
α∈∆

Θ(γα)fλα

=
∑
α∈∆

Θ(fλαγα)

= Θ

(∑
α∈∆

fλαγα

)
= Θ(f

(n)
λ ) = 0.

(27)

This implies that

(∀λ ∈ Λ)

[
fλ(g) = 0

]
,

which shows that g ∈ V ⊥. However, we also have:

q(g) = q|Gn(g) = qn(g) = qn

(∑
α∈∆

yαδα

)

=
∑
α∈∆

yαqα =
∑
α∈∆

Θ(γα)qα = Θ

(∑
α∈∆

γαqα

)
.

By (24),

qn =
∑
α∈∆

γαqnα =
∑
α∈∆

γαqα,

which leads to
q(g) = Θ(qn) = 1.

This implies that g /∈ V ⊥⊥⊥ = V ⊥, which is a contradiction. We
conclude that necessarily qn ∈ ⟨(f (n)

λ )λ∈Λ⟩. □
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Proof of Theorem 3.1 (continued): For n ∈ N∗, there exists a family
(µ

(n)
λ )λ∈Λ with finite support such that

q|Gn = qn =
∑
λ∈Λ

µ
(n)
λ f

(n)
λ .

Consider the element q′n =
∑

λ∈Λ µ
(n)
λ fλ ∈ V , which is an extension of

qn to FNr . For α ∈ ∆, we have, by (26),
q(α) = q′n(α),

so that q − q′n ∈ Vn. Therefore, the sequence (q′n)n∈N∗ converges to q
in FNr . Finally, we have q ∈ V . Thus, V ⊥⊥ ⊂ V , and the equality
holds. Taking G = V ⊥, we obtain G⊥ = V ⊥⊥ = V , and the theorem is
proved. □
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