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Abstract

     Level densities for the X(610, 204) system are calculated using a single particle methodology incorporating the Rost

interaction and pairing interaction of Blomqvist and Wahlborn. Energy level fluctuations are smoothed utilizing the

constant temperature, power law, and equidistant model functional forms. The constant temperature relationship is

used to model the density and total number of energy levels. The total number of levels is also compared with the

predictions of the power law and equidistant models. Systematics of level densities for nuclei are discussed, and

compared to the X(610, 204) results.

1.0. Introduction
     Nuclear level density data are available for many nuclei, but most calculations are performed for nuclei with A ≥ 201.

Most calculations utilize realistic single particle levels. Accordingly, shell effects are incorporated into these calculations.

The only residual interaction is an approximate pairing force, and the calculations lead to approximate nuclear densities.

These approaches or other approximate calculations have not been extended to theoretical superheavy nuclei.

     Previous work investigated superheavy nuclei including the Z=204 N=610 system2. Such an extension is important

because superheavy nuclei, such as X(610, 204) represent an endpoint for density measurements, because this system is

about twice as heavy as any known nucleus. Previous efforts investigated the other extreme in level systematics by

evaluating the 4He system3.

2.0 Calculational Methodology
     Since the method for calculating single particle energies in a spherically symmetric potential is well-established, only

salient features are provided. The model used to describe the particle (i) plus core (c) system represents an application of

the standard method of Lukasiak and Sobiczewski4 and Petrovich et. al.5 

     The binding energy ENLSJ of a particle in the field of a nuclear core is obtained by solving the radial Schrödinger

Equation

ℏ2

2μ
d2

dr2 −

L(L + 1)
r2 − ENLSJ − VLSJ(r) UNLSJ(r) = 0(1)

where r is the radial coordinate defining the relative motion of the nuclear core and the particle; VLSJ(r) is the model
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interaction6,7; ENLSJ is the core plus particle binding energy; UNLSJ(r) is the radial wave function; and L, S, and J are the

orbital, spin, and total angular momentum quantum numbers, respectively. The N quantum number is the radial quantum

number, and μ is the reduced mass. For the present application, VLSJ is defined as:

 

                                                   VLSJ(r) = Vo(r) + Vso(r) + VC(r) (2a)

Vo(r) = −

Vo
1 + Bo (2b)

 

Vso(r) = − Vso(

ℏ
mπc )2

1
asor

Bso
[1 + Bso]

2
F(L,S, J)(2c)

 

                                                          VC(r) = zi ZC e2 C(r) (2d)

where

 

                                                            Bj = exp[(r – Rj) / aj] (3)

and

                                              Ro = ro A1/3 = RC and Rso = rso A1/3 (4)

 

     The parameters V0, r0, and a0 are the strength, radius parameter, and diffuseness for the central potential. Similarly,

Vso, rso, and aso are the corresponding parameters for the spin-orbit potential. To complete the specification of Eq. 2, the

following terms are defined: 

 

                                                  F(L,S,J) = J(J+1) – L(L+1) –S(S+1) (5) 

and

C(r) =

1
2RC (3 − K2)(6A)

                                                           K = r/RC for r<RC  (6B)

 

                                                         C(r)= 1/r for r ≥ RC   (7)  

 

     For the Coulomb potential, it is assumed that the particle is a point charge of magnitude zie. The core has a charge ZCe

uniformly distributed through a sphere of radius RC. Since the potential is not a function of the spherical coordinates, the

solution of the angular equation is most easily expressed in terms of spherical harmonics YLM(θ,Φ).

     The total bound-state wave function Ψ for the relative motion of the core plus particle, interacting through a spherically
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symmetric potential, is given by a product of space and spin wave functions:

Ψ =

1
r UNLSJ(r)∑C(L,ML,S,MS; JM)YLML

(θ,ϕ)χSMS
(8)

 

where the sum is over ML and MS, and ML and MS are the projections of angular momentum and spin, and χ is the spin

wave function. For the calculation of single particle energy levels, N, L, S, and J specify the quantum numbers of the

single particle level.

     The binding energy of a single particle level is obtained by rewriting the radial Schrödinger equation in the form

d2

dr2 − k(p, r) U(p, r) = 0(9)

where 

                                                              U(p,r) = UNLSJ (10)

 

and

k(p, r) =

L(L + 1)
r2 +

2μ
ℏ2

ENLSJ + VLSJ(r) (11)

     The model searches for values of p in order to obtain the binding energy ENLSJ for a given potential. The method of

searching for p is provided by Brown, Gunn, and Gould8, and the methodology of Ref. 9 to obtain a converged solution for

ENLSJ. 

3.0 Nuclear Interaction
     Nuclear stability with respect to alpha decay, beta decay, positron decay, electron capture, and spontaneous fission is

addressed using the method previously published by the author and coworkers5 that is similar to the approach of Ref. 4.

The single particle level spectrum is generated using a Woods-Saxon potential. The parameters of the potential are

obtained from a fit to the particle levels in 209Pb and 209Bi performed by Rost6. The central potential strength has a

standard form and can be explicitly defined as

V0 = 51.6 1 ± 0.73

N − Z
A (12)

where the upper (lower) sign applies to protons (neutrons). The remaining parameters were held constant and are given

by Rost6: ro = 1.262 (1.295) fm, rso = 0.908 (1.194) fm, ao = aso = 0.70 fm, and λ = 17.5 (28.2) for protons (neutrons) 5.

Vso is related to λ by the relationship6:

V =

λV0
180 (13)

[ ]

[ ]

[ ]
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Vso = (13)

     The scaling relationship of Eq. 12 yields reasonable fits to observed single particles levels in 120Sn and 138Ba. The

pairing correction term of Blomqvist and Wahlborn7 is used in the calculations presented herein. The pairing correction

improves the predicted energies of occupied levels in 120Sn, 138Ba, and 208Pb5.

4.0 Single Particle Level Calculations
     The X(610, 204) level calculations2 using the methodology of Section 2.0 are summarized in Fig. 1. These calculations

suggest the X(610, 204) system has a half-life of 2.2 h, is beta stable, and decays through alpha emission1.

 

Fig. 1 Calculated single particle energy levels for nucleus X(610, 204). The notation a/b/c is used to indicate adjacent energy levels with level a

more tightly bound than level b, which is more tightly bound than level c.

 

     The results summarized in Fig. 1 are used as the basis for the level systematics summarized in Sections 4.0 and 5.0.

These results are evaluated using the constant temperature model10 and equidistant model11-14.

     Wu et al.15 utilize machine learning to derive an energy density functional for bound nuclear systems. Ref. 15

represents an additional application of a derived level density relationship.
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5.0 Constant Temperature Model
     Experimental data involving level densities are often analyzed with the constant temperature formula10 

                                                   ρ(E) =a exp(E/T) (14)

where ρ(E) is the number of energy levels per MeV, and a and T are constants which are determined from a fit to the

X(610, 204) single particle levels of Fig. 1. It should be recognized that these simple level density approximations may not

accurately reproduce the level density of a nucleus which has marked structure in its single particle levels. As such, the

investigation of level density parameters as a function of mass leads to a better understanding of level density systematics

as well as individual differences between nuclei.

     Within the constant temperature model, the functional form for the level density is expected to be a simple exponential

from experimental measurements on A = 36-66 even-even nuclei10. The information of Fig. 1 can be fit to the form of Eq.

(14), and the values a = 5.00473206 and T = 1 / 0.052170492 = 19.1679 are obtained. Model results are shown in Fig. 2.

Fig. 2 Energy level density for X(610, 204) using the constant temperature model. The "•" symbol represents the state density for a 1 MeV energy

bin. The solid curve is a fit to the constant temperature functional form ρ(E) = a exp(E/T) with a = 5.00473206 and T = 1 / 0.052170492 = 19.1679.

     As expected there is considerable fluctuation in ρ(E), and this can be minimized by considering the total number of

levels N(E) described by the functional form of the constant temperature model
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                                                         N(E) = c exp(E/d) (15)

 

When the levels N(E) of Fig. 1 are fit to the constant temperature model of Eq. (15), the curve shown in Fig. 3 is obtained.

The parameters c =8.47138352 and d = 1 / 0.136811694 = 7.3093 are obtained. Eq. 15 underestimates the number of

energy levels below about 25 MeV and significantly overestimates N(E) above about 30 MeV. A comparison the X(610,

204) system d values to lighter systems using the constant temperature model is summarized in Table 1.

Fig. 3 Total number of energy levels N(E) as a function of energy. The "•" symbol represents the total number of energy levels up to energy E. The

solid curve is a fit to the constant temperature functional form N(E) =               c exp(E/d) where c =8.47138352 and d = 1 / 0.136811694 = 7.3093.
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Table 1

 
Constant Temperature Model Parameters for Nuclear
Densitiesa,b,c 

Nucleus d (MeV)

4He 2.79a

36Ar 1.87

38Ar 1.47

40Ca 1.73

50Cr 1.29

52Cr 1.43

54Cr 1.22

54Fe 1.40

56Fe 1.40

58Fe 1.31

68Zn 0.90

X(610, 204) 7.31b

a Ref. 3.
b This work.
c All others Ref. 10.

 6.0 Power Law Model
     The fit to the total number of levels N(E) is also modeled using the power law functional form

                                                       N(E) = a Eb (16)

 

where a = 1.25223103 and b = 1.69492108. Fig. 4 summarizes the use of Eq. 16 to fit the levels of Fig, 1. Eq. 16 provides

an improved fit to that of Eq. 15 that has been traditionally utilized to describe the total number of energy levels as a

function of energy.
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Fig. 4 Total number of energy levels N(E) as a function of energy. The "•" symbol represents the total number of energy levels up to energy E. The

solid curve is a fit to the power law functional form N(E) = aEb where a = 1.25223103 and b = 1.69492108.

7.0 Equidistant Model
     In the equidistant model11-14, the single particle levels are assumed to be equidistant and nondegenerate. The total

state density for a system composed of neutrons and protons is given by

N(E) =

√π
12

e(2√aE)
E5/4a1/4

(17)

where a is a level density parameter. In existing nuclear systems, the parameter a has been determined14 to have the

value A/8 and A is the atomic mass. 'The formula is sometimes described as a Fermi gas level density expression, but

actually only represents the zeroth order approximation to the level density of a Fermi gas. 

     The levels of Fig. 1 have been fit to the functional form of Eq. (17). A fit to the calculated levels is shown in Fig. 5. The

fit is obtained for the value a = 1.175. It is important to note that the constant density formula given in Eq. (17) is an

approximation that is valid only for energies that are low compared to the energy of the deepest hole that can be made in
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the nucleus. Most investigations consider excitation energies of less than 15-20 MeV. That is, Eq. (17) is an asymptotic

expression, which is valid for an infinite number of occupied levels—i.e. infinite atomic mass A. Accordingly, an improved

description of the level density should be obtained as the nucleus mass increases. However, the equidistant model does

not reproduce the data as well as the power law model incorporating Eq. 16.

Fig. 5 Total number of energy levels N(E) as a function of energy using the equidistant model. The "•" symbol represents the total number of energy

levels up to energy E. The solid curve is a fit to the equidistant model with a = 1.175.

     The a = 1.175 value determined by a fit to Eq. 17 is inconsistent with the A/8 value suggested in Ref. 14. This

discrepancy will be further investigated in a subsequent publication.

8.0 Conclusions
     The X(610, 204) single particle level calculations predict a series of levels, and the associated level density and total

number of energy levels as a function of energy can be fit with a number of functional forms. Given the scatter in the

number of energy levels/MeV, the level scheme is fit reasonable well by the constant temperature model as summarized

in Fig. 2.

     The total number of energy levels as a function of energy is best fit with the power law form N(E) = a Eb as illustrated in

Fig. 4. This power law relationship provides better agreement with N(E) than the constant temperature and equidistant
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models. The results of this calculation also provides an A = 610 end point for level density parameters of the constant

temperature, equidistant, and power law models.
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