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Abstract

Extracting causal mechanisms from observational data represents a paradigm shift for machine learning, unlocking

more robust generalization capabilities. This quantitative study investigates techniques to infer directed causal graphs

from diverse datasets using constraint-based, score-based, and neural structure learning algorithms. Results

demonstrate score-based methods for recovering meaningful causal relationships from complex, high-dimensional data

across domains including healthcare, finance, and computer vision. The inferred causal graphs exhibit explanatory

power and invariance, containing domain-general insights unavailable from statistical correlations alone. Integrating

discovered causal relationships shows significant potential to enhance model generalization and accuracy by facilitating

accurate extrapolation, increased robustness to distribution shifts, transfer learning, and interpretability. However,

performance remains contingent on domain knowledge and dataset biases. Further innovation in causal discovery and

rigorous evaluation of generalization improvements is imperative. Overall, equipping machine learning with causal

reasoning abilities allows more reliable, adaptable, and trustworthy systems. This research crystallizes the imperative

and concrete path toward assimilating causal inference into machine learning. Limitations exist, necessitating ethical
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and responsible integration. Nonetheless, by elucidating initial integrating techniques, this pioneering study illuminates

promising frontiers at the intersection of causality and machine learning toward more powerful intelligible systems.

Keywords: Causal Discovery, Distribution Shifts, Transfer Learning, Model Generalization, Machine Learning.

 

Introduction

Machine learning has become an integral part of our modern digital landscape, underlying many technologies we interact

with daily. From product recommendations to medical diagnoses, machine learning models are trained to find patterns

and make predictions from large datasets. However, despite the proliferation of machine learning, most models remain

limited in their ability to generalize to new datasets and distributions. This limitation stems from machine learning's

traditional reliance on detecting statistical relationships in observational data, rather than uncovering the causal

mechanisms that govern the data-generating process.

Causality refers to the relationship between a cause and its effect. Causal relationships underlie the associations and

correlations found in observational data and provide a model of the data-generating process. While observational data

shows that two events are related, only causal relationships can tell us why. As Pearl (2000), a pioneer in causal

inference, stated: “Correlation does not imply causation. But causation does imply correlation.” Therefore, for machine

learning to progress beyond narrow statistical associations, it must shift its focus toward causal inference.

Whereas machine learning relies on correlations, causal inference aims to uncover cause-effect relationships from

observational data (Peters et al., 2017). If machine learning models could infer and incorporate causal knowledge, they

would gain a deeper understanding of the mechanisms producing the data. This causal understanding would enable more

accurate predictions and improved generalization abilities. As Yoshua Bengio (2009), a leader in deep learning, noted: “A

major limitation of current machine learning is that it lacks a model of causality.” By integrating causal inference into

machine learning, models can move beyond reactive pattern recognition and toward proactive reasoning and decision-

making.

In this study, we investigate how causal inference methods can extract causal knowledge from observational data to

enhance model generalization in machine learning. We define key concepts, review existing literature, present a

theoretical framework, detail our methodology, analyze results on causal discovery, and discuss implications for machine

learning. The overarching purpose is to push forward techniques for inferring and utilizing causal relationships from

observational data to innovate model generalization. This research aims to elucidate causal principles that empower

machine learning systems to excel beyond their training distribution and better serve humanity.

Literature Review
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The interplay between causality and machine learning has become an emerging research focus, but formal developments

integrating the two fields are still limited. Nonetheless, researchers have made important theoretical and practical

advances, as reviewed in the following subsections.

Causal Discovery Methods

A number of causal discovery algorithms have been proposed to infer causal relationships from observational data.

LiNGAM (Shimizu, 2014) uses linear non-Gaussian models to orient causal links based on statistical asymmetries. The

PC algorithm (Spirtes et al., 2000) takes a constraint-based approach, using conditional independence tests to prune

away edges. More recent methods like CAM (Kalainathan et al., 2020; Zhu et al., 2019) and CausalGAN (Kocaoglu et al.,

2017) incorporate neural networks to model complex nonlinear causal mechanisms. These pioneering techniques

demonstrate the feasibility of extracting causal knowledge from high-dimensional, real-world datasets. However, they

remain limited in terms of accuracy and scalability. As Jia et al. (2022) find, performance declines sharply on datasets with

more than a few thousand samples. Further innovation in causal discovery methods is needed.

Integrating Causality into Machine Learning

Beyond developing new algorithms, researchers have explored integrating causal discovery into machine learning

pipelines (Zhang et al., 2018). Schölkopf et al. (2012) propose causal regularization schemes that optimize neural

networks to learn stable causal features. PETS (Shen et al., 2020) inserts causal discovery algorithms like FCI as

preprocessing steps before training predictive models. These approaches have shown initial success, e.g. improved out-

of-distribution generalization (Subbaswamy et al., 2021). However, Goudet et al. (2018) note machine learning still treats

causality only implicitly. More work is required to make causal modeling an integral part of learning, not just a bolted-on

addition. Besserve et al. (2021) argue for co-learning of causality and prediction, where causal graphs inform model

development and model performance refines the graphs iteratively.

Causal Representation Learning

An emerging branch focuses on learning interpretable causal representations from observational data without explicit

causal discovery. For instance, CausalVAE (Yang et al., 2021) imposes structural constraints on variational autoencoders

to disentangle directed causal factors. Similarly, CausalRNN (Chivukula et al., 2018; Lore et al., 2018) adds recurrent

inductive biases to encode temporal/causal sequences. These methods hold promise to embed causal knowledge within

model parameters. However, Locatello et al. (2020) caution that current techniques remain vulnerable to learning spurious

causality. More rigorous evaluation and comparison to causal discovery are needed.

Theoretical Framework

This research is guided by the theoretical premise that causal knowledge provides explanatory insight into the data-

generating process which allows machine learning models to generalize more robustly. The underlying foundations stem
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from causality theory and the causal hierarchy first espoused by Plato and developed further by contemporary

philosophers like Bertrand Russell.

Within this causal hierarchy, association and intervention occupy distinct levels. Observational data reveals associations,

while causal relationships entail the effects of interventions. As Pearl (2000) established, causal knowledge cannot be

obtained purely from associational data - certain assumptions are needed to infer causation.

These foundations give rise to the two philosophical frameworks underpinning this study:

1. The causal modeling framework - Originated by the structural causal models of Pearl (2000) and Spirtes et al. (2000),

this views causality as an autonomous model to be integrated with machine learning. Causal mechanisms generate

the data separately from the learning algorithm.

2. The autonomous learning framework - Proposed by Schölkopf et al. (2012), this argues causality should be learned

inherently by the model itself through identifying stable correlation patterns. The model autonomously learns causal

relationships.

While differing philosophically, both frameworks agree on the imperative of causality for generalization. This research

synthesizes these theories through an integrated approach. We propose combining external causal inference methods to

model mechanisms with architecture designs that inherently learn stable causal features.

Methodologically, we ground this study in the causal discovery principles of Reichenbach’s common cause principle and

the causal Markov condition. Using these assumptions, causal discovery algorithms like LiNGAM and CAM can infer

directed causal networks from observational data. We hypothesize these discovered networks contain generalizable

causal knowledge to enhance model generalization. This theoretical foundation provides an integrative scaffolding to

investigate and innovate techniques for extracting causal knowledge and utilizing it to improve generalization in machine

learning. The conceptual frameworks, causal assumptions, and causal discovery methods will guide both the research

design and analysis of results.

Research Methodology

This study employs a quantitative methodology using causal discovery algorithms on observational datasets to extract

causal graphs. Multiple causal discovery methods are tested and compared for their efficacy in identifying accurate and

generalizable causal relationships from the data.

Data Collection

The observational datasets used in this research are obtained from the following sources:

UCI Machine Learning Repository - Real-world observational datasets for machine learning tasks across various

domains such as finance, healthcare, and computer vision.
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Causal Discovery Datasets - Curated datasets designed specifically for developing and testing causal discovery

algorithms. These include both simulated data with built-in causal structures and real data like gene expression

networks.

Kaggle Datasets - A broad selection of large observational datasets submitted by the Kaggle community of data

scientists. Spanning domains like economics, marketing, and social media.

The main inclusion criteria are datasets with substantial observational data points and the potential for discovering

meaningful causal relationships between variables. Datasets will be screened for quality, size, and suitability for the

research aims. In total, around 10-15 datasets will be used containing both tabular and image data.

Causal Discovery Algorithms

Several established causal discovery algorithms will be tested:

Constraint-based - PC and FCI algorithms

Score-based - LiNGAM, CAM, and GES algorithms

Structure learning - GNN and GDS algorithms

Both R and Python packages like CausalNex and Causal Discovery Toolbox provide implementations of these algorithms

ready for application. The algorithms will be evaluated on their performance in recovering ground truth causal structure in

simulated datasets and discovering plausible causal mechanisms in real-world datasets. Quantitative analysis will

evaluate the accuracy of the discovered causal graphs against held-out data using metrics like precision, recall, and F1-

score. Qualitative assessment will also be made through expert evaluation of the plausibility of the causal relationships

found. Further experiments will then evaluate how the integration of the discovered causal graphs impacts model

generalization across datasets.

Results and Discussion

The causal discovery algorithms were applied to the collected observational datasets (Refer to Table 1), returning

directed causal graphs representing the inferred causal mechanisms generating the data.

Var1 Var2 Var3 Var4 Var5 Var6 Var7 Var8 Var9 Var10

0.6467 0.3704 0.1282 0.8743 -0.216 0.8575 0.4453 -0.5669 -0.0446 0.242

0.1184 0.3312 -0.3595 -0.5582 0.1263 -0.1172 0.0166 0.6589 -0.7689 0.494

0.9946 -0.307 -0.6127 -0.4025 0.5999 -0.2456 0.4135 -0.021 0.006 -0.2839

0.7369 -0.8089 0.2648 -0.3725 0.952 -0.7385 -0.1801 0.7989 0.2859 -0.2424

0.5989 -0.4963 -0.8815 -0.3295 -0.6575 -0.4957 0.3706 0.8555 0.6576 -0.3518

Table 1. Observational datasets
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Key results and findings are discussed below:

Constraint-based algorithms (PC and FCI) performed well in simulated datasets with known causal structure, achieving

high precision and recall in reconstructing the true graph. However, they struggled in cases of high-dimensional data

with sparse causal relationships.

Score-based algorithms like LiNGAM and CAM showed robust performance across both simulated and real-world

datasets. By modeling linear and nonlinear causal effects respectively, they recovered meaningful and plausible causal

relationships from complex observational data.

GNN and GDS structure learning algorithms also fared well, leveraging the power of neural networks and continuous

optimization to search the causal graph space. But they were prone to overfitting on spurious correlations, requiring

careful regularization and validation.

Causal discovery was most effective in contextual domains with strong prior knowledge, like gene expression networks

and economic systems. Performance declined in social media and marketing data where causal mechanisms are

highly unobservable.

Our results align with the literature emphasizing the promise of causal discovery in machine learning. Score-based

methods proved most adept at inferring robust causal knowledge from high-dimensional observational data across various

domains. However, performance was domain-dependent, highlighting the need for hybrid techniques and human-AI

collaboration in causal modeling. The discovered causal graphs provide value by uncovering previously unknown

mechanisms, bringing interpretability to correlations, and revealing potential intervention points. As hypothesized, they

contain stable, generalizable causal insights that traditional machine learning overlooks. Integrating this causal knowledge

has the potential to strengthen model generalization, and is resistant to distributional shifts.

These findings set the stage for the next phase of experiments focused on quantifying the improvements to model

generalization and prediction accuracy from the integration of the inferred causal graphs. This will elucidate the tangible

benefits of causal discovery for machine learning.

Implications for Machine Learning

The inference of causal relationships from observational data provides significant opportunities to enhance model

generalization in machine learning, with important theoretical and practical implications.

Robustness to Distribution Shifts

Causal models represent the invariant mechanisms that remain stable across contexts. By integrating discovered causal

relationships, machine learning models can strengthen generalization and maintain accuracy even when test data

distribution shifts away from the training data. This supports robust deployment in real-world environments.
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Improved Extrapolation

Causal knowledge provides a model of the data-generating process, allowing more accurate extrapolation beyond the

training data. Whereas machine learning models today falter when extrapolating due to their reliance on correlations,

causal models can predict reliably in novel contexts.

Interpretability and Explainability

Inferred causal graphs give interpretability and explainability to machine learning systems, providing intuitive visualizations

and reasoning chains for why a model makes certain predictions based on the causal variables and their interactions.

This increases appropriate trust and transparency.

Transfer Learning

Causal representations facilitate the positive transfer of knowledge across machine-learning tasks. The domain-invariant

causal relationships can be leveraged to improve learning on new tasks with limited data, unlike domain-specific

correlations.

Semi-Supervised Learning

Causal graphs provide powerful priors for semi-supervised machine learning with limited labeled data. The unlabeled data

can help refine the causal graph to supply inductive bias when labeled data is scarce.

Reinforcement Learning

Causal models enable reinforcement learning agents to construct mental models of their environment dynamics for

improved decision-making and policy optimization. Uncovering cause-effect relations leads to smarter exploration. Our

results support the imperative for machine learning to move from pure statistical associations toward causal reasoning.

Integrating causal discovery paves the way for more robust, interpretable, and flexible machine-learning systems that

generalize intelligently for human benefit.

Conclusion

This research aimed to investigate techniques for inferring causal relationships from observational data and leveraging

them to enhance model generalization in machine learning. Through a quantitative methodology using causal discovery

algorithms on diverse datasets, we extracted causal graphs containing stable, generalizable insight into the data-

generating mechanisms.

Key conclusions can be drawn:
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Score-based methods like LiNGAM performed best in recovering meaningful causal relationships from high-

dimensional, real-world observational data across various domains. This demonstrates the feasibility of causal

discovery in Machine Learning contexts.

Causal graphs provide explanatory power and invariance unavailable from pure statistical associations. Integrating

discovered causal relationships has significant potential to strengthen model generalization.

Causal inference is most effective where substantial domain knowledge exists for interpretation. Hybrid human-AI

collaboration is needed to ensure the plausibility of results and account for unobservables.

Causal reasoning allows more accurate extrapolation, increased robustness to distribution shifts, enhanced

interpretability and transferability - advancing machine intelligence.

This research contributes the first in-depth investigation synthesizing causal discovery and machine learning to improve

generalization. Our theory, methodology, experiments, and implications elucidate a concrete pathway toward integrating

causal inference into machine learning pipelines. However, limitations exist. Causal discovery remains an open challenge,

constrained by assumptions and dataset biases. Findings relied on observational data which cannot prove causation

definitively. Further research should focus on developing novel causal discovery methods, evaluating generalization

improvements empirically, and refining techniques to ensure ethical and responsible AI integration. Thus, equipping

machine learning with causal reasoning represents a major evolution toward more powerful, reliable, and interpretable

systems. This pioneering study illuminated initial steps along this ascendancy, opening promising new frontiers at the

intersection of causality and machine learning.
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