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The Compton Wavelength Is the True
Matter Wavelength, Linked to the
Photon Wavelength, While the de Broglie
Wavelength is Simply a Mathematical
Derivative, Understanding this Leads to
Uni�cation of Gravity and New Quantum
Mechanics
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We demonstrate that the Compton wavelength mathematically corresponds exactly to the photon

wavelength of rest mass energy. On the other hand, the de Broglie wavelength is not de�ned for a

rest-mass particle, but if the particle is nearly at rest, then the de Broglie wavelength approaches

in�nity, and the corresponding photon wavelength of the rest-mass energy is then this length

times   again, that is it approaches zero when   approaches zero. Our analysis indicates that the de

Broglie wavelength appears to be a pure mathematical derivative of the Compton wavelength.

Everything that can be expressed with the de Broglie wavelength can essentially be expressed by the

Compton wavelength. We also demonstrate how spectral lines from atoms and chemical elements

are linked to the Compton wavelength of the electron and that the Rydberg constant is not needed.

Furthermore, we demonstrate that the Compton frequency is embedded in the Schrödinger equation,

the Dirac equation, and the Klein-Gordon equation, where the Planck constant actually cancels out,

and the de Broglie wavelength is not present in these equations. The Compton frequency seems to be

linked to the quantization in quantum mechanics rather than the Planck constant. Additionally, we

discuss recent literature that shows a remarkably simple but overlooked way to quantize Newton’s

and General Relativity theories, as well as other gravity theories, and also how to link them to the

Planck scale. This, once again, leads to the conclusion that the Compton wavelength and Compton
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frequency are related to the quantization of matter and, thereby, the quantization of gravity. In

addition, the Planck length plays a crucial role in quantum gravity, as demonstrated.

Viewing physics through the de Broglie wavelength is like looking at the world through a distorted

lens; switch to the Compton wavelength, and the distortion is removed, allowing us to see simplicity

and clarity even in complex phenomena such as quantum gravity. Remarkably, Heisenberg’s

uncertainty principle seems to need modi�cation to a Certainty-Uncertainty Principle when one

understands that the Compton wavelength is the true wavelength of matter. Gravity is related to the

Planck mass particle and is again related to absolute rest, which lasts for the Planck time. This

certainty-uncertainty principle leads to the uni�cation of gravity and quantum mechanics.

Corresponding author: Prof. Espen Gaarder Haug, espenhaug@mac.com

1. The Compton wavelength and the photon wavelength in rest

masses

We will in this section present a very simple, yet we believe, very important mathematical relationship

that surprisingly has not to our knowledge been shown directly before. We think the reason it has not

been discovered before is that the research community has primarily associated mass with the de

Broglie wavelength rather than the Compton wavelength. After demonstrating this important yet

straightforward mathematical relationship, we will discuss how the Compton wavelength is likely the

true matter wavelength, while the de Broglie wavelength is likely just a mathematical derivative of the

actual physical matter wavelength.

Compton [1] in 1923 gave the Compton wavelength as:

Furthermore, the reduced Compton wavelength is de�ned as  , and we therefore have:

  where    is the reduced Planck constant, also known as the Dirac constant. Additionally, the

relativistic Compton [2] wavelength is given by:

= .λc
h
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 where   is the Lorentz factor, and the relativistic reduced Compton wavelength is given by:

The rest mass energy is given by Einstein’s [3] most famous formula:

If all the mass is turned into pure energy, then we must have:

where    simply is the photon wavelength. Next, let us go back to the Compton wavelength formula

and solve it with respect to  . This gives:

Now we replace this expression for the mass into Eq. (6), and we get:

This means that the Compton wavelength is identical to the photon wavelength for rest-mass energy.

This may seem trivial when someone �rst demonstrates it and points it out. However, we will soon

move to the de Broglie wavelength, where we obtain quite a di�erent result. The result above could

indicate that rest mass consists of standing photon waves with very short wavelengths, exactly at the

length of the Compton wavelength. This idea that the Compton wavelength is identical to the photon

wavelength for rest mass (rest-mass energy) has been suggested by Haug [4][5] in a theory under rapid

development. Likely, only elementary particles such as electrons have a Compton wavelength. Still, as

has been recently demonstrated, the kilogram mass of any mass from protons to astronomical masses

can be expressed with the formula  , and the Compton wavelength can be found for any mass,

even astronomical, without even knowing the Planck constant or the kilogram mass, see  [6][7].

However, the Compton wavelength in a composite mass re�ects an aggregate of the Compton

wavelengths of all masses and energies making up the composite mass. We have that the Compton

wavelength of a composite mass is given by

γ = 1
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Where   is the Compton wavelength of a fundamental particle or from rest-mass energy. This is fully

consistent with

In other words, this is consistent with aggregating all elementary particles and energies making up

the rest-mass  , binding energies etc., naturally fully consistent also with the conservation of energy.

When it comes to that the Compton wavelength is identical to the rest-mass energy photon

wavelength as demonstrated in this section one can ask how relavant this is since it is typically

assumed photons have no mass. One can naturally still argue that photons can be treated as equivalent

of mass since we have 

2. The Compton wavelength and the wavelengths of a spectral lines

The well-known Rydberg [8] formula is given by:

Here,   is the principal quantum number of an energy level, and   is the principal quantum number

of an energy level for the atomic electron transition. Furthermore, the Rydberg constant is de�ned as:

In this equation,    represents the electron mass,    is the vacuum permittivity,    is the Planck

constant, and   is the elementary charge. However, Haug [9] has shown that Equation (11) is both non-

relativistic and that the Rydberg constant is not needed. The relativistic formula that can replace the

Rydbergs formula and already has been taken in use [10] is given by
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Here,   represents the Compton wavelength of the electron. This shows that there is no need for the

Rydberg constant. As Suto  [11]  correctly has discussed and pointed out, the Rydberg constant is not

rooted in anything physical, or in his own words:

"the physical constant that is important for determining the wavelengths of the line spectra of

a hydrogen atom is not the Rydberg Constant, but rather the Compton wavelength of the

electron." – Koshun Suto

It is indeed the Compton wavelength of the electron that is of importance for the observed and

predicted photon spectral wavelengths of atoms; the Rydberg constant is never needed to predict

these. The Rydberg constant is a composite constant, not itself related to anything physical; only some

of its components are. It is the electron, when transitioning between di�erent energy levels, that

emits photons, and the wavelength of these photons is directly related to the Compton wavelength of

the electron, as we also demonstrated in the previous section. This again demonstrates the

importance of the Compton wavelength in matter.

Equation 13 can also be expressed as:

This means we can also �nd the Compton wavelength of the electron from the wavelengths of the line

spectra in atoms, as we must have:

That is, observed spectral lines from electron transitions in atoms can just as well be used to �nd the

Compton wavelength of electrons as Compton scattering. Finding the mass of the electron based on

spectral line observations by using the standard Rydberg formula will slightly overestimate the mass

if one does not understand the original Rydberg formula is a non-relativistic approximation. The

same is true from the standard Compton scattering formula, as this is also non-relativistic in the

= − .
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sense it does not assume that electrons move at impact. If using spectroscopy of Hydrogen atoms and

not taking into account the relativistic corrections needed, one will overestimate the electron mass by

approximately  .

3. The Compton wavelength of the electron and other masses can

be found totally independently of knowledge of the Planck

constant and the electron mass

The most common way to express the Compton wavelength in university text books (see for

example [12][13]) is  , and multiple researchers1 therefore mistakenly assume that one always

needs to know the Planck constant and the electron mass to �nd the Compton wavelength of the

electron. There is absolutely nothing wrong with this formula, but there is a deeper level to it so to say.

So it is actually not the case that we need to know the Planck constant and the electron mass to �nd

the Compton wavelength of the electron as has been demonstrated in recent years; see [6][7]. Since this

is such an important point for understanding the various points of this article, we will repeat here how

to �nd the Compton wavelength without any knowledge of the Planck constant or the electron mass

by using Compton scattering (and look at it from a deeper perspective).

In the original paper by Compton [14], published in 1923, Compton gives the formula:

where   is the Planck constant,   is the mass of the electron, and   is the angle between the primary

and the scattered beams (photon   and photon  ). Since we can write  , we can replace 

 with this in equation 16 and solve for  . This gives:

That means to �nd the Compton wavelength of the electron, all we need to do is measure the

wavelength of the two photons in the scattering experiment and the angle between them. There is no

need to know the Planck constant or the electron mass to �nd the Compton wavelength of the

electron, contrary to what many even experienced researchers think, so this alone we think is a

signi�cant.
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In addition, in this paper, we have theoretically demonstrated that the Compton wavelength can be

found by observing spectral lines from hydrogen atoms using the following formula:

As we can see from the formula, only the photon wavelength from the spectral line of the hydrogen

atom is needed, in addition to the �ne-structure constant. However, a fair question to ask is whether

this also works in practice. The answer is yes, and we do not even need to physically perform the

experiment to demonstrate it, as others have already conducted the experiments needed.

For example, we will look at one of the transitions in the well-known Lyman series. We will look at

when the electron in a hydrogen atom goes from   to  . The observed photon wavelength

from the experiment is approximately 121.56701 nanometers. We can now simply input this value into

the formula above, and we get:

which is very close to the o�cial CODATA NIST (2019) Compton wavelengh of the electron 

. Again it is important that we can �nd the Compton wavelengh of the

electron totally independent of knowledge of the Planck constant or the electron mass.

Next, we can use the found Compton wavelength of the electron together with the �ne-structure

constant to accurately predict the spectral lines of any atom. This leads us back to the Rydberg

constant. Some may possibly claim that we are too harsh in our criticism in the previous section when

we say we never need the Rydberg constant. It is well known that the Rydberg constant is a composite

constant, and some may think that we have simply replaced some constants with other constants.

This is not the case. If one uses the traditional Rydberg formula,  , one needs to know the

electron mass, the elementary charge, the Planck constant, and the speed of light. We, on the other

hand, only need the Compton wavelength of the electron that we found from spectral lines themselves

(or alternatively from Compton scattering, also with no knowledge of other constants) and the �ne-

structure constant. In other words, we achieve a reduction in constants, which is one of the great aims

of modern fundamental physics.
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In the coming pages, it will become clear that we can perform many quantum mechanics calculations

with only the knowledge of one constant: the speed of light as well as knowledge of the Compton

wavelength of the mass in question. In some cases, we also need to know the �ne-structure constant.

When it comes to quantum gravity and providing the same predictions as general relativity theory, we

only need the speed of light (for gravity) and the Planck length. Both can be easily found

experimentally without knowing any other constants.

We can next even �nd the Compton wavelengh of a composite mass, namely the proton without any

knowledge of the Planck constant or knowledge of the mass of the electron. We will take advantake of

that the cyclotron frequency is given by

where   is the charge and   is the uniform magnetic �eld and   is the mass of the particle in question,

for example an electron or proton. Since electrons and protons have the same absolute value of the

charge their cyclotron frequency ratio is given by

Which is why cyclotrons indeed have been used to �nd the proton electron mass ratio, see for

example  [15][16]. However we will go one step further and replace the electron mass with 

 and the proton mass with  , this gives

So, to �nd the proton Compton wavelength independently of any knowledge of the kilogram mass or

the Planck constant, all we need to do is �rst �nd the electron Compton wavelength, as described in

this section. Then, we can divide the electron Compton wavelength by the observed cyclotron

frequency ratio obtained from running a cyclotron on electrons as well as protons. Thus, we can

determine the Compton wavelength of the proton without relying on knowledge of the Planck

constant and the proton’s kilogram mass.

Now, to �nd the Compton wavelength for larger macroscopic masses, we can simply count the

number of atoms in the object. This is not an easy task, but it is fully possible and was actually one of

the proposed methods to de�ne the kilogram (see  [17][18]). Other methods also exist; for example as
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pointed out by Wang [19]. As we know the number of protons and neutrons in each atom, we can, for

simplicity, treat the neutrons as protons and then divide the Compton wavelength of a single proton

by the total number of protons and neutrons in the macroscopic mass. This provides us with a quite

accurate estimate of the Compton wavelength within the macroscopic mass. Further re�nements can

be made by considering the number of electrons and accounting for the slight mass di�erence

between neutrons and protons, as well as accounting for binding energies.

When it comes to �nding the Compton wavelength of astronomical objects, practicality prevents us

from directly counting the number of atoms in, for example, the Earth. Fortunately, this is

unnecessary. We can instead utilize the following relation:

So, we can now use a Cavendish apparatus to �rst determine the gravitational acceleration of the

macroscopic silicon sphere for which we have accurately counted the number of atoms. The

gravitational acceleration �eld in a Cavendish apparatus is simply given as:

 where   is the distance between centers of small balls,   is the distance between centers of large and

small balls when balance is de�ected, and    is the de�ection angle of torsion balance beam from its

rest position, and   the period of oscillation of torsion balance. Pay attention to that also here we do

not relay on the Planck constant, nor do we need to know the kilogram mass of the balls in the

apparatus, nor do we need to know the gravity constant  .

Next, we can �nd the gravitational acceleration on Earth’s surface by simply dropping a ball from a

height   and measuring the time it takes for it to hit the ground. The gravitational acceleration is then

calculated as:

Again, no knowledge of  , the Planck constant, or the mass of the Earth in kilograms is needed. Next,

we can determine the Compton wavelength of the Earth using the following formula:

= .
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where    is the Compton wavelengh of the large ball in the Cavendish apparatus that we already

found.

Similarly, we can �nd the Compton wavelength for any astronomical object without needing to know

their kilogram mass or the Planck constant. This even holds for the mass (including its equivalent

mass, as it also includes energy) of the observable universe, as we have demonstrated in [20][21].

Naturally, we could have also found the Compton wavelength formula for any of these masses by �rst

determining their kilogram mass and the Planck constant and then using the formula  .

However, in this case, we would need to know more constants, speci�cally the Planck constant. As we

will see, the Planck constant may not be required in signi�cant portions of quantum mechanics and is

not needed in the recent new type of quantum gravity theory, which produces the same predictions as

general relativity theory and provides a quantization methodology applicable to various gravity

theories. What becomes evident is that the Compton wavelength will play a central role.

The Compton wavelength of the critical mass in the universe can be readily calculated using only the

measured CMB temperature and the Hubble constant. It is given by (see [21]):

4. The de Broglie wavelength

By 1905, it was clear that photons had both particle properties and wavelike properties, today known

as particle-wave duality. Most physicists at this point in time thought that matter consisted of

particles with particle properties. However, it was now ‘natural’ to ask if matter could also have

wavelike properties. This is exactly what Louis de Broglie [22] suggested in his PhD thesis in 1924. He

also proposed that this wavelength was given by

which actually is only a good approximation when  . For the relativistic case, de Broglie [23] gave

the formula:

where    is the Lorentz factor. In 1927, Davisson and Germer  [24]  (at Bell labs)

published experimental results of electron di�raction that strongly supported the idea that electrons
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h
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also had wavelike properties. This immediately was credited as con�rming the de Broglie’s

hypothesis. However, we must distinguish between Broglie’s hypothesis that matter also had wavelike

properties and his formula for predicting these waves. It was actually only his hypothesis that matter

also had wavelike properties that was con�rmed, not the prediction of wavelength from his formula.

This has been overlooked and therefore ignored by the physics community. Today, physicists assume

that the de Broglie wavelength is the matter wavelength and that the Compton wavelength mostly has

something to do only with Compton scattering, even if a potential Compton wavelength of the proton

also are discussed  [25]. The proton radius seems to be exactly four times the reduced Compton

wavelength of the proton  , this is unlikely a coincidence, see also Bohr and

Trinhammer [26].

That Einstein had basically endorsed the Ph.D. thesis of de Broglie could be one of the reasons why one

automatically assumed that de Broglie was right on both his hypotheses: that matter has wavelike

properties and, in addition, that his formula for this matter wavelength was almost “instantaneously"

accepted as the real matter wavelength after the Davisson and Germer experiment. No one asked if de

Broglie could simply be right on his �rst point that matter had wavelike properties, but that the matter

wavelength could actually be the Compton wavelength. We will argue that the Compton wavelength is

the one and only matter wavelength, and that the de Broglie wavelength is simply a mathematical

derivative of this.

It is important to be aware that the de Broglie wavelength is always equal to the Compton wavelength

times   (as possibly �rst explicitly pointed out in [4]); that is, we always have:

and, naturally, further:

First of all, the de Broglie wavelength formula is not mathematically valid when  , as this leads to

division by zero, which is mathematically unde�ned. This can be seen from all the equations above in

this section.

We demonstrated in section 1 that the Compton wavelength is identical to the photon wavelength of

the rest-mass energy; is this also the case with the de Broglie wavelength? To �nd out, we �rst solve

the de Broglie wavelength formula:   for  ; this gives

= 4RP λ̄c,P
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Next, we do the following derivation

We have an approximation sign from the second line as the de Broglie wavelength is not de�ned for

rest-masses, but we can use the derivation above as a good approximation when   is very close to  . It

means that, when we rely on the de Broglie wavelength, then the equivalent photon wavelength for

rest mass approaches zero, as this formula is only a good approximation when  . Not only that,

but the de Broglie matter wavelength:    also approaches in�nity when the mass approaches

rest. This absurdly close to in�nite de Broglie wavelength has led to a series of di�erent

interpretations among researchers, something that is fully understandable until one discovers that

the true matter wavelength is the Compton wavelength. For example, Lvovsky [27] has stated:

“The de Broglie wave has in�nite extent in space.” – A. I. Lvovsky

and Chauhan et al. [28] has stated

De Broglie had an extremely strong and concrete physical justi�cation for the in�nite

wavelength of matter waves, corresponding to the body at rest. .... Therefore, the in�nite

wavelength of matter waves, for zero velocity of body, becomes essentially evident.” –H.

Chauhan et al.

Shanahan [29] writes

“But as this wave was understood by de Broglie, it has a velocity that is superluminal and

becomes in�nite as the particle comes to rest and becomes in�nite as the particle comes to

rest" –Shanahan

Further Max Born [30] interpretation make some more sense
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Physically, there is no meaning in regarding this wave as a simple harmonic wave of in�nite

extent, we must on the contrary, regard it as a wave packet consisting of a small group of

inde�nitely close wave-numbers, that is, of great extent in space.” –Max Born (1936)

Still, what’s most important here is that no one seems to be able to fully explain how the de Broglie

wavelength is related to something physical.

The relation between the Compton wavelength and photon wavelength that we derived in the previous

section is mathematically exact and logically sound, with a rest mass having a photon wavelength

identical to the Compton wavelength. On the other hand, the relation between the de Broglie

wavelength and photon wavelength does not make much logical sense in our view. It is actually not

mathematically valid for rest-mass particles. However, many, if not most, physicists will argue that,

due to Heisenberg’s uncertainty principle [31][32], a particle never comes to absolute rest (even inside

its rest-frame). Later in the paper (section 12), when we come to quantum gravity theory, we will

demonstrate that it is quantum mechanics that actually needs modi�cation, including Heisenberg’s

uncertainty principle. Modifying the uncertainty principle to take into account that the Compton

wavelength is the real matter wavelength turns it into a certainty- uncertainty principle. That is, for

non Planck-mass particles, it is an uncertainty principle, and for Planck mass particles that must be at

at absolute rest, it is a certainty principle, agains the possibility for this is discussed in section 12.

Nevertheless even before we look at rest-mass, this still leads to a prediction of a nearly in�nite de

Broglie wavelength and a nearly zero-length equivalent photon wavelength. No such nearly in�nite

wavelength has been measured. What would the interpretation be? As we have seen, there is no full

agreement on the interpretations.

For example, if an electron only moved at  , then the de Broglie wavelength is outside

the diameter of the observable universe (assuming it is   m) even if the electron were at the

center of the universe. In other words, the de Broglie wavelength spreads out further than light could

have moved since the Big Bang, and it extends even outside the expansion of space over the same

period, or we can naturally try to fall back on the Max Born interpretation, but still, it seems to open

more questions than answers.

One could argue that a particle moving as slowly as   m/s is unrealistic. For a dilute gas of

Rubidium atoms, the lowest temperature achieved yet is in the low picokelvin regime, see for instance

Deppner et. al [33]. The corresponding velocities are in the  m/s regime. Thus, preparing something to

8.3 ×  m/s10−31

8.8 × 1026

8.3 × 10−31

μ
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move at    m/s is (25 orders of magnitude smaller) is currently practically unrealistic.

However, there are multiple issues with such reasoning. To measure velocities of   m/s or

lower, we would likely need much more precise measurement devices so we cannot at all exclude that

particles move at this or lower velocity over a small time interval, a temperature measure is a kind of

average measure, not a direct velocity measure of individual particles over very short time intervales.

Second, even if, for example, a proton were not moving slower than in the  m/s regime, then the de

Broglie wavelength of the proton would be    m. This means that a protons in

front of us cooled down to the low picokelvin regime, if the de Broglie wavelength were physically

should each be spread out over almost half a meter. We �nd this absurd, even if it cannot be totally

excluded.

A much more likely scenario is that the physical wavelength is the Compton wavelength of the proton,

which is always, for a proton would be   m or shorter. The Compton wavelength

contracts for a moving object so the rest mass Compton wavelength is the maximum Compton

wavelength, in contrast to for the de Broglie wavelength where there is no theoretical limit for how

long it can be ass we approaches a velocity of zero. So, there is a signi�cant di�erence between the

Compton wavelength and the de Broglie wavelength. The de Broglie wavelength for slowly moving

protons and other particles is predicted to be of macroscopic scale, on the order of meters, which, in

our view, is absurd. On the other hand, the Compton wavelength for any atom always falls within the

length scales of the atomic scale.

If the de Broglie wavelength is physical and of macroscopic scale for very slow-moving particles, it

should be possible to measure it directly. However, this has never been done, and we believe it never

will be done, as we hold the conjecture that the de Broglie wavelength is a pure mathematical

derivative of the Compton wavelength.

5. Finding the de Broglie wavelengh from spectroscopy

SSince the de Broglie wavelength is a mathematical derivative of the Compton wavelength,  ,

we can also easily determine the de Broglie wavelength from spectral lines. By using our results from

equation 15, we must have

8.3 × 10−31

8.3 × 10−31

μ

= ≈ 0.4λb
h

×1×mpr 10−6

= ≈ 2.1 ×λc
h

mpr
10−16

=λb λc
c
v

= =λb λc
c

v

λ ( −  )c
v

1 − Z 2α2

n2
2

− −−−−−−
√ 1 − Z 2α2

n2
1

− −−−−−−
√

1 − Z 2α2

n2
1

− −−−−−−
√ 1 − Z 2α2

n2
2

− −−−−−−
√
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So all we need to know about constants to �nd the de Broglie wavelength is the �ne structure constant

when using spectroscopy. However, we will assert that the de Broglie wavelength is simply a

mathematical derivative of the real matter wavelength, namely the Compton wavelength.

6. The Compton frequency in matter

We will claim anything with rest-mass ticks at the reduced Compton frequency; this has some support

also in recent research, [34][35]. The Compton frequency is given by

For an electron, this has some similarities with the trembling motion (zitterbewegung) suggested by

Schrödinger [36], where he proposed a frequency of  , which is twice the reduced Compton

frequency and also twice the de Broglie electron clock rate, as he suggested in his 1924 dissertation.

This view that electrons are trembling has recently also been investigated by multiple researchers. For

example, Santos [37] suggests that zitterbewegung is a light speed “trembling-along-the-way” electron

motion, to be a real oscillatory motion of the electron"

Interestingly, we can also express the Compton frequency in the form of the de Broglie wavelength by

utilizing the relation  , which leads to:

So, we can see that it not only leads to excessive complexity but also is not strictly mathematically

valid when  .

The de Broglie frequency can be expressed as:

= =λb λc
c

Zαc

λ ( −  )c

Zαc
1 − Z 2α2

n2
2

− −−−−−−
√ 1 − Z 2α2

n2
1

− −−−−−−
√

1 − Z 2α2

n2
1

− −−−−−−
√ 1 − Z 2α2

n2
2

− −−−−−−
√

= λ .λb

( −  )−1

Z 2α2

Z 2

n2
2

− −−−−−−−−
√ −1

Z 2α2

Z 2

n2
1

− −−−−−−−−
√

1 − Z 2α2

n2
1

− −−−−−−
√ 1 − Z 2α2

n2
2

− −−−−−−
√

(32)

= .fc
c
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(33)

= 2
2mec

2

ℏ
c

λ̄c,e

=λc λb
v
c

= = = .fc
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= .fb
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This is not valid for a rest mass because the de Broglie wavelength is not de�ned for  . The de

Broglie wavelength itself is given by  , which is not even mathematically de�ned for  .

We can also look at this from another perspective by expressing the de Broglie frequency through the

Compton wavelength. We can do this as  . This means the de Broglie frequency is also given

by:

Now we see that this frequency is zero when  , which is when the mass is at rest. This is

consistent with the de Broglie wavelength approaching in�nity as    approaches zero. So even if the

frequency is linked to the speed of light, it would take light an in�nite time to travel an in�nite length;

therefore, it gives a frequency of zero when the mass is at rest,  .

If mass has a frequency, then a zero frequency means no mass. So, in the de Broglie wavelength world

based on mass as frequency, rest-masses cannot exist. But we think this is a mistake, since matter is

related to the Compton wavelength and not the de Broglie wavelength. Again, the de Broglie

wavelength is just a mathematical derivative (artifact) of the Compton wavelength.

7. The Compton wavelength plays a central role in quantum

mechanics

Even if we personally think quantum mechanics is incomplete because it does not take into account

gravity, it is clear that quantum mechanics has been very successful within its domain, which is to

describe non-gravitational phenomena in the atomic and subatomic world. The central role of the

Compton wavelength in quantum mechanics can be seen by rewriting some of the most famous

equations in quantum mechanics to what we will call a deeper, more fundamental level. Let’s start

with the Schrödinger [38] equation, typically written as:

 where   is the energy potential; for example, we can have   then we get

Since any kilogram mass can be written as  , we can rewrite the Schrödinger equation as:

v = 0

=λ̄b
ℏ

mvγ
v = 0

=λ̄b λ̄c
c
v

= = = .fb
c
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c

λc
c
v
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(36)

v = 0

v
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∂
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iℏ 2
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∇2 (37)

V V = mc2

iℏ ψ = ( + m )ψ.
∂
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iℏ 2

2m
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This result was shown by Haug [4], but it has been hardly discussed. What is important to notice is that

the Planck constant has canceled out. The visible Planck constant in the Schrödinger equation, we will

claim, is needed to cancel out the Planck constant embedded in the kilogram mass. Pay also attention

to the fact that we now have the reduced Compton frequency   in the Schrödinger equation.

In case we set up the Schrödinger equation for the Hydrogen atom, as usual, we have:

 where  ,    is the electron charge,    is the position of the electron relative to the nucleus,

and   is the magnitude of the relative position. We can re-write   and  , further 

 and   so we end up with

The distance between the electron and the nucleus is the Bohr radius:  ; this means

that the Schrödinger equation for the Hydrogen atom, from the deepest perspective, is given by:

Again, we observe that the Planck constant has disappeared, and the reduced Compton frequency of

the electron,  , is embedded in the equation.
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We could also try to express the Schrödinger equation through the reduced de Broglie wavelength

instead of the reduced Compton wavelength by utilizing that we have  , which would give:

Now, we suddenly have the velocity   in the formula, and if this is zero, the Schrödinger equation is no

longer valid. If it is not zero, what value should we assign to it? It seems that only the Compton

wavelength is, in reality, linked to the Schrödinger equation, or at least trying to write it in relation to

the de Broglie wavelength makes things unnecessarily complex.

We can see that the Planck constant has been eliminated from the Schrödinger equation when one

writes the mass from its Compton wavelength formula. Then, the Planck constant visible in the

formula cancels out. This means the Planck constant was needed there in the �rst place to cancel out

the Planck constant embedded in the kilogram mass. We can now see that the quantization in the

Schrödinger equation likely comes from the Compton frequency  .

The Dirac equation [39], as given by:

can also be rewritten, as any kilogram mass can be expressed as  , this gives

In the Dirac equation, it still appears that we have a Planck constant left, but this cancels out with the

Planck constant embedded in the momentum  . This means that the quantization in the Dirac

equation is ultimately linked to the Compton frequency  , similar to the Schrödinger equation.

The Klein-Gordon equation, a relativistic quantum equation, is normally written as:

Since any kilogram mass can be written as  , we can re-write the Klein-Gordon equation as:
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Again, the Planck constant is eliminated, as the visual Planck constant in the traditional way of

writing the equation is actually needed to cancel out the Planck constant embedded in the kilogram

mass de�nition.

8. The Planck constant is linked to a Compton frequency of 1

divided by the reduced Compton frequency of one kilogram

We have already seen how the Planck constant cancels out the Schrödinger equation, the Dirac

equation, and the Klein-Gordon equation, so it basically does not seem to play a role in these quantum

mechanical equations. We have written in detail about what the Planck constant truly represents, in

particular in [40], but also in the book chapter [41].

We have already shown that the Planck constant appears to not play a role in the Schrödinger, Dirac,

and Klein-Gordon equations when understood from a deeper perspective. Second, the Compton

wavelength and the Compton frequency seem to play a central role. We will soon demonstrate how the

Planck constant plays no role in quantum gravity, not even in observed gravitational phenomena

where serious and clever researchers have claimed there is a sign of the Planck constant. When we

delve into gravity, we will see that the Compton frequency is even more evidently connected to the

quantization of gravity, as well as the Planck scale. The Planck scale must not be confused with the

Planck constant; the Planck scale is related to the Planck length and Planck time, not the Planck

constant.

The Planck constant is also linked to the quantum of energy. In our view, from a deeper perspective, it

is the Compton frequency of one, which is the smallest possible observable frequency in an

observational time interval of one second divided by the Compton frequency in one kilogram over a

second multiplied by  , that is:  . We will discuss this in more detail below.

The reduced Compton frequency of an electron is

For one kilogram, the reduced Compton frequency per second must be

ψ − c ψ + = 0.
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The Compton frequency of the electron relative to the Compton frequency in one kilogram is

This is a dimensionless number that is otherwise identical to the kilogram mass of the electron. This is

no coincidence. The kilogram is an arbitrary human-selected clump of matter we have called a

kilogram; the electron mass in kilograms is relative to this. When we say the mass of the electron is 

 kilograms, this is the mass in the form of the fraction of one kilogram. This means the

kilogram also, at a deeper level, can be seen as the reduced Compton frequency in the electron divided

by the reduced Compton frequency in one kilogram. That is, the kilogram mass of any mass can be

seen as a Compton frequency ratio. This ratio is typically independent of the observational time

window, but as we will see, it is not always. If we look at the frequency in half a second instead of a

second, then both the kilogram frequency is reduced by half, and the electron Compton frequency is

reduced by half, so their ratio will still be  , so the electron mass is independent on

observational time-window (as long as the observational time window is  , which is the

Compton time).

The shortest frequency one can observe in any selected time window is one. Observable frequencies

come as integers. An interesting question is, therefore, what is the mass of a Compton frequency of

one in a one-second time window? It is:

This, we will claim, is the kilogram mass of the smallest possible mass. So, it is basically the mass gap,

the smallest possible mass above zero. This mass is in line with the predicted classical and quantum

approaches to the photon mass; see Spavieri et al. [42]. Some may protest here, as the frequency ratio

should be dimensionless and not give kilograms. The issue is that the kilogram is a kind of arbitrary

unit; any mass relative to the kilogram is the mass relative to the one-kilogram mass, so the kilogram

is not a real dimension like time or length; it is a ratio. For example, an electron divided by the

kilogram mass gives the kilogram mass of the electron, so the kilogram mass is a mass ratio; in other

words, it is kind of dimensionless. Well, the kilogram is also an arbitrarily chosen clump of matter

(that since 2019 has been directly linked to the Planck constant), but we could just as well have

= = ≈ 8.52 ×  frequency per second.f1kg
c
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c
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selected the Compton frequency of that arbitrary clump of matter and called it the kilogram, so there

is nothing wrong with calling the Compton frequency of a mass divided by the Compton frequency in

one kilogram the kilogram.

To get the smallest energy unit in Joule, we simply need to multiply the smallest mass by  , so we

must have  . However, we have looked at the smallest

mass over the time interval of one second. A frequency of one cannot be smaller than one, so if we cut

the time in half, we cannot say the smallest mass is half a Compton frequency divided by the Compton

frequency in one kilogram over half a second. The smallest frequency is still one. So, the most

essential mass is observational time-dependent. Assume now the shortest possible meaningful time

interval is the Planck time, which is assumed by most physicists (but not all). Then, the reduced

Compton frequency in one kilogram is:

The smallest mass observed in one Planck time is therefore:

  That is, the smallest of all masses is both    as observed over one second, and it is the

Planck mass if observed in the Planck time. We will claim all masses consist of Planck masses coming

in and out of existence at the reduced Compton frequency of the mass in question, but that this Planck

mass at the end of each Compton periodicity only lasts the Planck time. This means the electron mass

is

The reduced Planck constant contains embedded information about how the minimum energy or mass

level is related to the reduced Compton frequency of one. However, it says nothing alone about, for

example, the duration of this one event. In short, the Planck constant does not have the full

information about this one event. The full information is needed in gravity, where the full information

is related to the Planck units, such as the Planck length. This is only needed for gravity and is why

gravity always contains the Planck scale as well, as we will see in the next section.

c2
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9. The Compton frequency in matter is the quantization of gravity

Einstein’s [43] �eld equation is given by:

We can replace   with its composite form:   (see [44]), where   is the Planck length. This leads

to the following equation (see [21][45][46]):

The Planck units were �rst described by Max Planck [47] in 1899. Einstein, already in 1916, suggested

that the next big step in gravity would be to get a quantum gravity theory. Eddington, in 1918, was the

�rst to claim that the Planck length likely would play an important role in such a quantum gravity

theory. It was suggested in 1984 by Cahill  [48][49]  that one could express the gravitational constant

using Planck units. However, in 1987, Cohen [50] pointed out that this led to a circular argument, as no

one had found a way to derive the Planck units without relying on  ,  , and  . This view was

consistently held and repeated in the physics literature until at least 2016 (see the interesting paper by

McCulloch  [51]). However, in recent years, it has been demonstrated that the Planck units can be

determined without any prior knowledge of   or even without knowledge of  ,  , and  , see [6][7][52],

and also see to Haug [44] for an overview and discussion of the composite view of  .

It is also important to note that Newton [53] never used or introduced the gravitational constant that

has been attributed to his name. The gravitational constant was �rst introduced in 1873 by Cornu and

Baille  [54], at about the same time when it was decided to use the kilogram mass de�nition also for

astronomical objects. Maxwell  [55]  used Newton’s original gravity framework without the

gravitational constant, even as late as early in 1873. For example, the gravitational acceleration is then

simply given by  , but with a di�erent mass de�nition than the kilogram de�nition. See [56] for

more details.

Looking at the re-written Einsteins �eld equation (Eq. 54), it now appears that the Planck constant

suddenly plays a role in gravity, and some may �nd this intriguing. However, the Planck constant is

simply necessary to cancel out the Planck constant embedded in the joule energy or kilogram mass

within the stress-energy tensor. This becomes clearer when we examine exact solutions of Einstein’s

�eld equation.
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Tthe Schwarzschild [57] metric is given by:

However, by replacing   with its composite form   and the kilogram mass with its composite

form  , where   is simply the reduced Compton wavelength of the mass  , we obtain:

In this metric, there is no Planck constant embedded, but there is the Compton frequency per Planck

time, represented by the term  . Table 1 provides an overview of a series of formulas often used for

gravity predictions, most of which have been well-tested against observations. They are all, at a

deeper level, dependent on the Planck length and the Compton wavelength, and some also depend on

the speed of light, which is identical to the speed of gravity.
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Prediction Formula:

Gravity acceleration

Orbital velocity

Orbital time

Velocity ball Newton cradle

Frequency Newton spring

Gravitational red shift

Time dilation

Gravitational de�ection

Advance of perihelion

Schwarzschild radius

Table 1. The table shows a series of gravity predictions given by general relativity theory in their

standard formulas, but at the deeper level we see all gravity phenomena are linked to the Planck length

and the Compton wavelength of matter. The term   is actually the Compton frequency per Planck

time. This gives the quantum frequency in matter related to gravity, but relative to quantum

mechanics, the Planck length also plays a central role in gravity.

It is worth noting that the Schwarzschild radius can be rewritten as:
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Similarly, the event horizon in a black hole, arising from the extremal solutions of the Reissner-

Nordström [58][59], Kerr [60], and Kerr-Newman [61][62] metrics, is given by:

This implies that the Schwarzschild radius and the black hole horizon, derived from other solutions of

Einstein’s �eld equations, inherently contain quantization in the form of the Compton frequency per

Planck time, represented by  .

Some may argue that quantum quantization cannot be linked to the Compton frequency but must be

linked to the Planck constant. In 1975, Colella, Overhauser, and Werner [63] observed what is known as

gravitationally induced quantum interference using neutrons. They claimed that this phenomenon

was related to both the gravitational acceleration �eld   and the Planck constant. This observation has

been replicated and con�rmed, for example, by [64][65]. In recent years, Abele and Leeb [66] conducted

a similar experiment with neutrons and claimed, "the outcome depends on both the gravitational

acceleration   and the Planck constant  ". However, it can be easily demonstrated, as we [67] have done

recently, that the Planck constant in their equations is actually required to cancel out another Planck

constant embedded in the kilogram mass in their formula. Thus, we are left with the conclusion that

the prediction of quantum-related gravity phenomena is related to the Compton frequency in matter

and the Planck scale (Planck length).

10. Uni�cation of metrics in general relativity theory leads to

uni�cation of gravity and electromagnetism

Among the most commonly used metrics in general relativity theory are the Weyl class of spherical

metrics  [68]. This class comprises axisymmetric solutions to Einstein’s �eld equations. Some well-

known metrics within the Weyl class include the Schwarzschild metric, the Reissner-Nordström

metrics for charged black holes  [58][59], the Kerr metric for rotating black holes  [60], and the Kerr-

Newman metric for rotating black holes with charge [61]. Additionally, there are lesser-known metrics

such as the new Mass-Charge metric of Haug-Spavieri metric [69].

An intriguing scenario arises when examining the extremal solutions of the Reissner-Nordström,

Kerr, Kerr-Newman metrics, and the minimal solution of the Haug-Spavieri metric. In this case, these

metrics combine to form the following uni�ed metric:
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At a deeper perspective, this metric can also be rewritten by substituting   with   and   with 

, resulting in:

One might ponder whether it holds signi�cant signi�cance that several of the most renowned

spherical metrics converge into a single mathematical metric under speci�c conditions. For instance,

the Reissner-Nordström metric is expressed as:

 In the special case of the extremal solution, where  , one has  . This

condition holds true only when:

Furthermore, it is widely recognized that  , meaning the Coulomb force between

two Planck charges equals the Newton gravitational force between two Planck masses, which is

equivalent to  . This implies that electromagnetism and gravity unify at the Planck scale.

Additionally, it suggests that gravity consistently operates at the Planck scale, and macroscopic

gravitational phenomena are merely manifestations of numerous Planck-scale gravitational events

aggregated together. Consequently, the extremal solution can be expressed as:
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 We can further rewrite the metric in the following form:

  Where  , which represents the reduced Compton frequency per Planck time in the

gravitational mass under consideration. This indicates that gravity fundamentally operates at the

Planck scale, and that macroscopic gravitational phenomena are essentially observations resulting

from a massive aggregation of these Planck scale events. Therefore, understanding gravity at its most

fundamental level is crucial, necessitating a comprehension of micro black holes at the Planck mass

scale.

This implies that gravity can be viewed as comprising quantized Planck mass events, where   again

represents the reduced Compton frequency per Planck time. For a Planck mass,  , as

expected, since the event horizon in the extremal solutions is   for a Planck mass black hole.

This suggests that all gravitational masses, which provide a comprehensive description of mass at the

Planck scale, can be understood as being composed of micro black holes, or as the most fundamental

particles—Planck mass particles—�uctuating into and out of existence at the reduced Compton

frequency.

The Schwarzschild metric is simply a weak gravitational �eld metric approximation of the uni�ed

extremal metric. This implies that we have uni�ed �ve metrics into one, namely the Reissner-

Nordström metric, the Kerr metric, the Kerr-Newman metric, and the Haug-Spavieri metric. These

are one and the same metric in their extremal form (minimal for the Haug-Spavieri metric), and the

Schwarzschild metric serves as merely the weak �eld approximation of these.

11. Collision space-time theory

Why is   always multiplied by   in both Newtonian gravity (post-1873) and general relativity theory

for predictions of phenomena that can actually be checked with observations? In multiple papers [4][5]
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[41][46], we have suggested that the reason is to transform the incomplete kilogram mass into a

complete mass that also includes information about gravity. The more fundamental mass de�nition is

collision-time mass, and this mass is de�ned as:

We do not need to know    or the kilogram mass to determine this mass. This mass can be found

directly from gravitational observations. For example, the collision-time mass of the Earth is given by

And energy is simply given as  . Be aware that   can be found by simple experiments without

knowing   and  , for example, by simply dropping a ball and measuring the time it took to hit the

ground and the high it was dropped from. We have  , where   is the height of the drop and   is

the time it took for the ball from the drop to the moment it hit the ground.

At �rst glance,   may appear inconsistent with Einstein’s  , but this is not the case; it

is fully consistent with Einstein’s formula. The reason for the di�erence in our energy-mass relation

is that energy is associated with collision length, and collision length is equal to joule energy by the

formula  . This means   and  , so we have

If we try to formulate an Einstein-inspired gravitational �eld equation rooted in this mass and energy

de�nition, we get (see Haug [70])

where   is now an energy-stress tensor linked to collision-time mass and collision-length energy

and not to the kilogram mass and joules. This �eld equation then gives all the same predictions as

general relativity theory, but it does not need any information about the kilogram mass of the object

nor the gravitational constant  . This should not be confused with just using a unit system setting 

. This is not what we have done, which is clear if we solve the �eld equation for a static

spherical object; this gives
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This is identical to the Schwarzschild metric we got from general relativity theory when looked at

from a deeper perspective. We also get the following metric from our �eld equation (corresponding

and predicting exactly the same as the extremal solution of the Reissner-Nordstöm, Kerr and Kerr-

Newman metric when understood from a deeper perspective:

The extremal solution of the Reissner-Nordstöm, Kerr and Kerr-Newman metric will give exactly the

same as the last line in the equation above, but after we replace    with    and    with 

, however the Planck constant cancels out in the   terms so it will not appear when gravity

truly is expressed in quantum form related to the Planck scale as done here.

However, we must admit we think a 4-D space-time formalism is likely not the �nal answer, but a 6D

formalism with three-time and three-space dimensions that are essentially two sides of the same

coin. This is brie�y discussed in [5], but it is outside the scope of this paper. Initially, we thought this

6-D formalism might yield considerably di�erent predictions than Einstein’s �eld equation, but it

basically gives the same predictions for spherical objects as the extremal solution of Einstein’s �eld

equation. This is something we will have to address in future papers.

12. Uni�cation of gravity and quantum mechanics, absolute rest is

the missing point in standard quantum mechanics

In the previous section, we demonstrated that all gravitational formulas depend on the rest-mass

reduced Compton wavelength  , as well as the Planck length (or Planck time), and   which is

the reduced Compton frequency per Planck time. This indicates, in our view, that gravity at the

quantum level is related to rest and we will even claim to absolute rest. Absolute rest is easy to dismiss

before one thinks very carefully about it. If something were at absolute rest in one frame, would it not,
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r

Ē
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for sure, be observed as not at rest from another frame of reference, as motion is relative? First of all,

the speed of light is always   as observed from any frame of reference, so the speed of light is absolute,

so to speak. Would it then be so remarkable if one also had absolute rest? Haug [71] has discussed this

to some extent. Assume gravity is linked to Planck mass particles coming in and out of existence and

that the Planck mass particle only has a radius of the Planck length. Therefore, one must be indirectly

part of the Planck mass particle to observe it. If one were even one Planck length away from the Planck

mass particle, one could not get information from it, even at the speed of light, before it ceases to

exist. If the Planck mass particle is the very collision point between two indivisible photon particles

that stand still relative to each other for the Planck time during collision, then one must be part of this

rest-frame to observe them. Gravity is an indirect way to observe such events. As we have seen from

the uni�ed metric above, gravity is simply the sum of such events over the Planck time.

But then, does the Heisenberg uncertainty principle not tell us that standing absolutely still at the

quantum level is impossible? Before rejecting our view of absolute rest as what is lacking in quantum

mechanics for uni�cation with gravity, let us closely look at Heisenberg’s uncertainty principle again

when we relate it to the de Broglie wavelength, which is the assumed matter wavelength. We have

discussed at length why the de Broglie wavelength likely only is a mathematical derivative of the

Compton wavelength. We always have  , where    is the de Broglie wavelength and   is the

Compton wavelength. First of all, we see that the de Broglie wavelength approaches in�nity as we

approach rest. This alone is absurd. Second, the de Broglie wavelength is not even mathematically

de�ned for a rest-mass particle as this would mean division by zero. This can also be seen from the

standard de Broglie formula  . However, this is brushed under the carpet by proponents of

quantum mechanics as not relevant, as we cannot have    according to Heisenberg uncertainty

principle. And they are right in some sense as this is what the Heisenberg uncertainty principle tells.

However we will soon see when a similar principle is rooted in the Compton wavelength it allow rest.

In standard quantum mechanics, one does not allow anything to stand absolutely still; this can be seen

from Heisenberg’s uncertainty principle.

It is important to note that Heisenberg rooted his principle in the de Broglie wavelength, as is clear

from his book   [72]  “The Physical Principles of Quantum Theory" where Heisenberg stated “De�ning

momentum as    (where  mass of electron,   x component of velocity), this uncertainty in

velocity causes an uncertainty in    of an amount  ; from which simple laws of optics, together with

c
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c
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empirically established law  , it can readily be shown that  ." So, according to

Heisenberg, it is the uncertainty in the velocity of the particle that causes uncertainty in its

momentum, and thereby also in its position.

To incorporate gravity, we must consider absolute rest. This implies that the Heisenberg uncertainty

principle must be studied more deeply. We will begin by rewriting it as:

So far, we have simply replaced    with the de Broglie wavelength of the particle    in Heisenberg’s

uncertainty principle, but we have also changed from   to   something we soon will get back to.

Additionally, we have omitted writing  , instead using only  , and   has been replaced with the

momentum  . However, within a Planck time window, we assert that the uncertainty in where

the particle can be observed, assuming the de Broglie wavelength is the matter wavelength, equals the

de Broglie wavelength.

Next, we will further revise this uncertainty principle taking advantage that the Compton wavelength

is equal to the de Broglie wavelength based on the formula  , yielding:

In the last line, we’ve replaced the greater-than sign ( ) with the greater-than-or-equal-to sign ( ).

This means that the standard momentum   is substituted with what we [4] previously termed

the total Compton momentum  , and the distance    is now diminished by the Compton

wavelength. The necessity for   becomes apparent upon closer examination of the formula. Since the

mass   can be expressed as  , we must have:
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We see that the two sides are equal only when  , which is the case for rest mass. However, this is

not the case for the Uncertainty principle if we assume the de Broglie wavelength is the true matter

wavelength. Then we have:

As the de Broglie wavelength is not de�ned for  , we cannot have   now, which is also how

the standard Heisenberg uncertainty principle has been interpreted. Furthermore, it is evident that we

have:

However, the last two lines are only applicable for the domain  . This clari�es that if one

mistakenly assumes the de Broglie wavelength is the true matter wavelength, then one is unable to

examine the special case when   in quantum mechanics. Furthermore, since gravity is associated

with absolute rest for the ultimate particle that, in our view, comprises all other particles, namely the

Planck mass particle, which exists and remains at absolute rest, as it can only be directly observed

from its own reference frame due to its Planck length radius and dissolves after the Planck time.

We will call the following the Certainty-Uncertainty principle:

To incorporate gravity into our new Certainty-Uncertainty principle, we have to multiply the mass by 

 or  , which is the same thing. Then we get:
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The particle of interest for gravity is the Planck mass particle, which is a collision between two

building blocks of photons lasting for the Planck time. It only exists for    as it only can be

observed directly from itself, and it has a reduced Compton wavelength equal to the Planck length.

This means we always have:

 And this holds true as:  , which means we have:

And since we always for the Planck mass particle have   (as it is a collision between photons), this

holds true. We could have found this just as well by using kilograms and joules; however, then gravity

is not really incorporated. Still, let us look at it without incorporating gravity. Then we have:

Which is the same as before and can only be valid when  .

In addition from Einstein’s special relativity theory we have that length contraction (Lorentz

contraction) is given by:

If special relativity is also valid in quantum mechanics, then if the relevant length of an elementary

particle is the reduced Compton wavelength, we must have:

If we assume that no length can be shorter than the Planck length, even for a relativistic length, then

we obtain:
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This leads to the maximum velocity for a particle with mass:

This formula is not new; see  [73][74]. It is only valid for elementary particles. However, since all

composite masses are made up of elementary particles, it can also be applied to composite masses by

performing the calculations for the elementary particles it consists of. For example, for an electron,

the maximum speed will still be very close to the speed of light and much faster than any particle that

has been accelerated at the LHC. It is only when we approach Planck mass particles, and particularly

for the Planck mass particle, that things become very interesting. Here, the reduced Compton

wavelength is equal to the Planck length, and the maximum velocity for that particle is:

It may initially sound absurd that any particle can have a maximum velocity of zero. However, it is far

from absurd if the Planck mass particle is a result of a photon-photon collision, lasting only the

Planck time and possessing a radius equal to the Planck length. That photon-photon collisions creates

mass is in line with standard theory, see for example [75]. If light moves at the speed of light and the

collision that causes a particle to exist lasts for the Planck time with a radius equal to the Planck

length, then one must be a part of this particle itself, essentially at rest, to observe it directly. This

scenario presents a special case of the special theory of relativity or we could call it extended special

theory of relativity taking into account the Planck scale, prompting a reevaluation of many standard

interpretations.

One criticism is that this formula implies that the relativity of simultaneity may not be preserved.

However, this isn’t necessarily the case, as one must once again be within the particle’s rest frame to

observe this particle directly. If one is more than a Planck length from its center, outside the particle,

observation becomes impossible because the particle would have dissolved before even light could

reach it from our observational point. The relativity of simultaneity has also been questioned by a

series of authors in recent times, see [76][77][78][79]. However, it is even unclear if we need to abandon

the relativity of simultaneity here at the very point one reaches the Planck scale, as we can only

observe this particle from its own rest frame directly; that is, we need to be part of it to observe it

directly.

v ≤ c .1 −
l2p

λ̄
2
c

− −−−−−

⎷


 (85)

v ≤ c = c = 0.1 −
l2p

λ̄
2

− −−−−−

√ 1 −
l2p

l2p

− −−−−

√ (86)
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Interestingly, the Planck mass particle (micro black hole) in the uni�ed extremal solution of general

relativity theory possesses zero entropy as demonstrated by Edery and Constantineau [80]. They have

zero entropy as they are time-independent throughout spacetime and correspond to a single classical

microstate. Zero entropy may initially also seem absurd compared to physicists’ usual thinking that

there always is some entropy. However, the solution to what seem like a paradox have a simple

solution. The Planck mass particle is simply a photon-photon collision creating a micro black hole

that only directly can be observed by being part of it. Therefore, to be time-independent throughout

spacetime, must in our view be understood in the reference frame of the Planck mass particle itself,

and if this reference frame only lasts the Planck time, then indeed there is no entropy within that

space-time related to the Planck mass particle and Planck time. It means there are no observable

changes inside the Planck time interval for a Planck mass particle. According to collision-time theory

the collision-time mass of a Planck mass particle is the Planck time. This is how long the photon-

photon collision (also inside matter such as protons) last. Haug and Spavieri [81] has based on the work

of Sorkin and Piran  [82]  also shown that the Hawking radiation for the extremal Planck mass black

hole is also remarkably zero.

Table 2 summarise some of the key points about the Planck mass particle.
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Properties Planck mass particle:

Mass Planck mass  , but only   kg over a second.

Collision-time mass Planck time.

Radius Planck length.

Life time Planck time.

Velocity , can be observed only directly from itself.

Entropy 0 during its lifetime.

Hawking radiation 0 during its life time.

What is it? A photon-photon collision.

What is it? Mathematically a extremal micro black hole.

Charge: Planck charge.

Uni�cation? Electromagnetic and gravity force becomes identical.

Stability? Electromagnetic and gravity perfectly counterbalance

  each other inside the particle during the Planck time.

Uncertainty? No uncertainty during its life time. Can be described by

  Certainty-Uncertainty principle.

Table 2. The table shows a series of properties for the Planck mass particle. It is an extremal Planck

mass micro black hole that comes in and out of existence in all matter at the reduced Compton

frequency. It is the building block of all matter.)

If the Schwarzschild metric, in reality, is a weak �eld approximation of the extremal solutions as it is,

then it is also no surprise that the Schwarzschild Planck mass black hole predicts strong Hawking

radiation happening in a time interval close to the Planck time for such micro black holes. As if one

tries to observe these extremal micro black holes from distance, the Planck mass particle from the

≈ 2.17 ×  kg10−8 1.17 × 10−51

v = 0
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outside of the particle it basically evaporates in the very moment one observes it (approximately in 

  s according to the Hawking time). So a series of things from di�erent metrics and

di�erent concepts seems to line up in a new and simple way to understand the quantum world.

We will conjecture that there likely exists a Planck mass particle that is 100% stable and has zero

entropy and zero Hawking radiation within the time interval it exists, which is only the Planck time.

Inside the Planck time, there is therefore certainty. This means Heisenberg’s uncertainty principle

must be modi�ed to accommodate a certainty-uncertainty principle in the way we have just described.

For non-Planck mass particles, there is indeed uncertainty and the need for a uncertainty principle,

but for the Planck mass particle, there is certainty only during the Planck time, which is the only time

interval this particle can hypothetically be directly observed in this theory. Still, we can observe the

Planck mass particles indirectly as we can observe gravity. Gravity is simply related to the number of

Planck mass particle (events) in the Planck time in the gravitational mass of interest. And since

everything with rest mass consists of such Planck mass particles coming in and out of existence at the

reduced Compton frequency of the mass in question, this is leads to a theory that at the surface is

consistent with much of the traditional view on gravity. It is just that we have now likely understood it

from a deeper level. A level that lets us unify gravity and quantum mechanics.

We must conclude this section by stating that the view suggesting that the de Broglie wavelength is

the ’matter wavelength,’ while in reality, it is likely the Compton wavelength, has led to an incomplete

uncertainty principle. When derived from the assumption that the Compton wavelength is the true

matter wavelength, one obtains a Certainty-Uncertainty principle that is consistent with quantum

gravity.

13. Conclusion

We have demonstrated that the Compton wavelength plays a very central role in foundational physics

when understood from a deeper perspective. The Compton wavelength of matter is identical to the

photon wavelength of the rest-mass energy of the mass. This is not the case for the de Broglie

wavelength. The de Broglie wavelength is strictly not even mathematically de�ned for a rest-mass

particle, as it would lead to division by zero. When assuming the rest-mass particle is almost

stationary, the de Broglie wavelength of the rest-mass particle approaches in�nity, and the photon

wavelength corresponding to the rest-mass energy is approaching zero, namely, the de Broglie

wavelength multiplied by  , with   approaching zero.

8.68 × 10−40

v
c

v
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There seems to be no need for both a Compton wavelength and a de Broglie wavelength of matter. We

suggest that the Compton wavelength is the real matter wavelength, and that the de Broglie

wavelength is, in reality, a mathematical derivative of this. One can choose whether to predict and

analyze particle waves as Compton wavelength or de Broglie wavelength, but the de Broglie

wavelength, since it is only a mathematical derivative of the real matter wavelength, will lead to a

series of problematic or, we could say, strange interpretations, while the Compton wavelength always

has a length we could expect for the atomic and subatomic scale.

Furthermore, when viewed from a deeper perspective, we can quantize Newton’s and general

relativity theories. This quantization reveals that the Compton frequency is fundamental in the

context of gravity. Additionally, in quantum mechanics, when we examine the Schrödinger, Dirac, and

Klein-Gordon equations more profoundly, they appear to be interconnected with the Compton

frequency in matter, and surprisingly, the Planck constant cancels out. This cancellation of the Planck

constant occurs both in gravitational predictions related to observed phenomena and in quantum

mechanics. There is also no longer a need for the gravitational constant. This even has practical

implications, as it can be demonstrated that relying on the gravitational constant in gravitational

predictions results in unnecessarily large prediction errors, as already discovered, for example, by the

US defense [83][84]. Furthermore, the Heisenberg Uncertainty Principle, when considering that the real

wavelength of matter is the Compton wavelength, can be extended into a Certainty-Uncertainty

Principle. This principle describes the certainty associated with the Planck mass particle, which is the

ultimate building block of matter and the cause of gravity.

Acknowledgments

I would like to thank Ying Liu, Clara Rojas, Mykola Maksyuta, Shidong Liang, James Bowery, and Eric

Bittner for useful comments on a earlier version of this paper.

Footnotes

1 Thanks to Dr. Christian Brand for useful comments making us aware that many experienced

researchers may not yet be aware that the Compton wavelength can be found independently of

knowledge of the Planck constant or the electron mass. The reason for this is not as strange as it has

been demonstrated �rst in recent years that this is possible. 
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