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Abstract

We demonstrate that the Compton wavelength mathematically corresponds exactly to
the photon wavelength of rest mass energy. On the other hand, the de Broglie wavelength is
not defined for a rest-mass particle, but if the particle is nearly at rest, then the de Broglie
wavelength approaches infinity, and the corresponding photon wavelength of the rest-mass
energy is then this length times v

c
again, that is it approaches zero when v approaches zero.

Our analysis indicates that the de Broglie wavelength appears to be a pure mathematical
derivative of the Compton wavelength. Everything that can be expressed with the de Broglie
wavelength can essentially be expressed by the Compton wavelength. We also demonstrate
how spectral lines from atoms and chemical elements are linked to the Compton wavelength
of the electron and that the Rydberg constant is not needed.

Furthermore, we demonstrate that the Compton frequency is embedded in the Schrödinger
equation, the Dirac equation, and the Klein-Gordon equation, where the Planck constant
actually cancels out, and the de Broglie wavelength is not present in these equations. The
Compton frequency seems to be linked to the quantization in quantum mechanics rather
than the Planck constant. Additionally, we discuss recent literature that shows a remarkably
simple but overlooked way to quantize Newton’s and General Relativity theories, as well as
other gravity theories, and also how to link them to the Planck scale. This, once again, leads
to the conclusion that the Compton wavelength and Compton frequency are related to the
quantization of matter and, thereby, the quantization of gravity. In addition, the Planck
length plays a crucial role in quantum gravity, as demonstrated.

Viewing physics through the de Broglie wavelength is like looking at the world through a
distorted lens; switch to the Compton wavelength, and the distortion is removed, allowing us
to see simplicity and clarity even in complex phenomena such as quantum gravity. Remark-
ably, Heisenberg’s uncertainty principle seems to need modification to a Certainty-Uncertainty
Principle when one understands that the Compton wavelength is the true wavelength of mat-
ter. Gravity is related to the Planck mass particle and is again related to absolute rest,
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which lasts for the Planck time. This certainty-uncertainty principle leads to the unification
of gravity and quantum mechanics.

Key Words: Compton wavelength, de Broglie wavelength, photon wavelength, matter
wavelength, Rydbergs formula, quantum mechanics, quantum gravity, unification.

1 The Compton wavelength and the photon wavelength in
rest masses

We will in this section present a very simple, yet we believe, very important mathematical re-
lationship that surprisingly has not to our knowledge been shown directly before. We think the
reason it has not been discovered before is that the research community has primarily associated
mass with the de Broglie wavelength rather than the Compton wavelength. After demonstrating
this important yet straightforward mathematical relationship, we will discuss how the Compton
wavelength is likely the true matter wavelength, while the de Broglie wavelength is likely just a
mathematical derivative of the actual physical matter wavelength.

Compton [1] in 1923 gave the Compton wavelength as:

�c =
h

mc
. (1)

Furthermore, the reduced Compton wavelength is defined as �̄c =
�c
2⇡ , and we therefore have:

�̄c =
~
mc

, (2)

where ~ = h

2⇡ is the reduced Planck constant, also known as the Dirac constant. Additionally, the
relativistic Compton wavelength [2] is given by:

�c =
h

mc�
, (3)

where � = 1q
1� v2

c2

is the Lorentz factor, and the relativistic reduced Compton wavelength is given

by:

�̄c =
~

mc�
. (4)

The rest mass energy is given by Einstein’s [3] most famous formula:

E = mc
2
. (5)

If all the mass is turned into pure energy, then we must have:

E = h
c

�
= mc

2
, (6)

where � simply is the photon wavelength. Next, let us go back to the Compton wavelength formula
and solve it with respect to m. This gives:

m =
h

�c

1

c
. (7)

Now we replace this expression for the mass into Eq. (6), and we get:
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E = mc
2

h
c

�
=

h

�c

1

c
c
2

� = �c. (8)

This means that the Compton wavelength is identical to the photon wavelength for rest-mass
energy. This may seem trivial when someone first demonstrates it and points it out. However, we
will soon move to the de Broglie wavelength, where we obtain quite a di↵erent result. The result
above could indicate that rest mass consists of standing photon waves with very short wavelengths,
exactly at the length of the Compton wavelength. This idea that the Compton wavelength is
identical to the photon wavelength for rest mass (rest-mass energy) has been suggested by Haug
[4, 5] in a theory under rapid development. Likely, only elementary particles such as electrons
have a Compton wavelength. Still, as has been recently demonstrated, the kilogram mass of any
mass from protons to astronomical masses can be expressed with the formula m = h

�

1
c
, and the

Compton wavelength can be found for any mass, even astronomical, without even knowing the
Planck constant or the kilogram mass, see [6, 7]. However, the Compton wavelength in a composite
mass reflects an aggregate of the Compton wavelengths of all masses and energies making up the
composite mass. We have that the Compton wavelength of a composite mass is given by

�c =
1

P
n

i=1
1

�c,i
±
P

N

j=1
1

�c,j

. (9)

Where �i is the Compton wavelength of a fundamental particle or from rest-mass energy. This is
fully consistent with

m =
nX

i=1

mi ±
NX

j=1

Ei

c2

h

�c

1

c
=

nX

i=1

h

�c,i

1

c
±

NX

j=1

h
c

�c,j

c2

�c =
1

P
n

i=1
1

�c,i
±
P

N

j=1
1

�c,j

. (10)

In other words, this is consistent with aggregating all elementary particles and energies making
up the rest-mass m, binding energies etc., naturally fully consistent also with the conservation of
energy.

When it comes to that the Compton wavelength is identical to the rest-mass energy photon
wavelength as demonstrated in this section one can ask how relavant this is since it is typically
assumed photons have no mass. One can naturally still argue that photons can be treated as
equivalent of mass since we have m = E

c2

2 The Compton wavelength and the wavelengths of a spec-
tral lines

The well-known Rydberg [8] formula is given by:
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1

�
= R1Z

2

✓
1

n
2
1

� 1

n
2
2

◆
. (11)

Here, n1 is the principal quantum number of an energy level, and n2 is the principal quantum
number of an energy level for the atomic electron transition. Furthermore, the Rydberg constant
is defined as:

R1 =
mee

2

8✏20h
3c
. (12)

In this equation, me represents the electron mass, ✏0 is the vacuum permittivity, h is the Planck
constant, and e is the elementary charge. However, Haug [9] has shown that Equation (11) is both
non-relativistic and that the Rydberg constant is not needed. The relativistic formula that can
replace the Rydbergs formula and already has been taken in use [10–12] is given by

1

�
=

1

�c,e

0

@ 1q
1� Z2↵2

n
2
1

� 1q
1� Z2↵2

n
2
2

1

A . (13)

Here, �c,e represents the Compton wavelength of the electron. This shows that there is no
need for the Rydberg constant. As Suto [13] correctly has discussed and pointed out, the Rydberg
constant is not rooted in anything physical, or in his own words:

”the physical constant that is important for determining the wavelengths of the line
spectra of a hydrogen atom is not the Rydberg Constant, but rather the Compton wave-
length of the electron.” – Koshun Suto

It is indeed the Compton wavelength of the electron that is of importance for the observed and
predicted photon spectral wavelengths of atoms; the Rydberg constant is never needed to predict
these. The Rydberg constant is a composite constant, not itself related to anything physical; only
some of its components are. It is the electron, when transitioning between di↵erent energy levels,
that emits photons, and the wavelength of these photons is directly related to the Compton wave-
length of the electron, as we also demonstrated in the previous section. This again demonstrates
the importance of the Compton wavelength in matter.

Equation 13 can also be expressed as:

� = �c,e

q
1� Z2↵2

n
2
1

q
1� Z2↵2

n
2
2q

1� Z2↵2

n
2
2

�
q
1� Z2↵2

n
2
1

. (14)

This means we can also find the Compton wavelength of the electron from the wavelengths of
the line spectra in atoms, as we must have:

�c,e = �

⇣q
1� Z2↵2

n
2
2

�
q

1� Z2↵2

n
2
1

⌘

q
1� Z2↵2

n
2
1

q
1� Z2↵2

n
2
2

. (15)

That is, observed spectral lines from electron transitions in atoms can just as well be used
to find the Compton wavelength of electrons as Compton scattering. Finding the mass of the
electron based on spectral line observations by using the standard Rydberg formula will slightly
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overestimate the mass if one does not understand the original Rydberg formula is a non-relativistic
approximation. The same is true from the standard Compton scattering formula, as this is also
non-relativistic in the sense it does not assume that electrons move at impact. If using spectroscopy
of Hydrogen atoms and not taking into account the relativistic corrections needed, one will over-
estimate the electron mass by approximately me/

p
1� ↵2 �me ⇡ 2.43⇥ 10�35 kg (0.0027%).

3 The Compton wavelength of the electron and other masses
can be found totally independently of knowledge of the
Planck constant and the electron mass

The most common way to express the Compton wavelength in university text books (see for
example [14, 15] ) is �c = h

mec
, and multiple researchers1 therefore mistakenly assume that one

always needs to know the Planck constant and the electron mass to find the Compton wavelength
of the electron. There is absolutely nothing wrong with this formula, but there is a deeper level
to it so to say. So it is actually not the case that we need to know the Planck constant and the
electron mass to find the Compton wavelength of the electron as has been demonstrated in recent
years; see [6, 7]. Since this is such an important point for understanding the various points of this
article, we will repeat here how to find the Compton wavelength without any knowledge of the
Planck constant or the electron mass by using Compton scattering (and look at it from a deeper
perspective).

In the original paper by Compton [16], published in 1923, Compton gives the formula:

�1 � �2 =
h

mec
(1� cos ✓), (16)

where h is the Planck constant, me is the mass of the electron, and ✓ is the angle between the
primary and the scattered beams (photon �1 and photon �2). Since we can write me =

h

�c,e

1
c
, we

can replace me with this in equation 16 and solve for �c. This gives:

�c,e =
�1 � �2

1� cos ✓
. (17)

That means to find the Compton wavelength of the electron, all we need to do is measure the
wavelength of the two photons in the scattering experiment and the angle between them. There
is no need to know the Planck constant or the electron mass to find the Compton wavelength of
the electron, contrary to what many even experienced researchers think, so this alone we think is
a significant.

In addition, in this paper, we have theoretically demonstrated that the Compton wavelength
can be found by observing spectral lines from hydrogen atoms using the following formula:

�c,e = �

⇣q
1� Z2↵2

n
2
2

�
q

1� Z2↵2

n
2
1

⌘

q
1� Z2↵2

n
2
1

q
1� Z2↵2

n
2
2

.

1Thanks to Dr. Christian Brand for useful comments making us aware that many experienced researchers may
not yet be aware that the Compton wavelength can be found independently of knowledge of the Planck constant or
the electron mass. The reason for this is not as strange as it has been demonstrated first in recent years that this
is possible.
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As we can see from the formula, only the photon wavelength from the spectral line of the
hydrogen atom is needed, in addition to the fine-structure constant. However, a fair question to
ask is whether this also works in practice. The answer is yes, and we do not even need to physically
perform the experiment to demonstrate it, as others have already conducted the experiments
needed.

For example, we will look at one of the transitions in the well-known Lyman series. We will
look at when the electron in a hydrogen atom goes from n2 = 2 to n1 = 1. The observed photon
wavelength from the experiment is approximately 121.56701 nanometers. We can now simply input
this value into the formula above, and we get:

�c,e = 121.56701⇥ 10�9 ⇥

✓q
1� 12↵2

22 �
q
1� 12↵2

12

◆

q
1� 12↵2

12

q
1� 12↵2

22

⇡ 2.427⇥ 10�12 m,

which is very close to the o�cial CODATA NIST (2019) Compton wavelengh of the electron
2.42631023867 ⇥ 10�12 m. Again it is important that we can find the Compton wavelengh of the
electron totally independent of knowledge of the Planck constant or the electron mass.

Next, we can use the found Compton wavelength of the electron together with the fine-structure
constant to accurately predict the spectral lines of any atom. This leads us back to the Rydberg
constant. Some may possibly claim that we are too harsh in our criticism in the previous section
when we say we never need the Rydberg constant. It is well known that the Rydberg constant
is a composite constant, and some may think that we have simply replaced some constants with
other constants. This is not the case. If one uses the traditional Rydberg formula, R1 = mee

2

8✏20h
3c
,

one needs to know the electron mass, the elementary charge, the Planck constant, and the speed
of light. We, on the other hand, only need the Compton wavelength of the electron that we found
from spectral lines themselves (or alternatively from Compton scattering, also with no knowledge
of other constants) and the fine-structure constant. In other words, we achieve a reduction in
constants, which is one of the great aims of modern fundamental physics.

In the coming pages, it will become clear that we can perform many quantum mechanics
calculations with only the knowledge of one constant: the speed of light as well as knowledge
of the Compton wavelength of the mass in question. In some cases, we also need to know the
fine-structure constant. When it comes to quantum gravity and providing the same predictions as
general relativity theory, we only need the speed of light (for gravity) and the Planck length. Both
can be easily found experimentally without knowing any other constants.

We can next even find the Compton wavelengh of a composite mass, namely the proton without
any knowledge of the Planck constant or knowledge of the mass of the electron. We will take
advantake of that the cyclotron frequency is given by

f =
qB

2⇡m
, (18)

where q is the charge and B is the uniform magnetic field and m is the mass of the particle in
question, for example an electron or proton. Since electrons and protons have the same absolute
value of the charge their cyclotron frequency ratio is given by

|e|B
2⇡me

|e|B
2⇡mpr

=
mpr

me

⇡ 1836.15 (19)
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Which is why cyclotrons indeed have been used to find the proton electron mass ratio, see for
example [17, 18]. However we will go one step further and replace the electron mass withme =

h

�c,e

1
c

and the proton mass with mpr =
h

�c,pr

1
c
, this gives

|e|B
2⇡me

|e|B
2⇡mpr

=
mpr

me

=
�c,e

�c,pr
⇡ 1836.15 (20)

So, to find the proton Compton wavelength independently of any knowledge of the kilogram mass
or the Planck constant, all we need to do is first find the electron Compton wavelength, as described
in this section. Then, we can divide the electron Compton wavelength by the observed cyclotron
frequency ratio obtained from running a cyclotron on electrons as well as protons. Thus, we can
determine the Compton wavelength of the proton without relying on knowledge of the Planck
constant and the proton’s kilogram mass.

Now, to find the Compton wavelength for larger macroscopic masses, we can simply count
the number of atoms in the object. This is not an easy task, but it is fully possible and was
actually one of the proposed methods to define the kilogram (see [19, 20]). Other methods also
exist; for example as pointed out by Wang [21]. As we know the number of protons and neutrons
in each atom, we can, for simplicity, treat the neutrons as protons and then divide the Compton
wavelength of a single proton by the total number of protons and neutrons in the macroscopic
mass. This provides us with a quite accurate estimate of the Compton wavelength within the
macroscopic mass. Further refinements can be made by considering the number of electrons and
accounting for the slight mass di↵erence between neutrons and protons, as well as accounting for
binding energies.

When it comes to finding the Compton wavelength of astronomical objects, practicality prevents
us from directly counting the number of atoms in, for example, the Earth. Fortunately, this is
unnecessary. We can instead utilize the following relation:

g1r
2
1

g2r
2
2

=
�c,2

�c,1
. (21)

So, we can now use a Cavendish apparatus to first determine the gravitational acceleration of
the macroscopic silicon sphere for which we have accurately counted the number of atoms. The
gravitational acceleration field in a Cavendish apparatus is simply given as:

g1 =
2⇡2

Lr
2
✓

T 2
, (22)

where L is the distance between centers of small balls, r is the distance between centers of large
and small balls when balance is deflected, and ✓ is the deflection angle of torsion balance beam
from its rest position, and T the period of oscillation of torsion balance. Pay attention to that
also here we do not relay on the Planck constant, nor do we need to know the kilogram mass of
the balls in the apparatus, nor do we need to know the gravity constant G.

Next, we can find the gravitational acceleration on Earth’s surface by simply dropping a ball
from a height H and measuring the time it takes for it to hit the ground. The gravitational
acceleration is then calculated as:

g2 =
2H

T
2
d

. (23)

Again, no knowledge of G, the Planck constant, or the mass of the Earth in kilograms is needed.
Next, we can determine the Compton wavelength of the Earth using the following formula:
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�c,E = �c,c
g2

g1
, (24)

where �c,c is the Compton wavelengh of the large ball in the Cavendish apparatus that we already
found.

Similarly, we can find the Compton wavelength for any astronomical object without needing
to know their kilogram mass or the Planck constant. This even holds for the mass (including its
equivalent mass, as it also includes energy) of the observable universe, as we have demonstrated
in [22, 23].

Naturally, we could have also found the Compton wavelength formula for any of these masses
by first determining their kilogram mass and the Planck constant and then using the formula
�c = h

mc
. However, in this case, we would need to know more constants, specifically the Planck

constant. As we will see, the Planck constant may not be required in significant portions of
quantum mechanics and is not needed in the recent new type of quantum gravity theory, which
produces the same predictions as general relativity theory and provides a quantization methodology
applicable to various gravity theories. What becomes evident is that the Compton wavelength will
play a central role.

The Compton wavelength of the critical mass in the universe can be readily calculated using
only the measured CMB temperature and the Hubble constant. It is given by (see [23]):

�̄c =
H

3
0

T
4
CMB

~4c
k
4
b
512⇡4

⇡ 3.79⇥ 10�96
m (25)

4 The de Broglie wavelength

By 1905, it was clear that photons had both particle properties and wavelike properties, today
known as particle-wave duality. Most physicists at this point in time thought that matter consisted
of particles with particle properties. However, it was now ‘natural’ to ask if matter could also have
wavelike properties. This is exactly what Louis de Broglie [24] suggested in his PhD thesis in 1924.
He also proposed that this wavelength was given by

�b =
h

mv
, (26)

which actually is only a good approximation when v ⌧ c. For the relativistic case, de Broglie [25]
gave the formula:

�b =
h

mv�
, (27)

where � = 1/
p

1� v2/c2 is the Lorentz factor. In 1927, Davisson and Germer [26] (at Bell
labs) published experimental results of electron di↵raction that strongly supported the idea that
electrons also had wavelike properties. This immediately was credited as confirming the de Broglie’s
hypothesis. However, we must distinguish between Broglie’s hypothesis that matter also had
wavelike properties and his formula for predicting these waves. It was actually only his hypothesis
that matter also had wavelike properties that was confirmed, not the prediction of wavelength from
his formula. This has been overlooked and therefore ignored by the physics community. Today,
physicists assume that the de Broglie wavelength is the matter wavelength and that the Compton
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wavelength mostly has something to do only with Compton scattering, even if a potential Compton
wavelength of the proton also are discussed [27, 28].

That Einstein had basically endorsed the Ph.D. thesis of de Broglie could be one of the reasons
why one automatically assumed that de Broglie was right on both his hypotheses: that matter
has wavelike properties and, in addition, that his formula for this matter wavelength was almost
“instantaneously” accepted as the real matter wavelength after the Davisson and Germer experi-
ment. No one asked if de Broglie could simply be right on his first point that matter had wavelike
properties, but that the matter wavelength could actually be the Compton wavelength. We will
argue that the Compton wavelength is the one and only matter wavelength, and that the de Broglie
wavelength is simply a mathematical derivative of this.

It is important to be aware that the de Broglie wavelength is always equal to the Compton
wavelength times c

v
(as possibly first explicitly pointed out in [4]); that is, we always have:

�b = �c
c

v
and �̄b = �̄c

c

v
, (28)

and, naturally, further:

�c = �b
v

c
and �̄c = �̄b

v

c
. (29)

First of all, the de Broglie wavelength formula is not mathematically valid when v = 0, as
this leads to division by zero, which is mathematically undefined. This can be seen from all the
equations above in this section.

We demonstrated in section 1 that the Compton wavelength is identical to the photon wave-
length of the rest-mass energy; is this also the case with the de Broglie wavelength? To find out,
we first solve the de Broglie wavelength formula: �b ⇡ h

mv
for m; this gives

m ⇡ h

�b

1

v
. (30)

Next, we do the following derivation

E = mc
2

E ⇡ h

�b

1

v
c
2

h
c

�
⇡ h

�b

1

v
c
2

h
c

�
⇡ h

�b

c

v

� ⇡ �b
v

c
. (31)

We have an approximation sign from the second line as the de Broglie wavelength is not defined for
rest-masses, but we can use the derivation above as a good approximation when v is very close to 0.
It means that, when we rely on the de Broglie wavelength, then the equivalent photon wavelength
for rest mass approaches zero, as this formula is only a good approximation when v ⇡ 0. Not
only that, but the de Broglie matter wavelength: �b =

h

mv
also approaches infinity when the mass

approaches rest. This absurdly close to infinite de Broglie wavelength has led to a series of di↵erent
interpretations among researchers, something that is fully understandable until one discovers that
the true matter wavelength is the Compton wavelength. For example, Lvovsky [29] has stated:
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“The de Broglie wave has infinite extent in space.” – A. I. Lvovsky

and Chauhan et al [30] has stated

De Broglie had an extremely strong and concrete physical justification for the in-
finite wavelength of matter waves, corresponding to the body at rest. .... Therefore,
the infinite wavelength of matter waves, for zero velocity of body, becomes essentially
evident.” –H. Chauhan et al.

Shanahan [31] writes

“But as this wave was understood by de Broglie, it has a velocity that is superluminal
and becomes infinite as the particle comes to rest and becomes infinite as the particle
comes to rest” –Shanahan

Further Max Born [32] interpretation make some more sense

Physically, there is no meaning in regarding this wave as a simple harmonic wave
of infinite extent, we must on the contrary, regard it as a wave packet consisting of a
small group of indefinitely close wave-numbers, that is, of great extent in space.” –Max
Born (1936)

Still, what’s most important here is that no one seems to be able to fully explain how the de
Broglie wavelength is related to something physical.

The relation between the Compton wavelength and photon wavelength that we derived in the
previous section is mathematically exact and logically sound, with a rest mass having a photon
wavelength identical to the Compton wavelength. On the other hand, the relation between the de
Broglie wavelength and photon wavelength does not make much logical sense in our view. It is
actually not mathematically valid for rest-mass particles. However, many, if not most, physicists
will argue that, due to Heisenberg’s uncertainty principle [33, 34], a particle never comes to absolute
rest (even inside its rest-frame). Later in the paper (section 12), when we come to quantum
gravity theory, we will demonstrate that it is quantum mechanics that actually needs modification,
including Heisenberg’s uncertainty principle. Modifying the uncertainty principle to take into
account that the Compton wavelength is the real matter wavelength turns it into a certainty-
uncertainty principle. That is, for non Planck-mass particles , it is an uncertainty principle, and
for Planck mass particles that must be at at absolute rest, it is a certainty principle, agains the
possibility for this is discussed in section 12.

Nevertheless even before we look at rest-mass, this still leads to a prediction of a nearly infinite
de Broglie wavelength and a nearly zero-length equivalent photon wavelength. No such nearly
infinite wavelength has been measured. What would the interpretation be? As we have seen, there
is no full agreement on the interpretations.

For example, if an electron only moved at 8.3⇥ 10�31
m/s, then the de Broglie wavelength is

outside the diameter of the observable universe (assuming it is 8.8 ⇥ 1026 m) even if the electron
were at the center of the universe. In other words, the de Broglie wavelength spreads out further
than light could have moved since the Big Bang, and it extends even outside the expansion of
space over the same period, or we can naturally try to fall back on the Max Born interpretation,
but still, it seems to open more questions than answers.

One could argue that a particle moving as slowly as 8.3⇥ 10�31 m/s is unrealistic. For a dilute
gas of Rubidium atoms, the lowest temperature achieved yet is in the low picokelvin regime, see for
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instance Deppner et. al [35]. The corresponding velocities are in the µm/s regime. Thus, preparing
something to move at 8.3⇥ 10�31 m/s is (25 orders of magnitude smaller) is currently practically
unrealistic. However, there are multiple issues with such reasoning. To measure velocities of
8.3⇥10�31 m/s or lower, we would likely need much more precise measurement devices so we cannot
at all exclude that particles move at this or lower velocity over a small time interval, a temperature
measure is a kind of average measure, not a direct velocity measure of individual particles over
very short time intervales. Second, even if, for example, a proton were not moving slower than in
the µm/s regime, then the de Broglie wavelength of the proton would be �b =

h

mpr⇥1⇥10�6 ⇡ 0.4
m. This means that a protons in front of us cooled down to the low picokelvin regime, if the de
Broglie wavelength were physically should each be spread out over almost half a meter. We find
this absurd, even if it cannot be totally excluded.

A much more likely scenario is that the physical wavelength is the Compton wavelength of the
proton, which is always, for a proton would be �c =

h

mpr
⇡ 2.1⇥10�16 m or shorter. The Compton

wavelength contracts for a moving object so the rest mass Compton wavelength is the maximum
Compton wavelength, in contrast to for the de Broglie wavelength where there is no theoretical
limit for how long it can be ass we approaches a velocity of zero. So, there is a significant di↵erence
between the Compton wavelength and the de Broglie wavelength. The de Broglie wavelength for
slowly moving protons and other particles is predicted to be of macroscopic scale, on the order of
meters, which, in our view, is absurd. On the other hand, the Compton wavelength for any atom
always falls within the length scales of the atomic scale.

If the de Broglie wavelength is physical and of macroscopic scale for very slow-moving particles,
it should be possible to measure it directly. However, this has never been done, and we believe it
never will be done, as we hold the conjecture that the de Broglie wavelength is a pure mathematical
derivative of the Compton wavelength.

5 Finding the de Broglie wavelengh from spectroscopy

SSince the de Broglie wavelength is a mathematical derivative of the Compton wavelength, �b =
�c

c

v
, we can also easily determine the de Broglie wavelength from spectral lines. By using our

results from equation 15, we must have
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. (32)

So all we need to know about constants to find the de Broglie wavelength is the fine structure
constant when using spectroscopy. However, we will assert that the de Broglie wavelength is simply
a mathematical derivative of the real matter wavelength, namely the Compton wavelength.
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6 The Compton frequency in matter

We will claim anything with rest-mass ticks at the reduced Compton frequency; this has some
support also in recent research, [36, 37]. The Compton frequency is given by

fc =
c

�̄c

. (33)

For an electron, this has some similarities with the trembling motion (zitterbewegung) suggested
by Schrödinger [38], where he proposed a frequency of 2mec

2

~ = 2 c

�̄c,e
, which is twice the reduced

Compton frequency and also twice the de Broglie electron clock rate, as he suggested in his 1924
dissertation. This view that electrons are trembling has recently also been investigated by multiple
researchers. For example, Santos [39] suggests that zitterbewegung is a light speed “trembling-along-
the-way” electron motion, to be a real oscillatory motion of the electron”

Interestingly, we can also express the Compton frequency in the form of the de Broglie wave-
length by utilizing the relation �c = �b

v

c
, which leads to:

fc =
c

�c
=

c

�b
v

c

=
c
2

�bv
. (34)

So, we can see that it not only leads to excessive complexity but also is not strictly mathemat-
ically valid when v = 0.

The de Broglie frequency can be expressed as:

fb =
c

�̄b

. (35)

This is not valid for a rest mass because the de Broglie wavelength is not defined for v = 0. The
de Broglie wavelength itself is given by �̄b = ~

mv�
, which is not even mathematically defined for

v = 0. We can also look at this from another perspective by expressing the de Broglie frequency
through the Compton wavelength. We can do this as �̄b = �̄c

c

v
. This means the de Broglie

frequency is also given by:

fb =
c

�b
=

c

�c
c

v

=
v

�c
. (36)

Now we see that this frequency is zero when v = 0, which is when the mass is at rest. This
is consistent with the de Broglie wavelength approaching infinity as v approaches zero. So even if
the frequency is linked to the speed of light, it would take light an infinite time to travel an infinite
length; therefore, it gives a frequency of zero when the mass is at rest, v = 0.

If mass has a frequency, then a zero frequency means no mass. So, in the de Broglie wavelength
world based on mass as frequency, rest-masses cannot exist. But we think this is a mistake, since
matter is related to the Compton wavelength and not the de Broglie wavelength. Again, the de
Broglie wavelength is just a mathematical derivative (artifact) of the Compton wavelength.

7 The Compton wavelength plays a central role in quan-
tum mechanics

Even if we personally think quantum mechanics is incomplete because it does not take into account
gravity, it is clear that quantum mechanics has been very successful within its domain, which is to
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describe non-gravitational phenomena in the atomic and subatomic world. The central role of the
Compton wavelength in quantum mechanics can be seen by rewriting some of the most famous
equations in quantum mechanics to what we will call a deeper, more fundamental level. Let’s start
with the Schrödinger [40] equation, typically written as:

i~ @
@t
 =

✓
i~2
2m

r2 + V

◆
 , (37)

where V is the energy potential; for example, we can have V = mc
2 then we get

i~ @
@t
 =

✓
i~2
2m

r2 +mc
2

◆
 . (38)

Since any kilogram mass can be written as m = ~
�̄c

1
c
, we can rewrite the Schrödinger equation

as:

i
@

@t
 =

✓
ic�̄

2
r2 +

c

�̄c

◆
 . (39)

This result was shown by Haug [4], but it has been hardly discussed. What is important to
notice is that the Planck constant has canceled out. The visible Planck constant in the Schrödinger
equation, we will claim, is needed to cancel out the Planck constant embedded in the kilogram
mass. Pay also attention to the fact that we now have the reduced Compton frequency c

�̄c
in the

Schrödinger equation.
In case we set up the Schrödinger equation for the Hydrogen atom, as usual, we have:

i~ @
@t
 =

✓
i~2
2µ

r2 + ke
ee

r

◆
 , (40)

where µ = mempr

me+mpr
, e is the electron charge, r is the position of the electron relative to the nucleus,

and r is the magnitude of the relative position. We can re-write me = ~
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1
c
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c
,
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The distance between the electron and the nucleus is the Bohr radius: a0 = 4⇡✏0~2
eme

= �̄c,e

↵
; this

means that the Schrödinger equation for the Hydrogen atom, from the deepest perspective, is
given by:

i
@

@t
 =

"
ic
�
�̄c,e + �̄c,pr

�

2
r2 +

c

�̄c,e

↵
2

#
 . (42)

Again, we observe that the Planck constant has disappeared, and the reduced Compton fre-
quency of the electron, c

�̄c,e
, is embedded in the equation.

We could also try to express the Schrödinger equation through the reduced de Broglie wave-
length instead of the reduced Compton wavelength by utilizing that we have �̄b = �̄c

v

c
, which

would give:
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 . (43)

Now, we suddenly have the velocity v in the formula, and if this is zero, the Schrödinger equation
is no longer valid. If it is not zero, what value should we assign to it? It seems that only the
Compton wavelength is, in reality, linked to the Schrödinger equation, or at least trying to write
it in relation to the de Broglie wavelength makes things unnecessarily complex.

We can see that the Planck constant has been eliminated from the Schrödinger equation when
one writes the mass from its Compton wavelength formula. Then, the Planck constant visible
in the formula cancels out. This means the Planck constant was needed there in the first place
to cancel out the Planck constant embedded in the kilogram mass. We can now see that the
quantization in the Schrödinger equation likely comes from the Compton frequency c

�̄
.

The Dirac equation [41], as given by:

 
�mc

2 + c

3X

n=1

↵npn

!
 = i~ @

@t
 , (44)

can also be rewritten, as any kilogram mass can be expressed as m = ~
�̄c

1
c
, this gives
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 . (45)

In the Dirac equation, it still appears that we have a Planck constant left, but this cancels out
with the Planck constant embedded in the momentum pn. This means that the quantization in
the Dirac equation is ultimately linked to the Compton frequency c

�̄c
, similar to the Schrödinger

equation.
The Klein-Gordon equation, a relativistic quantum equation, is normally written as:

1

c2

@
2

@t2
 �r2

 +
m

2
c
2

~2 = 0. (46)
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Since any kilogram mass can be written as m = ~
�̄c

1
c
, we can re-write the Klein-Gordon equation

as:

1

c

@
2

@t2
 � cr2

 +
c

�̄c

= 0. (47)

Again, the Planck constant is eliminated, as the visual Planck constant in the traditional way of
writing the equation is actually needed to cancel out the Planck constant embedded in the kilogram
mass definition.

8 The Planck constant is linked to a Compton frequency
of 1 divided by the reduced Compton frequency of one
kilogram

We have already seen how the Planck constant cancels out the Schrödinger equation, the Dirac
equation, and the Klein-Gordon equation, so it basically does not seem to play a role in these
quantum mechanical equations. We have written in detail about what the Planck constant truly
represents, in particular in [42], but also in the book chapter [43].

We have already shown that the Planck constant appears to not play a role in the Schrödinger,
Dirac, and Klein-Gordon equations when understood from a deeper perspective. Second, the
Compton wavelength and the Compton frequency seem to play a central role. We will soon
demonstrate how the Planck constant plays no role in quantum gravity, not even in observed
gravitational phenomena where serious and clever researchers have claimed there is a sign of the
Planck constant. When we delve into gravity, we will see that the Compton frequency is even more
evidently connected to the quantization of gravity, as well as the Planck scale. The Planck scale
must not be confused with the Planck constant; the Planck scale is related to the Planck length
and Planck time, not the Planck constant.

The Planck constant is also linked to the quantum of energy. In our view, from a deeper
perspective, it is the Compton frequency of one, which is the smallest possible observable frequency
in an observational time interval of one second divided by the Compton frequency in one kilogram
over a second multiplied by c

2, that is: ~ = 1
fc,1kg

c
2 = 1

c
h

1kg⇥c

c
2 = ~. We will discuss this in more

detail below.
The reduced Compton frequency of an electron is

fe =
c

�̄c,e

⇡ 7.76⇥ 1020 frequency per second. (48)

For one kilogram, the reduced Compton frequency per second must be

f1kg =
c

�̄c,1kg
=

c

~
1kg⇥c

⇡ 8.52⇥ 1050 frequency per second. (49)

The Compton frequency of the electron relative to the Compton frequency in one kilogram is

fe

f1kg
= 9.11⇥ 10�31

. (50)

This is a dimensionless number that is otherwise identical to the kilogram mass of the electron.
This is no coincidence. The kilogram is an arbitrary human-selected clump of matter we have
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called a kilogram; the electron mass in kilograms is relative to this. When we say the mass of the
electron is 9.11 ⇥ 10�31 kilograms, this is the mass in the form of the fraction of one kilogram.
This means the kilogram also, at a deeper level, can be seen as the reduced Compton frequency
in the electron divided by the reduced Compton frequency in one kilogram. That is, the kilogram
mass of any mass can be seen as a Compton frequency ratio. This ratio is typically independent
of the observational time window, but as we will see, it is not always. If we look at the frequency
in half a second instead of a second, then both the kilogram frequency is reduced by half, and
the electron Compton frequency is reduced by half, so their ratio will still be 9.11 ⇥ 10�31, so
the electron mass is independent on observational time-window (as long as the observational time

window is t � �̄c,e

c
, which is the Compton time).

The shortest frequency one can observe in any selected time window is one. Observable fre-
quencies come as integers. An interesting question is, therefore, what is the mass of a Compton
frequency of one in a one-second time window? It is:

mm =
1

f1kg
=

1
c
~

m1kgc

=
1
c
~

1⇥c

=
~
c2

⇡ 1.17⇥ 10�51
. (51)

This, we will claim, is the kilogram mass of the smallest possible mass. So, it is basically the
mass gap, the smallest possible mass above zero. This mass is in line with the predicted classical
and quantum approaches to the photon mass; see Spavieri et al. [44]. Some may protest here,
as the frequency ratio should be dimensionless and not give kilograms. The issue is that the
kilogram is a kind of arbitrary unit; any mass relative to the kilogram is the mass relative to the
one-kilogram mass, so the kilogram is not a real dimension like time or length; it is a ratio. For
example, an electron divided by the kilogram mass gives the kilogram mass of the electron, so the
kilogram mass is a mass ratio; in other words, it is kind of dimensionless. Well, the kilogram is
also an arbitrarily chosen clump of matter (that since 2019 has been directly linked to the Planck
constant), but we could just as well have selected the Compton frequency of that arbitrary clump
of matter and called it the kilogram, so there is nothing wrong with calling the Compton frequency
of a mass divided by the Compton frequency in one kilogram the kilogram.

To get the smallest energy unit in Joule, we simply need to multiply the smallest mass by c
2,

so we must have E = mmc
2 = 1

f1kg
c
2 = ~ ⇥ 1 ⇡ 1.05 ⇥ 10�34 Joule. However, we have looked at

the smallest mass over the time interval of one second. A frequency of one cannot be smaller than
one, so if we cut the time in half, we cannot say the smallest mass is half a Compton frequency
divided by the Compton frequency in one kilogram over half a second. The smallest frequency is
still one. So, the most essential mass is observational time-dependent. Assume now the shortest
possible meaningful time interval is the Planck time, which is assumed by most physicists (but not
all). Then, the reduced Compton frequency in one kilogram is:

8.52⇥ 1050 ⇥ tp ⇡ 45994327 frequency per Planck time.

The smallest mass observed in one Planck time is therefore:

f1

f1kg
⇡ 1

45994327
⇡ 2.17⇥ 10�8 kg.

That is, the smallest of all masses is both 1.17⇥ 10�51 as observed over one second, and it is the
Planck mass if observed in the Planck time. We will claim all masses consist of Planck masses
coming in and out of existence at the reduced Compton frequency of the mass in question, but
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that this Planck mass at the end of each Compton periodicity only lasts the Planck time. This
means the electron mass is

me = femptp =
c

�̄e

mptp ⇡ 9.11⇥ 10�31 kg. (52)

The reduced Planck constant contains embedded information about how the minimum energy
or mass level is related to the reduced Compton frequency of one. However, it says nothing alone
about, for example, the duration of this one event. In short, the Planck constant does not have
the full information about this one event. The full information is needed in gravity, where the
full information is related to the Planck units, such as the Planck length. This is only needed
for gravity and is why gravity always contains the Planck scale as well, as we will see in the next
section.

9 The Compton frequency in matter is the quantization
of gravity

Einstein’s [45] field equation is given by:

Rµv �
1

2
gµvR + ⇤gµv =

8⇡G

c4
Tµv. (53)

We can replace G with its composite form: G =
l
2
pc

3

~ (see [46]), where lp is the Planck length.
This leads to the following equation (see [23, 47, 48]):

Rµv �
1

2
gµvR + ⇤gµv =

8⇡l2
p

~c Tµv. (54)

The Planck units were first described by Max Planck [49] in 1899. Einstein, already in 1916,
suggested that the next big step in gravity would be to get a quantum gravity theory. Eddington,
in 1918, was the first to claim that the Planck length likely would play an important role in such
a quantum gravity theory. It was suggested in 1984 by Cahill [50, 51] that one could express the
gravitational constant using Planck units. However, in 1987, Cohen [52] pointed out that this led
to a circular argument, as no one had found a way to derive the Planck units without relying
on G, ~, and c. This view was consistently held and repeated in the physics literature until at
least 2016 (see the interesting paper by McCulloch [53]). However, in recent years, it has been
demonstrated that the Planck units can be determined without any prior knowledge of G or even
without knowledge of G, ~, and c, see [6, 7, 54], and also see to Haug [46] for an overview and
discussion of the composite view of G.

It is also important to note that Newton [55] never used or introduced the gravitational constant
that has been attributed to his name. The gravitational constant was first introduced in 1873 by
Cornu and Baille [56], at about the same time when it was decided to use the kilogram mass
definition also for astronomical objects. Maxwell [57] used Newton’s original gravity framework
without the gravitational constant, even as late as early in 1873. For example, the gravitational
acceleration is then simply given by g = Mn

r2
, but with a di↵erent mass definition than the kilogram

definition. See [58] for more details.
Looking at the re-written Einsteins field equation (Eq. 54), it now appears that the Planck

constant suddenly plays a role in gravity, and some may find this intriguing. However, the Planck
constant is simply necessary to cancel out the Planck constant embedded in the joule energy
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or kilogram mass within the stress-energy tensor. This becomes clearer when we examine exact
solutions of Einstein’s field equation.

Tthe Schwarzschild [59] metric is given by:

ds
2 = �

✓
1� 2GM

c2r

◆
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2
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2 +

✓
1� 2GM
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2 + r

2(d✓2 + sin2
✓d�

2). (55)

However, by replacing G with its composite form G =
l
2
pc

3

~ and the kilogram mass with its
composite form M = ~

�̄c,M

1
c
, where �̄c,M is simply the reduced Compton wavelength of the mass

M , we obtain:
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In this metric, there is no Planck constant embedded, but there is the Compton frequency per
Planck time, represented by the term lp

�̄c,M
. Table 1 provides an overview of a series of formulas

often used for gravity predictions, most of which have been well-tested against observations. They
are all, at a deeper level, dependent on the Planck length and the Compton wavelength, and some
also depend on the speed of light, which is identical to the speed of gravity.

Prediction Formula:

Gravity acceleration g = GM
r2 = c2lp

r2
lp

�̄c,M

Orbital velocity vo =
q

GM
r = c

q
lp
r

lp
�̄c,M

Orbital time T = 2⇡rp
GM
r

= 2⇡r

c
q

lp
r

lp
�̄c,M

Velocity ball Newton cradle vout =
q

2GM
r2 H = c

r

q
2Hlp

lp
�̄c,M

Frequency Newton spring f = 1
2⇡R

q
GM
x = c

2⇡r

q
lp
x

lp
�̄c,M

Gravitational red shift z =

q
1� 2GM

r1c2q
1� 2GM

r2c2

� 1 =

r
1� 2lp

r1

lp
�̄c,Mr

1� 2lp
r2

lp
�̄c,M

� 1

Time dilation TR = Tf

q
1� 2GM

rc2 = Tf

q
1� 2lp

r
lp

�̄c,M

Gravitational deflection ✓ = 4GM
c2R = 4 lp

r
lp

�̄c,M

Advance of perihelion � = 6⇡GM
a(1�e2)c2 = 6⇡lp

a(1�e2)
lp

�̄c,M

Schwarzschild radius rs =
2GM
c2 = 2lp

lp
�̄c,M

Table 1: The table shows a series of gravity predictions given by general relativity theory in their
standard formulas, but at the deeper level we see all gravity phenomena are linked to the Planck
length and the Compton wavelength of matter. The term lp

�̄c,M
is actually the Compton frequency per

Planck time. This gives the quantum frequency in matter related to gravity, but relative to quantum
mechanics, the Planck length also plays a central role in gravity.

It is worth noting that the Schwarzschild radius can be rewritten as:
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rs =
2GM

c2
= 2lp

lp

�̄c,M

. (57)

Similarly, the event horizon in a black hole, arising from the extremal solutions of the Reissner-
Nordström [60, 61], Kerr [62], and Kerr-Newman [63, 64] metrics, is given by:

rh =
GM

c2
= lp

lp

�̄c,M

. (58)

This implies that the Schwarzschild radius and the black hole horizon, derived from other
solutions of Einstein’s field equations, inherently contain quantization in the form of the Compton
frequency per Planck time, represented by f = c

�̄
tp =

lp

�̄c,M
.

Some may argue that quantum quantization cannot be linked to the Compton frequency but
must be linked to the Planck constant. In 1975, Colella, Overhauser, and Werner [65] observed
what is known as gravitationally induced quantum interference using neutrons. They claimed
that this phenomenon was related to both the gravitational acceleration field g and the Planck
constant. This observation has been replicated and confirmed, for example, by [66, 67]. In recent
years, Abele and Leeb [68] conducted a similar experiment with neutrons and claimed, ”the outcome
depends on both the gravitational acceleration g and the Planck constant ~”. However, it can be
easily demonstrated, as we [69] have done recently, that the Planck constant in their equations is
actually required to cancel out another Planck constant embedded in the kilogram mass in their
formula. Thus, we are left with the conclusion that the prediction of quantum-related gravity
phenomena is related to the Compton frequency in matter and the Planck scale (Planck length).

10 The extremal Reissner-Nordström metric and a new
perspective on the Planck mass particle and the gravi-
ton

The extremal solution of the Reissner-Nordström metrics for charged black holes [60, 61] as well
as the new Mass-Charge metric of Haug-Spavieri metric [70] is given by
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. (59)

Assume we have a Planck mass black hole this can in this metric be described as:

ds
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2
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The event horizon for the extremal solution is rh = GM

c2
so half the Schwarzschild radius rs =

2GM

c2
, so the event horizon of the Planck mass black hole in the extremal solution is rh = Gmp

c2
= lp.

Important is also that the electromstatic and gravity force perfectly o↵set each other in a extremal
Reissner-Nordstrom black hole, see for example Zee [71]. This means the mass of the extremal black
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hole do not collapse into a center sigularity like in a Schwarzschild black hole. Also the parralell
to the Hawking temperature for a extremal Reissner Nordström black hole has been derived by
Sorkin and Piran [72] and also [73]):

TRN =
~c
q

r
2
h
� r

2
Q

kb2⇡r2h
(61)

Where rh = GM

c2
+
q

G2M2

c4
� r

2
Q
. We can see that in the special case of no charge rQ = 0, it

corresponds to the Hawking radiation, which is very high for a Planck mass Schwarzschild black
hole. However, here we assume we are dealing with an extremal Planck mass black hole, and then
rQ = rh = GM

c2
, and we see that the black hole radiation is zero.

Edery and Constantineau [74] have demonstrated that extremal black holes have zero entropy
and, furthermore, that they are time-independent throughout spacetime and even correspond to a
single microstate. This seems to contradict what we typically expect in physics: zero entropy and
time-independence throughout spacetime—how can this be possible?

We conjecture that the extremal solution for real objects is valid only for the Planck mass
particle. Furthermore, we conjecture that the Planck mass particle is a photon-photon collision
that lasts for the Planck time. We already know the radius of this extremal black hole is the
Planck length. For a photon to travel the Planck length takes the Planck time. So, we will assume
the photon-photon collision lasts for the Planck time, and the mass created during this Planck
time, existing only for the Planck time, has a radius equal to the Planck length. The only way
to observe this extremal micro black hole (photon-photon collision) is to be one of the photons
participating in the collision. If one attempts to observe this micro black hole even from a distance
of two Planck lengths, it would have already dissolved before a light signal could be sent to detect
it, as it only last the Planck time. We conclude with an important observation: one can only
observe an extremal micro black hole (the Planck mass particle) directly from its own rest frame.

This also implies that an extremal black hole is always at rest relative to the observer, as it
can only be observed from its own reference frame. This is not in conflict with the principle of
relativity in general, nor with special relativity, except that we impose a maximum limit on length
contraction at the reduced Compton wavelength of elementary particles. Special relativistic length

contraction is given by L = Lr

q
1� v2

c2
. Here, we are specifically interested in the reduced Compton

wavelength of elementary particles and propose that they cannot be observed to contract below
the Planck length. This means we must have:

lp  �̄c

r
1� v2

c2
(62)

Solved with respect to v this gives

v  c

s

1�
l2
p

�̄2
c

(63)

This formula has been presented before by Haug [75] and also during a presentation by Haug at
the Royal Institution in London in 2015. For any observed elementary particle, the maximum
velocity obtained from this formula is very close to the old speed limit of v < c. Moreover,
the speed limit given by this new formula, for example, for an electron, is far above the velocities
achieved in experiments such as those at the Large Hadron Collider, making it fully consistent with
observations so far. However, for elementary particles close to the Planck mass, and particularly
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for the Planck mass particle, something remarkable occurs. For the Planck mass particle, the
maximum velocity is then:

v  c

s

1�
l2
p

l2
p

 0 (64)

And since we cannot have negative velocities, this means the Planck mass particle always remains
stationary. At first, this might seem absurd, as one might typically think that observing it from
a reference frame moving relative to the Planck mass particle would make it appear to move,
implying it must have a speed greater than zero. However, this perspective overlooks the key
idea we have outlined: the Planck mass particle has a radius equal to the Planck length, and we
conjecture that it only lasts for the Planck time. Therefore, it can only be observed from its own
reference frame.

This also explains why it is time-independent throughout spacetime, as the relevant space and
time are confined to the Planck length and Planck time. The extremal solution of the Reissner-
Nordström metric aligns well with this interpretation.

Furthermore, it is important to note that the Schwarzschild metric can be understood as a
weak-field approximation of this scenario.

At a deeper perspective, the extremal Reissner-Nordstrom metric can also be rewritten by

substituting G with G =
l
2
pc

3

~ and M with M = ~
�̄c,M

1
c
, resulting in:
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1
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2
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dr
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✓
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r
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dr
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2⌦2
. (65)

Further the Reissner-Nordström metric can also be expressed as:

ds
2 = �

✓
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2
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◆
c
2
dt
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. (66)

In the special case of the extremal solution, where
r
2
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r2
G

c4
, one has rQ
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Furthermore, it is widely recognized that ke
qpqp

r2
= G

mpmp

r2
= ~c

r2
, meaning the Coulomb force

between two Planck charges equals the Newton gravitational force between two Planck masses,
which is equivalent to ~c

r2
. This implies that electromagnetism and gravity unify at the Planck scale.

Additionally, it suggests that gravity consistently operates at the Planck scale, and macroscopic
gravitational phenomena are merely manifestations of numerous Planck-scale gravitational events
aggregated together. Consequently, the extremal solution can be expressed as:

ds
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✓
1� 2Gnpmp

c2r
+ ke

npqpnpqp

r2

G

c4

◆
c
2
dt

2
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npqpnpqp
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G
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◆�1

dr
2 + r

2⌦2
. (68)

Where np =
lp

�̄c,M
, which represents the reduced Compton frequency per Planck time in the gravi-

tational mass under consideration. We can further rewrite the metric in the following form:

ds
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This indicates that gravity fundamentally operates at the Planck scale, and that macroscopic
gravitational phenomena are essentially observations resulting from a massive aggregation of these
Planck scale events. Therefore, understanding gravity at its most fundamental level is crucial,
necessitating a comprehension of micro black holes at the Planck mass scale.

This implies that gravity can be viewed as comprising quantized Planck mass events, where
lp

�̄c,M
again represents the reduced Compton frequency per Planck time. For a Planck mass, lp

�̄c,M
=

lp

lp
= 1, as expected, since the event horizon in the extremal solutions is lp for a Planck mass black

hole.
This suggests that all gravitational masses, which provide a comprehensive description of mass

at the Planck scale, can be understood as being composed of micro black holes, or as the most
fundamental particles—Planck mass particles—fluctuating into and out of existence at the reduced
Compton frequency.

The Schwarzschild metric can also be seen as a weak gravitational field metric approximation
of the extremal Reissner-Nordstrom metric.

11 Collision space-time theory

Why is G always multiplied by M in both Newtonian gravity (post-1873) and general relativity
theory for predictions of phenomena that can actually be checked with observations? In multiple
papers [4, 5, 43, 48], we have suggested that the reason is to transform the incomplete kilogram
mass into a complete mass that also includes information about gravity. The more fundamental
mass definition is collision-time mass, and this mass is defined as
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M̄ =
G

c3
M = tp

lp

�̄c,M

. (70)

We do not need to know G or the kilogram mass to determine this mass. This mass can be
found directly from gravitational observations. For example, the collision-time mass of the Earth
is given by

M̄ = g
r
2

c3
. (71)

And energy is simply given as Ē = M̄c. Be aware that g can be found by simple experiments
without knowing G and M , for example, by simply dropping a ball and measuring the time it took
to hit the ground and the high it was dropped from. We have g = 2H

T
2
d
, where H is the height of

the drop and Td is the time it took for the ball from the drop to the moment it hit the ground.
At first glance, Ē = M̄c may appear inconsistent with Einstein’s E = Mc

2, but this is not the
case; it is fully consistent with Einstein’s formula. The reason for the di↵erence in our energy-
mass relation is that energy is associated with collision length, and collision length is equal to joule
energy by the formula Ē = G

c4
E. This means E = Ē

c
4

G
and M = M̄

G

c3
, so we have

E = Mc
2

Ē
c
4

G
=

c
3

G
M̄c

2

Ē = M̄c. (72)

If we try to formulate an Einstein-inspired gravitational field equation rooted in this mass and
energy definition, we get (see Haug [76] )

Rµv �
1

2
gµvR + ⇤gµv = 8⇡Eµv, (73)

where Eµv is now an energy-stress tensor linked to collision-time mass and collision-length energy
and not to the kilogram mass and joules. This field equation then gives all the same predictions
as general relativity theory, but it does not need any information about the kilogram mass of the
object nor the gravitational constant G. This should not be confused with just using a unit system
setting G = c = 1. This is not what we have done, which is clear if we solve the field equation for
a static spherical object; this gives
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r

◆
c
2
dt

2 +

✓
1� 2Ē
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This is identical to the Schwarzschild metric we got from general relativity theory when looked
at from a deeper perspective. We also get the following metric from our field equation (correspond-
ing and predicting exactly the same as the extremal solution of the Reissner-Nordstöm, Kerr and
Kerr-Newman metric when understood from a deeper perspective:
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The extremal solution of the Reissner-Nordstöm metric as well as the Haug-Spavieri metric will

give exactly the same as the last line in the equation above, but after we replace G with G =
l
2
pc

3

~
and M with M = ~

�̄c,M

1
c
, however the Planck constant cancels out in the GM terms so it will not

appear when gravity truly is expressed in quantum form related to the Planck scale as done here.
However, we must admit we think a 4-D space-time formalism is likely not the final answer,

but a 6D formalism with three-time and three-space dimensions that are essentially two sides of
the same coin. This is briefly discussed in [5], but it is outside the scope of this paper. Initially,
we thought this 6-D formalism might yield considerably di↵erent predictions than Einstein’s field
equation, but it basically gives the same predictions for spherical objects as the extremal solution
of Einstein’s field equation. This is something we will have to address in future papers.

12 Unification of gravity and quantum mechanics, abso-
lute rest is the missing point in standard quantum me-
chanics

In the previous section, we demonstrated that all gravitational formulas depend on the rest-mass
reduced Compton wavelength �̄c =

~
mc

, as well as the Planck length (or Planck time), and lp

�̄c
which

is the reduced Compton frequency per Planck time. This indicates, in our view, that gravity at the
quantum level is related to rest and we will even claim to absolute rest. Absolute rest is easy to
dismiss before one thinks very carefully about it. If something were at absolute rest in one frame,
would it not, for sure, be observed as not at rest from another frame of reference, as motion is
relative? First of all, the speed of light is always c as observed from any frame of reference, so the
speed of light is absolute, so to speak. Would it then be so remarkable if one also had absolute
rest? Haug [77] has discussed this to some extent, but we will go beyond that here. If gravity is
Planck mass particles coming in and out of existence, the Planck mass particle only has a radius
of the Planck length. So one must indirectly be part of the Planck mass particle to observe it. If
the Planck mass particle is the very collision point between two indivisible photon particles that
stand still relative to each other for the Planck time during collision, then one must be part of this
rest-frame to observe them. Gravity is an indirect way to observe such Planck mass events that in
our view are photon-photon collisions. As we have seen from the sections above, gravity is simply
the sum of such events over the Planck time.

But then, does the Heisenberg uncertainty principle not tell us that standing absolutely still
at the quantum level is impossible? Before rejecting our view of absolute rest as what could
be lacking in quantum mechanics for unification with gravity, let us closely look at Heisenberg’s
uncertainty principle again when we relate it to the de Broglie wavelength, which is the assumed
matter wavelength. We have discussed at length why the de Broglie wavelength likely only is
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a mathematical derivative of the Compton wavelength. We always have �b = c

v
�c, where �b is

the de Broglie wavelength and �c is the Compton wavelength. First of all, we see that the de
Broglie wavelength approaches infinity as we approach rest. This alone is absurd. Second, the de
Broglie wavelength is not even mathematically defined for a rest-mass particle as this would mean
division by zero. This can also be seen from the standard de Broglie formula �b =

h

mv�
. However,

this is brushed under the carpet by proponents of non-modified standard quantum mechanics as
not relevant, as the Heisenberg uncertainty principle says we cannot have v = 0 according to
Heisenberg uncertainty principle. And they are right in some sense as this is what the Heisenberg
uncertainty principle tells us. We do not disagree on that the Heisenberg uncertainty principle not
is consistent with absolute rest. However we will soon see when a similar certanity-uncertainty
principle is rooted in the Compton wavelength it allow rest.

In standard quantum mechanics, one does not allow anything to stand absolutely still; this can
be seen from Heisenberg’s uncertainty principle:

�p�x � ~ (76)

For this to be true, the momentum must be greater than zero, �p > 0. In classical mechanics,
momentum is given by p = mv. If we were certain that v = 0, there would be no uncertainty in
�v and no uncertainty in the momentum for a given mass m.

To incorporate gravity, we claim we must take into account absolute rest, that is v = 0 which
is not really consistent with the Heisenberg uncertainty principle. We could naturally claim v ⇡ 0
is consistent with it as we then leave some room for uncertainty in v. To incorporate gravity in
quantum mechanics implies under our new hypothesis that the Heisenberg uncertainty principle,
needs to be modified. We will first start with re-writing it as:

mv�x � ~
mv��̄b � ~ (77)

So far, we have merely substituted x with the de Broglie wavelength of the particle m in Heisen-
berg’s uncertainty principle. We have also omitted to write �x, using only x instead and the
momentum mv� rather than �p. Equation (77) cannot hold true when v = 0 so we must have
v > 0 for this equation to be true.

Within a Planck time window, we assert that the uncertainty in where the particle can be
observed, assuming the de Broglie wavelength is the matter wavelength, equals the de Broglie
wavelength. Next, we will further revise this uncertainty principle taking advantage that the
Compton wavelength is equal to the de Broglie wavelength based on the formula �̄b = �̄

c

v
, yielding:

mv��̄b � ~
mv��̄c

c

v
� ~

mc��̄c � ~ (78)

This means that the standard momentum p = mv� is substituted with what we previously termed
the total Compton momentum pt = mc�, and the distance x is now diminished by the Compton
wavelength. Since the mass m can be expressed as m = ~

�̄

1
c
, we must have:
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mc��̄c � ~
~
�̄c

1

c
c��̄c � ~

� � 1
1q

1� v2

c2

� 1 (79)

We see that the two sides are equal only when v = 0, which is the case for rest mass, or we can
even say absolute rest, for �v > 0 (and v � 0) then we must have 1q

1� v2

c2

> 1. However, this is not

the case for the uncertainty principle if we assume the de Broglie wavelength is the true matter
wavelength. Then we must have:

p�̄b > ~
mv��̄b > ~

~
�̄c

1

c
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�̄b�

�̄c

v

c
> 1
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q
1� v2
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c
> 1 (80)

As the de Broglie wavelength is not defined for v = 0, we cannot have v = 0 now, which is
essentially what the standard Heisenberg uncertainty principle indirectly tells us. Furthermore, it
is evident that we have:

mc��̄c = mc��̄c

mc��̄c = mv��̄c
c

v

mc��̄c = mv��̄b (81)

However, the last two lines are only applicable for the domain 0 < v < c. This clarifies that
if one mistakenly assumes the de Broglie wavelength is the true matter wavelength, then one is
unable to examine the special case when v = 0 in quantum mechanics. Furthermore, since gravity
is associated with absolute rest for the ultimate particle that, in our view, comprises all other
particles, namely the Planck mass particle, which exists and remains at absolute rest, as it can
only be directly observed from its own reference frame due to its Planck length radius and dissolves
within the Planck time.

The Compton wavelength is valid in the domain 0  v < c, while the de Broglie wavelength is
only valid in the domain 0 < v < c. Heisenberg [78] explicitly stated that he based his uncertainty
principle on the de Broglie wavelength as the true matter wavelength. This implies that the
Heisenberg uncertainty principle cannot be valid for v = 0.

To incorporate gravity into our new Certainty-Uncertainty principle, we have to multiply the

kilogram mass by G

c3
or

l
2
p

~ , which is the same thing. Then we get:
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G

c3
mc��̄c � ~G

c3

m̄c��̄c � l
2
p

(82)

where m̄ = tp
lp

�̄c
, where lp

�̄c
is the reduced Compton frequency per Planck time and tp is the Planck

time. This is what we have called collision-time mass (see section 11 ) and it describe how many
internal photon-photon collisions in the mass of interest over the Planck time and where each
collision last the Planck time.

The particle of interest for gravity is the Planck mass particle, which is a collision between
two building blocks of photons lasting for the Planck time. It only exists for v = 0, and it has a
reduced Compton wavelength equal to the Planck length. This means we always have:

m̄pc�lp = l
2
p

(83)

And this holds true as: m̄p = tp
lp

�̄
= tp

lp

lp
= tp, which means we have:

tpc�lp = l
2
p

1q
1� v2

c2

= 1 (84)

And since we always for the Planck mass particle have v = 0 (as it is a collision between photons)
and its maximum velocity is given by equation (64), this holds true. We could have found this
just as well by using kilograms and joules; however, then gravity is not really incorporated. Still,
let us look at it without incorporating gravity. Then we have:

mpc��̄c = ~
1q

1� v2

c2

= 1 (85)

Which is the same as before and can only be valid when v = 0, which is the maximum velocity of
a Planck mass particle.

We must conclude this section by stating that the view suggesting that the de Broglie wave-
length is the ’matter wavelength,’ while in reality, it is likely the Compton wavelength, has led
to an incomplete uncertainty principle. When derived from the assumption that the Compton
wavelength is the true matter wavelength, one obtains a Certainty-Uncertainty principle that is
consistent with quantum gravity.

13 Conclusion

We have demonstrated that the Compton wavelength plays a very central role in foundational
physics when understood from a deeper perspective. The Compton wavelength of matter is iden-
tical to the photon wavelength of the rest-mass energy of the mass. This is not the case for the
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de Broglie wavelength. The de Broglie wavelength is strictly not even mathematically defined for
a rest-mass particle, as it would lead to division by zero. When assuming the rest-mass particle
is almost stationary, the de Broglie wavelength of the rest-mass particle approaches infinity, and
the photon wavelength corresponding to the rest-mass energy is approaching zero, namely, the de
Broglie wavelength multiplied by v

c
, with v approaching zero.

There seems to be no need for both a Compton wavelength and a de Broglie wavelength of
matter. We suggest that the Compton wavelength is the real matter wavelength, and that the
de Broglie wavelength is, in reality, a mathematical derivative of this. One can choose whether
to predict and analyze particle waves as Compton wavelength or de Broglie wavelength, but the
de Broglie wavelength, since it is only a mathematical derivative of the real matter wavelength,
will lead to a series of problematic or, we could say, strange interpretations, while the Compton
wavelength always has a length we could expect for the atomic and subatomic scale.

Furthermore, when viewed from a deeper perspective, we can quantize Newton’s and general
relativity theories. This quantization reveals that the Compton frequency is fundamental in the
context of gravity. Additionally, in quantum mechanics, when we examine the Schrödinger, Dirac,
and Klein-Gordon equations more profoundly, they appear to be interconnected with the Compton
frequency in matter, and surprisingly, the Planck constant cancels out. This cancellation of the
Planck constant occurs both in gravitational predictions related to observed phenomena and in
quantum mechanics. There is also no longer a need for the gravitational constant. This even
has practical implications, as it can be demonstrated that relying on the gravitational constant
in gravitational predictions results in unnecessarily large prediction errors, as already discovered,
for example, by the US defense [79, 80]. Furthermore, the Heisenberg Uncertainty Principle, when
considering that the real wavelength of matter is the Compton wavelength, can be extended into a
Certainty-Uncertainty Principle. This principle describes the certainty associated with the Planck
mass particle, which is the ultimate building block of matter and the cause of gravity.
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