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In Laser Powder Bed Fusion (LPBF), the applied laser energy produces high thermal gradients that

lead to unacceptable final part distortion. Accurate distortion prediction is essential for optimizing

the 3D printing process and manufacturing a part that meets geometric accuracy requirements. This

study introduces data-driven parameterized reduced-order models (ROMs) to predict distortion in

LPBF across various machine process settings. We propose a ROM framework that combines Proper

Orthogonal Decomposition (POD) with Gaussian Process Regression (GPR) and compare its

performance against a deep-learning based parameterized graph convolutional autoencoder (GCA).

The POD-GPR model demonstrates high accuracy, predicting distortions within  , and

delivers a computational speed-up of approximately 1800x.

1. Introduction

LPBF is a popular metal additive manufacturing technique that has gained significant attention in

recent years due to its ability to fabricate complex geometries with high precision. In LPBF, a thin

layer of metal powder is deposited on a build platform, and a high-energy laser selectively melts and

fuses the powder particles together to form a solid layer. This process is repeated layer by layer, with

each 2D layer fusing to the previous one, ultimately constructing fully dense 3D components[1].

The repeated melting and solidification cycles in LPBF lead to significant thermal gradients, resulting

in notable distortion in the as-built part. This distortion can compromise the dimensional accuracy

and structural integrity of the final component, which is a critical requirement in many

applications[2]. To address this challenge, currently, the additive manufacturing community relies on
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a trial-and-error method, which involves conducting numerous experiments or simulations that are

time-consuming and expensive. The approach is a distortion compensation technique, which involves

pre-distorting the part design in such a way that upon printing, the final built shape matches the

intended geometry[3]. The problem is predicting quickly the pre-distorted part geometry is not easy.

The amount of distortion for a given geometry depends on various machine settings, such as scan

speed, laser power, and dwell time[4]. Accurately predicting the distortion based on these parameters

is crucial for effective distortion compensation and process optimization[5]. High-fidelity finite

element models offer a cost-effective alternative, enabling repeated trials without the need to

physically build the parts[6]. However, developing accurate physics-based models for LPBF distortion

is a complex task due to the non-linear dependence of distortion on the process and complex part

geometries: one pre-distortion solution that fits all problems does not exist[7].

This study aims to develop parameterized data-driven reduced-order models (ROMs) for accurately

predicting distortion in the LPBF process under various machine settings[8][9][10]. Specifically, it

employs a combination of POD and Gaussian Process Regression to create a ROM, which is then

compared with a parameterized graph convolutional autoencoder for distortion prediction. The POD-

GPR ROM achieves a distortion prediction accuracy within  , and offers a computational

speed-up over the high fidelity model of nearly   times. This significant improvement highlights

the model’s potential for enabling rapid and precise distortion predictions, which is critical for

optimizing LPBF processes. The ability to efficiently predict distortion not only reduces the reliance on

costly and time-consuming experimental trials but also enhances the overall process control, making

this approach highly valuable for industrial applications[11].

2. Methods

2.1. LPBF simulation data

In this study, we analyze data generated from Laser Powder Bed Fusion (LPBF) simulations conducted

using ANSYS®Additive Suite. The dataset is parameterized based on the dwell time  , which

represents the time interval required for the laser or heat source to revisit a specific location to deposit

a subsequent material layer[12]. The impact of this interlayer dwell time becomes more pronounced as

structures grow in size and complexity, significantly affecting the thermal history and geometric

±0.001 mm

1800

dt

qeios.com doi.org/10.32388/OS5U6O 2

https://www.qeios.com/
https://doi.org/10.32388/OS5U6O


distortion outcomes. Specifically, we performed simulations on a cylindrical geometry with dwell

times  , sampled at intervals of  . The computational mesh used in these simulations

comprised    nodes, and each simulation covered 34 layers of metal deposition, yielding 

  time steps per simulation. On average, each simulation required approximately 2 hours of

computation on 112 cores of an Intel(R) Xeon(R) CLX-8276L processor. From this extensive dataset,

we selected    samples for training, with the remaining samples designated for validation and

testing. Let    represent the  -th parameter in the training set. The primary quantity of

interest is the final distortion field,  . We denote the snapshot vector of distortion data at time-step 

 for parameter   as  , and the corresponding data matrix for all nodes and time steps as 

. By aggregating all these matrices, we form a third-order tensor 

, which constitutes the training dataset utilized in this work. A

visual representation of this dataset is provided in Figure 1.

Figure 1. Schematic of dataset generation. LPBF simulations were generated for parameter dwell time.

Distortion data was extracted for each simulation and arranged into a training snapshot matrix.

2.2. POD-GPR

POD-GPR is a parameterized, data-driven reduced order modeling method which consists of two main

features: 1) POD[13] to learn a linear spatial compression of data to a latent space; 2) GPR[14] to map the

POD coefficients of final distortion layer to a given parameter value.

POD is a dimensionality reduction technique widely used in the analysis of complex systems to

identify dominant patterns or modes. Given a set of snapshots 

, where each snapshot    represents the state of the

system at a particular time or parameter setting, the goal of POD is to find a set of orthonormal basis

vectors    that capture the most energetic features of the data. This is achieved by solving the
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eigenvalue problem associated with the covariance matrix  . The eigenvectors

corresponding to the largest eigenvalues provide the POD modes, which minimize the reconstruction

error in a least-squares sense. Mathematically, this can be expressed as:

where   denotes the projection of   onto the  -th POD mode. The reduced representation of

the data is then given by the projection coefficients  , enabling efficient

analysis and computation in a lower-dimensional subspace. We select the first r modes for which the

total energy is greater than  . The energy stored in the first r modes is given by:

where   is the eigenvalue.

GPR is a powerful non-parametric method for modeling complex functions, particularly in cases

where uncertainty quantification is important. In this work, we employ GPR to learn    independent

Gaussian process regressions, each mapping the final time POD coefficients to their corresponding

parameter  . Let   denote the vector of POD coefficients at the final time for

the parameter  . For each coefficient  , where  , we model it as a Gaussian process:

where   is the mean function and   is the covariance function (kernel) associated with the 

-th POD coefficient. In our approach, we use a constant mean function for   and a radial basis

function (RBF) kernel for  , which is defined as:

where   is the signal variance, and   is the length-scale parameter.

Given training data  , the posterior distribution for each   at a new test point 

 can be computed as:

where   and   are the posterior mean and variance, respectively. This approach allows

us to efficiently predict the POD coefficients for unseen parameters  , capturing the underlying
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uncertainty in the process.

2.3. Parameterized graph-convolution autoencoder

We employ a graph convolutional autoencoder (GCA) [15][16][17] to map a graph-based representation

of the distortion field into a latent space. The encoder,  , applies graph convolution layers to extract

features and reduce dimensionality, resulting in a latent representation  , where 

 denotes the input graph and   the encoder parameters. Simultaneously, we train a fully connected

neural network (FCNN),  , that maps the dwell time  , to this same latent space,  ,

with   representing the network parameters. This setup ensures that the latent space encodes both

the geometrical and operational characteristics influencing the distortion. The decoder,  , then

reconstructs the distortion field from the latent space,  , aiming to minimize the

reconstruction loss  . Figure 2 depicts the architecture of parameterized graph

convolutional autoencoder.

Figure 2. Illustration of parameterized graph convolutional autoencoder architecture

The overall training objective also includes a parameter consistency loss  ,

ensuring that the FCNN’s output aligns with the encoder’s latent space. The mathematical

formulation of our training objective combines these losses, optimizing  ,  , and   through:
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where    is a regularization parameter balancing the two loss components. For the present work, we

have used  .

3. Results

In this study, the training dataset consisted of dwell times 

 seconds. The present study aims to test the performance of data-

driven models in a scarce data regime. Validation was conducted using dwell times 

  seconds, while testing was performed on    seconds. In particular, for the

POD-GPR model, there is no separate validation set; both validation and test sets are combined into a

single test set. The current selection of validation and test sets focuses on evaluating the performance

of these models within the interpolation range of the parameters. In future work, we plan to extend

the parameter space to include the extrapolation range, enabling a more comprehensive assessment

of the models’ generalization capabilities.

Our implementation of POD successfully preserved 99.99% of the variance with 129 modes.

Subsequently, 129 independent GPRs were trained. The performance of the first four POD coefficients

corresponding to the test dwell times is visually represented in the Figure 3.

Figure 3. Graphical representation of the first four POD coefficients of final layer predicted by the GPR

model for various dwell times in the test set (  seconds) along with the 95% confidence

interval.

The industry standard for accuracy in additive manufacturing processes is within   mm. Our POD-

GPR model significantly exceeds this requirement, achieving an accuracy of    mm for the
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maximum displacement value, showcasing an excellent agreement with the finite element

simulations. Notably, the runtime for the POD-GPR is approximately 4 seconds, providing a

computational speed-up of about 1800 times compared to traditional finite-element methods.

The parameterized GCA was trained within a denoising autoencoder framework, employing early

stopping with a patience of 50 epochs and cosine annealing warm restarts[18]  for learning rate

adjustment to optimize training and mitigate overfitting. The AdamW optimizer[19]  was used for

parameter updates. Despite setting the latent space dimension to 12 for a detailed yet compact data

representation, the GCA showed tendencies of overfitting, attributed to the limited dataset size of only

nine training points. This limited dataset impaired the model’s generalization capabilities,

particularly noticeable in test performance for dwell times of 45s and 75s. Figure 4 contrasts

displacement predictions from the POD-GPR and GCA models against finite element simulations. The

figure and results underscore the POD-GPR model’s superior performance, highlighting its greater

accuracy and effectiveness in distortion prediction for additive manufacturing.

Figure 4. (a) Maximum displacement predictions from the POD-GPR model compared with ground truth

from finite element analysis, (b) Predictions from the parameterized GCA model

4. Conclusion

This study highlights the POD-GPR model’s exceptional accuracy and computational efficiency in

distortion prediction, achieving accuracies within    mm and a 1800-fold speed improvement,

demonstrating its suitability for engineering applications. While the parameterized GCA model faces

challenges in generalizing due to a limited dataset, its versatility in adapting to different geometries
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indicates significant potential for broader uses. Future work will focus on enhancing the GCA model

with an enlarged dataset and exploring advanced non-linear methods such as weak-LaSDI[20].

Notes

Machine Learning and the Physical Sciences Workshop, NeurIPS 2024.
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